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This paper is devoted to improvements of Sobolev and Onofri inequalities. The additional terms involve the dual counterparts, i.e. Hardy-Littlewood-Sobolev type inequalities. The Onofri inequality is achieved as a limit case of Sobolev type inequalities. Then we focus our attention on the constants in our improved Sobolev inequalities, that can be estimated by completion of the square methods. Our estimates rely on nonlinear flows and spectral problems based on a linearization around optimal Aubin-Talenti functions.

1. Introduction E. Carlen, J.A. Carrillo and M. Loss noticed in [START_REF] Carlen | Hardy-Littlewood-Sobolev inequalities via fast diffusion flows[END_REF] that Hardy-Littlewood-Sobolev inequalities in dimension d ≥ 3 can be deduced from some special Gagliardo-Nirenberg inequalities using a fast diffusion equation. Sobolev's inequalities and Hardy-Littlewood-Sobolev inequalities are dual. A fundamental reference for this issue is E.H. Lieb's paper [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF]. This duality has also been investigated using a fast diffusion flow in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF]. Although [START_REF] Carlen | Hardy-Littlewood-Sobolev inequalities via fast diffusion flows[END_REF] has motivated [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF], the two approaches are so far unrelated. Actually [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] is closely connected with the approach by Legendre's duality developed in [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF]. We shall take advantage of this fact in the present paper and also use of the flow introduced in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF].

For any d ≥ 3, the space D 1,2 (R d ) is defined as the completion of smooth solutions with compact support w.r.t. the norm

w → w := ∇w 2 L 2 (R d ) + w 2 L 2 * (R d ) 1/2
, where 2 * := 2 d d-2 . The Sobolev inequality in R d is

S d ∇u 2 L 2 (R d ) -u 2 L 2 * (R d ) ≥ 0 ∀ u ∈ D 1,2 (R d ) , (1) 
where the best constant, or Aubin-Talenti constant, is given by

S d = 1 π d (d -2) Γ(d) Γ( d 2 ) 2 d
(see Appendix A for details). The optimal Hardy-Littlewood-Sobolev inequality

S d v 2 L 2 d d+2 (R d ) - R d v (-∆) -1 v dx ≥ 0 ∀ v ∈ L 2 d d+2 (R d ) (2) 
involves the same best constant S d , as a result of the duality method of [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF]. When d ≥ 5, using a well chosen flow, it has been established in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] that the l.h.s. in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] is actually bounded from below by the l.h.s. in [START_REF] Almgren | Symmetric rearrangement is sometimes continuous[END_REF], multiplied by some positive proportionality constant. In our first result, we will remove the technical restriction d ≥ 5 and cover all dimensions d ≥ 3. An elementary use of the duality method -in fact a simple completion of the square methodprovides a simple upper bound on the optimal proportionality constant in any dimension.

Theorem 1. For any d ≥ 3, if q = d+2 d-2 the inequality

S d u q 2 L 2 d d+2 (R d ) - R d u q (-∆) -1 u q dx ≤ C d u
Inequality (3) is obtained with C d replaced by S d by expanding a well chosen square in Section 2. The lower bound on C d follows from an expansion of both sides of the inequality around the Aubin-Talenti functions, which are optimal for Sobolev and Hardy-Littlewood-Sobolev inequalities (see Section 2 for more details), and spectral estimates that will be studied in Section 3: see Corollary 6. The computation based on the flow as was done in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] can be optimized to get an improved inequality compared to [START_REF] Berger | Le spectre d'une variété riemannienne[END_REF], far from the Aubin-Talenti functions: see Theorem 9 in Section 4. As a consequence, we also prove the strict inequality C d < S d .

In dimension d = 2, consider the probability measure dµ defined by dµ(x) := µ(x) dx with µ(x)

:= 1 π (1 + |x| 2 ) 2 ∀ x ∈ R 2 .
The Euclidean version of Onofri's inequality [START_REF] Onofri | On the positivity of the effective action in a theory of random surfaces[END_REF] 

1 16 π R 2 |∇f | 2 dx -log R 2 e f dµ + R 2 f dµ ≥ 0 ∀ f ∈ D(R 2 ) (4)
plays the role of Sobolev's inequality in higher dimensions. Here the inequality is written for smooth and compactly supported functions in D(R 2 ), but can be extended to the appropriate Orlicz space which corresponds to functions such that both sides of the inequality are finite. This inequality is dual of the logarithmic Hardy-Littlewood-Sobolev inequality that can be written as follows: for any g ∈ L 1 + (R 2 ) with M = R 2 g dx, such that g log g, (1 + log |x| 2 ) g ∈ L 1 (R 2 ), we have

R 2 g log g M dx - 4 π M R 2 g (-∆) -1 g dx + M (1 + log π) ≥ 0 (5) with R 2
g (-∆) -1 g dx = -1 2 π R 2 ×R 2 g(x) g(y) log |x -y| dx dy .

Then, in dimension d = 2, we have an analogue of Theorem 1, which goes as follows.

Theorem 2. The inequality

R 2 g log g M dx - 4 π M R 2 g (-∆) -1 g dx + M (1 + log π) ≤ M 1 16 π ∇f 2 L 2 (R 2 ) + R 2 f dµ -log M (6)
holds for any function f ∈ D(R 2 ) such that M = R 2 e f dµ and g = e f µ.

Using for instance [START_REF] Almgren | Symmetric rearrangement is sometimes continuous[END_REF] or [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF]Lemma 2] (also see [39, chapter 3-4]), it is known that optimality is achieved in (1), ( 2), ( 4) or ( 5) when the problem is reduced to radially symmetric functions. However, no such result applies when considering a difference of the terms in two such inequalities, like in (3) or [START_REF] Bianchi | A note on the Sobolev inequality[END_REF]. Optimality therefore requires a special treatment. In Section 2, we shall use the completion of the square method to establish the inequalities (without optimality) under an assumption of radial symmetry in case of Theorem 2. For radial functions, Theorem 1 can indeed be written with d > 2 considered as a real parameter and Theorem 2 corresponds, in this setting, to the limit case as d → 2 + . To handle the general case (without radial symmetry assumption), a more general setting is required. In Section 5, we extend the results established for Sobolev inequalities to weighted spaces and obtain an improved version of the Caffarelli-Kohn-Nirenberg inequalities (see Theorem 15). Playing with weights is equivalent to varying d or taking limits with respect to d, except that no symmetry assumption is required. This allows to complete the proof of Theorem 2.

Technical results regarding the computation of the constants, a weighted Poincaré inequality and the stereographic projection, the extension of the flow method of [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] to the case of the dimensions d = 3 and d = 4, and symmetry results for Caffarelli-Kohn-Nirenberg inequalities have been collected in various appendices.

At this point, we emphasize that Theorems 15 and 16, which are used as intermediate steps in the proof of Theorem 2 are slightly more general than, respectively, Theorems 1 and 2, except for the issue of the optimal value of the proportionality constant, which has not been studied. It is likely that the method used for Sobolev's inequality can be adapted, but since weights break the translation invariance, some care should be given to this question, which is of independent interest and known to raise a number of difficulties of its own (see for instance [START_REF] Dolbeault | About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities[END_REF]). The question of a lower estimate of the proportionality constant in [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] in connection with a larger family of Onofri type inequalities is currently being studied, see [START_REF] Jankowiak | Logarithmic Hardy-Littlewood-Sobolev and Onofri inequalities[END_REF].

Let us conclude this introduction by a brief review of the literature. To establish the inequalities, our approach is based on a completion of the square method which accounts for duality issues. Linearization (spectral estimates) and estimates based on a nonlinear flow are used for optimality issues. Although some of these methods have been widely used in the literature, for instance in the context of Hardy inequalities (see [START_REF] Bosi | Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators[END_REF] and references therein), it seems that they have not been fully exploited yet in the case of the functional inequalities considered in this paper. The main tool in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] is a flow of fast diffusion type, which has been considered earlier in [START_REF] Del Pino | On the extinction profile for solutions of u t = ∆u (N -2)/(N +2)[END_REF]. In dimension d = 2, we may refer to various papers (see for instance [START_REF] Daskalopoulos | On the Cauchy problem for u t = ∆ log u in higher dimensions[END_REF][START_REF] Daskalopoulos | On a singular diffusion equation[END_REF][START_REF] Daskalopoulos | Type II extinction profile of maximal solutions to the Ricci flow in R 2[END_REF]) in connection with Ricci's flow for properties of the solutions of the corresponding evolution equation.

Many papers have been devoted to the asymptotic behaviour near extinction of the solutions of nonlinear flows, in bounded domains (see for instance [START_REF] Berryman | Stability of the separable solution for fast diffusion[END_REF][START_REF] Galaktionov | Fast diffusion equation with critical Sobolev exponent in a ball[END_REF][START_REF] Savaré | The asymptotic profile of solutions of a class of doubly nonlinear equations[END_REF][START_REF] Bonforte | Behaviour near extinction for the Fast Diffusion Equation on bounded domains[END_REF]) or in the whole space (see [START_REF] King | Self-similar behaviour for the equation of fast nonlinear diffusion[END_REF][START_REF] Peletier | Self-similar solutions of a fast diffusion equation that do not conserve mass[END_REF][START_REF] Galaktionov | Asymptotic behaviour near finite-time extinction for the fast diffusion equation[END_REF] and references therein). In particular, the Cauchy-Schwarz inequality has been repeatedly used, for instance in [START_REF] Berryman | Stability of the separable solution for fast diffusion[END_REF][START_REF] Savaré | The asymptotic profile of solutions of a class of doubly nonlinear equations[END_REF], and turns out to be a key tool in the main result of [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF], as well as the solution with separation of variables, which is related to the Aubin-Talenti optimal function for [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF].

Getting improved versions of Sobolev's inequality is a question which has attracted lots of attention. See [START_REF] Brezis | Sobolev inequalities with remainder terms[END_REF] in the bounded domain case and [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical sobolev exponents[END_REF] for an earlier related paper. However, in [START_REF] Brezis | Sobolev inequalities with remainder terms[END_REF], H. Brezis and E. Lieb also raised the question of measuring the distance to the manifold of optimal functions in the case of the Euclidean space. A few years later, G. Bianchi and H. Egnell gave an answer in [START_REF] Bianchi | A note on the Sobolev inequality[END_REF] using the concentration-compactness method, with no explicit value of the constant. Since then, considerable efforts have been devoted to obtain quantitative improvements of Sobolev's inequality. On the whole Euclidean space, nice estimates based on rearrangements have been obtained in [START_REF] Cianchi | The sharp Sobolev inequality in quantitative form[END_REF] and we refer to [START_REF] Cianchi | Quantitative Sobolev and Hardy inequalities, and related symmetrization principles[END_REF] for an interesting review of various related results. The method there is in some sense constructive, but it hard to figure what is the practical value of the constant. As in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] our approach involves much weaker notions of distances to optimal functions, but on the other hand offers clear-cut estimates. Moreover, it provides an interesting way of obtaining global estimates based on a linearization around Aubin-Talenti optimal functions.

A completion of the square and consequences

Before proving the main results of this paper, let us explain in which sense Sobolev's inequality and the Hardy-Littlewood-Sobolev inequality, or Onofri's inequality and the logarithmic Hardy-Littlewood-Sobolev inequality, for instance, are dual inequalities.

To a convex functional F , we may associate the functional F * defined by Legendre's duality as

F * [v] := sup R d u v dx -F [u] . For instance, to F 1 [u] = 1 2 u 2 L p (R d ) defined on L p (R d ), we henceforth as- sociate F * 1 [v] = 1 2 v 2 L q (R d ) on L q (R d )
where p and q are Hölder conjugate exponents: 1/p + 1/q = 1. The supremum can be taken for instance on all functions in L p (R d ), or, by density, on the smaller space of the functions

u ∈ L p (R d ) such that ∇u ∈ L 2 (R d ). Similarly, to F 2 [u] = 1 2 S d ∇u 2 L 2 (R d ) , we associate F * 2 [v] = 1 2 S -1 d R d v (-∆) -1 v dx where (-∆) -1 v = G d * v with G d (x) = 1 d-2 |S d-1 | -1 |x| 2-d , when d ≥ 3
, and G 2 (x) = -1 2π log |x|. As a straightforward consequence of Legendre's duality, if we have a functional inequality of the form F 1 [u] ≤ F 2 [u], then we have the dual inequality

F * 1 [v] ≥ F * 2 [v].
In this sense, (1) and ( 2) are dual of each other, as it has been noticed in [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF]. Also notice that Inequality (2) is a consequence of Inequality [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF].

In this paper, we go one step further and establish that

F * 1 [u] -F * 2 [u] ≤ C (F 2 [u] -F 1 [u]) (7) 
for some positive constant C, at least under some normalization condition (or up to a multiplicative term which is required for simple homogeneity reasons). Such an inequality has been established in [22, Theorem 1.2] when d ≥ 5. Here we extend it to any d ≥ 3 and get and improved value for the constant C. It turns out that the proof can be reduced to the completion of a square. Let us explain how the method applies in case of Theorem 1, and how Theorem 2 can be seen as a limit of Theorem 1 in case of radial functions.

Proof of Theorem 1, part 1: the completion of a square. Integrations by parts show that

R d |∇(-∆) -1 v| 2 dx = R d v (-∆) -1 v dx and, if v = u q with q = d+2 d-2 , R d ∇u • ∇(-∆) -1 v dx = R d u v dx = R d u 2 * dx .
Hence the expansion of the square

0 ≤ R d S d u 4 d-2 L 2 * (R d ) ∇u -∇(-∆) -1 v 2 dx shows that 0 ≤ S d u 8 d-2 L 2 * (R d ) S d ∇u 2 L 2 (R d ) -u 2 L 2 * (R d ) -S d u q 2 L 2 d d+2 (R d ) - R d u q (-∆) -1 u q dx .
Equality is achieved if and only if

S d u 4 d-2 L 2 * (R d ) u = (-∆) -1 v = (-∆) -1 u q , that is, if and only if u solves -∆u = 1 S d u -4 d-2 L 2 * (R d ) u q ,
which means that u is an Aubin-Talenti function, optimal for (1). This completes the proof of Theorem 1, up to the optimality of the proportionality constant, for which we know that

C d = C S d with C ≤ 1 . (8) 
Incidentally, this also proves that v is optimal for (2).

As a first step towards the proof of Theorem 2, let us start with a result for radial functions. If d is a positive integer, we can define

s d := S d |S d-1 | 2 d
and get

s d = 4 d (d -2) Γ d+1 2 √ π Γ d 2 2 d . ( 9 
)
Using this last expression allows us to consider d as a real parameter.

Lemma 3. Assume that d ∈ R and d > 2. Then 0 ≤ s d ∞ 0 u 2 d d-2 r d-1 dr 1+ 2 d - ∞ 0 u d+2 d-2 (-∆) -1 u d+2 d-2 r d-1 dr ≤ c d ∞ 0 u 2 d d-2 r d-1 dr 4 d s d ∞ 0 |u ′ | 2 r d-1 dr - ∞ 0 u 2 d d-2 r d-1 dr d-2 d holds for any radial function u ∈ D 1,2 (R d ) with optimal constant c d ≤ s d .
Here we use the notation (-∆) -1 v = w to express the fact that w is the solution to

w ′′ + d-1 r w ′ + v = 0, that is, (-∆) -1 v (r) = ∞ r s 1-d s 0 v(t) t d-1 dt ds ∀ r > 0 . ( 10 
)
Proof. In the case of a radially symmetric function u, and with the standard abuse of notations that amounts to identify u(x) with u(r), r = |x|, Inequality (1) can be written as

s d ∞ 0 |u ′ | 2 r d-1 dr ≥ ∞ 0 |u| 2 d d-2 r d-1 dr 1-2 d . (11) 
However, if u is considered as a function of one real variable r, then the inequality also holds for any real parameter d ∈ (2, ∞) and is equivalent to the one-dimensional Gagliardo-Nirenberg inequality

s d R |w ′ | 2 dt + 1 4 (d -2) 2 R |w| 2 dt ≥ R |w| 2 d d-2 dt 1-2 d
as can be shown using the Emden-Fowler transformation

u(r) = (2 r) -d-2 2 w(t) , t = -log r . (12) 
The corresponding optimal function is, up to a multiplication by a constant, given by w

⋆ (t) = (cosh t) -d-2 2 ∀ t ∈ R ,
which solves the Euler-Lagrange equation

-(p -2) 2 w ′′ + 4 w -2 p |w| p-2 w = 0 .
for any real number d > 2 and the optimal function for ( 11) is

u ⋆ (r) = (2 r) -d-2 2 w ⋆ (-log r) = 1 + r 2 -d-2 2 
up to translations, multiplication by a constant and scalings. This establishes [START_REF] Brezis | Sobolev inequalities with remainder terms[END_REF]. See Appendix A for details on the computation of s d . The reader is in particular invited to check that the expression of s d is consistent with the one of S d given in the introduction.

Next we apply Legendre's transform to [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] and get a Hardy-Littlewood-Sobolev inequality that reads

∞ 0 v (-∆) -1 v r d-1 dr ≤ s d ∞ 0 v 2 d d+2 r d-1 dr 1+ d 2 (13)
for any d > 2. Inequality (13) holds on the functional space which is obtained by completion of the space of smooth compactly supported radial functions with respect to the norm defined by the r.h.s. in [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF]. Inequality [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF] is the first inequality of Lemma 3.

Finally, we apply the completion of the square method. By expanding

0 ≤ ∞ 0 a u ′ -(-∆) -1 v ′ 2 r d-1 dr with a = s d ∞ 0 u 2 d d-2 r d-1 dr 2 d and v = u d-2
d+2 , we establish the second inequality of Lemma 3 (with optimal constant c d ≤ s d ). Now let us turn our attention to the case d = 2 and to Theorem 2. Using the fact that d in Lemma 3 is a real parameter, we can simply consider the limit of the inequalities as d → 2 + .

Corollary 4. For any function

f ∈ L 1 (R + ; r dr) such that f ′ ∈ L 2 (R + ; r dr) and M = ∞ 0 e f (1 + r 2 ) -2 2 r dr, we have the inequality 0 ≤ ∞ 0 e f log e f M (1 + r 2 ) 2 2 r dr (1 + r 2 ) 2 - 2 M ∞ 0 e f (1 + r 2 ) 2 (-∆) -1 e f (1 + r 2 ) 2 2 r dr + M ≤ M 1 8 ∞ 0 |f ′ | 2 r dr + ∞ 0 f 2 r dr (1 + r 2 ) 2 -log ∞ 0 e f 2 r dr (1 + r 2 ) 2 . ( 14 
)
Here again (-∆) -1 is defined by [START_REF] Brezis | Positive solutions of nonlinear elliptic equations involving critical sobolev exponents[END_REF], but it coincides with the inverse of -∆ acting on radial functions.

Proof. We may pass to the limit in [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] written in terms of

u(r) = u ⋆ (r) 1 + d-2 2 d f
to get the radial version of Onofri's inequality for f . By expanding the expression of |u ′ | 2 we get

u ′2 = u ′2 ⋆ + d -2 d u ′ ⋆ (u ⋆ f ) ′ + d -2 2 d 2 (u ′ ⋆ f + u ⋆ f ′ ) 2 .
Using the fact that lim d→2 + (d -2) s d = 1,

s d = 1 d -2 + 1 2 - 1 2 log 2 + o(1) as d → 2 + ,
and lim

d→2 + 1 d -2 ∞ 0 |u ′ ⋆ | 2 r d-1 dr = 1 , 1 d -2 ∞ 0 |u ′ ⋆ | 2 r d-1 dr -1 ∼ - 1 2 (d -2) , lim d→2 + 1 d -2 ∞ 0 u ′ ⋆ (u ⋆ f ) ′ r d-1 dr = ∞ 0 f 2 r dr (1 + r 2 ) 2 , lim d→2 + 1 4 d 2 ∞ 0 |f ′ | 2 u 2 ⋆ r d-1 dr = 1 16 ∞ 0 |f ′ | 2 r dr ,
and finally

lim d→2 + ∞ 0 |u ⋆ (1 + d-2 2 d f )| 2 d d-2 r d-1 dr = ∞ 0 e f r dr (1 + r 2 ) 2 , so that, as d → 2 + , ∞ 0 |u ⋆ (1 + d-2 2 d f )| 2 d d-2 r d-1 dr d-2 d -1 ∼ d -2 2 log ∞ 0 e f r dr (1 + r 2 ) 2 .
By keeping only the highest order terms, which are of the order of (d -2), and passing to the limit as d → 2 + in [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF], we obtain that

1 8 ∞ 0 |f ′ | 2 r dr + ∞ 0 f 2 r dr (1 + r 2 ) 2 ≥ log ∞ 0 e f 2 r dr (1 + r 2 ) 2 ,
which is Onofri's inequality written for radial functions.

Similarly, we can pass to the limit as d → 2 + in [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF]. Let v be a compactly supported smooth radial function, considered as a function of r ∈ [0, ∞) and let us compute the limit as

d → 2 + of h(d) := ∞ 0 v 2 d d+2 r d-1 dr 1+ 2 d - 1 s d ∞ 0 v k d [v] r d-1 dr
where

k d [v] := (-∆) -1 v is given by (10) for any d ≥ 2. If d > 2, since (2 -d) ∞ 0 v(r) k d [v](r) r d-1 dr = (2 -d) ∞ 0 v(r) r d-1 ∞ r s 1-d s 0 v(t) t d-1 dt ds dr = (2 -d) ∞ 0 r 1-d r 0 v(t) t d-1 dt 2 dr = -2 ∞ 0 r v(r) r 0 v(t) t d-1 dt dr we see that lim d→2 + h(d) = 0 since 2 ∞ 0 r v(r) r 0 v(t) t dt dr = ∞ 0 r v(r) dr 2 .
Let us compute the O(d -2) term. With the above expression, it is now easy to check that lim

d→2 + h(d) d -2 = 1 2 ∞ 0 v r dr ∞ 0 v log v ∞ 0 v r dr r dr - log 2 -1 2 ∞ 0 r v(r) dr 2 + 2 ∞ 0 v r dr ∞ 0 v(r) r log r dr -2 ∞ 0 r v(r) r 0 v(t) t log t dt dr = 1 2 ∞ 0 v r dr ∞ 0 v log v ∞ 0 v r dr r dr - log 2 -1 2 ∞ 0 r v(r) dr 2 + 2 ∞ 0 v r dr ∞ r v(t) t log t dt since 1 (d-2) s d ∼ 1 + d-2
2 (log 2 -1). A computation corresponding to d = 2 similar to the one done above for d > 2 shows that, when d = 2,

∞ 0 v k 2 [v] r dr = ∞ 0 v(r) r ∞ r 1 s s 0 v(t) t dt ds dr = ∞ 0 1 r r 0 v(t) t dt 2 dr = -2 ∞ 0 r log r v(r) r 0 v(t) t dt dr , thus proving that lim d→2 + h(d) d -2 = 1 2 ∞ 0 v r dr ∞ 0 v log v ∞ 0 v r dr r dr - ∞ 0 v k 2 [v] r d-1 dr - 1 2 (log 2 -1) ∞ 0 r v(r) dr 2 .
Now let us consider as above the limit

u d+2 d-2 = (1 + r 2 ) -d+2 2 (1 + d-2 2 d f ) d+2 d-2 → (1 + r 2 ) -2 e f =: g as d → 2.
This concludes the proof of Corollary 4 by passing to the limit in the inequalities of Lemma 3 and taking v = g.

Proof of Theorem 2: a passage to the limit in the radial case. If we consider g as a function on R 2 ∋ x with r = |x|, this means that lim

d→2 + h(d) d -2 = 1 2 R 2 g dx R 2 g log g R 2 g dx dx -2 π R 2 g (-∆) -1 g dx + 1 2 (1 + log π) R 2
g dx 2 which precisely corresponds to the terms involved in ( 5), up to a factor

1 2 M = 1 2 R 2 g dx.
The proof in the non-radial case will be provided at the end of Section 5.

Linearization

In the previous section, we have proved that the optimal constant C d in (3) is such that C d ≤ S d . Let us prove that C d ≥ d d+4 S d using a special sequence of test functions. Let F and G be the positive integral quantities associated with, respectively, the Sobolev and Hardy-Littlewood-Sobolev inequalities:

F [u] := S d ∇u 2 L 2 (R d ) -u 2 L 2 * (R d ) , G[v] := S d v 2 L 2 d d+2 (R d ) - R d v (-∆) -1 v dx .
Since that, for the Aubin-Talenti extremal function u ⋆ , we have

F [u ⋆ ] = G[u q ⋆ ]
= 0, so that u ⋆ gives a case of equality for (3), a natural question to ask is whether the infimum of F [u]/G[u q ], under an appropriate normalization of u L 2 * (R d ) , is achieved as a perturbation of the u ⋆ .

Recall that u ⋆ is the Aubin-Talenti extremal function

u ⋆ (x) := (1 + |x| 2 ) -d-2 2 ∀ x ∈ R d .
With a slight abuse of notations, we use the same notation as in Section 2.

We may notice that u ⋆ solves

-∆u ⋆ = d (d -2) u d+2 d-2
⋆ which allows to compute the optimal Sobolev constant as

S d = 1 d (d -2) R d u 2 * ⋆ dx -2 d ( 15 
)
using [START_REF] Carlen | Hardy-Littlewood-Sobolev inequalities via fast diffusion flows[END_REF]. See Appendix A for details. This shows that

1 S d F [u] = ∇u 2 L 2 (R d ) -d (d -2) R d u 2 * dx 1-2 d R d u 2 * ⋆ dx 2 d
.

The goal of this section is to perform a linearization. By expanding

F [u ε ] with u ε = u ⋆ + ε f , for some f such that R d f u⋆ (1+|x| 2 ) 2 dx = 0 at order two in terms of ε, we get that 1 S d F [u ε ] = ε 2 F[f ] + o(ε 2 )
where

F[f ] := R d |∇f | 2 dx -d (d + 2) R d |f | 2 (1 + |x| 2 ) 2 dx .
According to Lemma 17 (see Appendix B), we know that

F[f ] ≥ 4 (d + 2) R d |f | 2 (1 + |x| 2 ) 2 dx for any f ∈ D 1,2 (R d ) such that R d f f i (1 + |x| 2 ) 2 dx = 0 ∀ i = 0 , 1 , 2 , . . . d + 1 , (16) 
where

f 0 := u ⋆ , f i (x) = x i 1 + |x| 2 u ⋆ (x) and f d+1 (x) := 1 -|x| 2 1 + |x| 2 u ⋆ (x) .
Notice for later use that

-∆f 0 = d (d -2) f 0 (1 + |x| 2 ) 2

and

-

∆f i = d (d + 2) f i (1 + |x| 2 ) 2 ∀ i = 1 , 2 , . . . d + 1 . Also notice that R d f i f j (1 + |x| 2 ) 2 dx = 0 for any i, j = 0, 1, . . . d + 1, j = i.
Similarly, we can consider the functional G as given above, associated with the Hardy-Littlewood-Sobolev inequality, and whose minimum

G[v ⋆ ] = 0 is achieved by v ⋆ := u q ⋆ , q = d+2 d-2 . Consistently with the above computations, let v ε := (u ⋆ + ε f ) q = v ⋆ 1 + ε f u⋆ q where f is such that R d f f 0 (1+|x| 2 ) 2 dx = 0. By expanding G[v ε ] at order two in terms of ε, we get that G[v ε ] = ε 2 d + 2 d -2 2 G[f ] + o(ε 2 )
where

G[f ] := 1 d (d + 2) R d |f | 2 (1 + |x| 2 ) 2 dx - R d f (1 + |x| 2 ) 2 (-∆) -1 f (1 + |x| 2 ) 2 dx . Lemma 5. Ker(F) = Ker(G).
It is straightforward to check that the kernel is generated by f i with i = 1, 2, . . . d, d + 1. Details are left to the reader. Next, by Legendre duality we find that

1 2 R d |g| 2 (1 + |x| 2 ) 2 dx = sup f R d f g (1 + |x| 2 ) 2 dx - 1 2 R d |f | 2 (1 + |x| 2 ) 2 dx , 1 2 R d g (1 + |x| 2 ) 2 (-∆) -1 g (1 + |x| 2 ) 2 dx = sup f R d f g (1 + |x| 2 ) 2 dx - 1 2 R d |∇f | 2 dx .
Here the supremum is taken for all f satisfying the orthogonality conditions [START_REF] Cianchi | The sharp Sobolev inequality in quantitative form[END_REF]. It is then straightforward to see that duality holds if g is restricted to functions satisfying (16) as well. Consider indeed an optimal function f subject to [START_REF] Cianchi | The sharp Sobolev inequality in quantitative form[END_REF]. There are Lagrange multipliers

µ i ∈ R such that g -f - d+1 i=0 µ i f i = 0
and after multiplying by f (1 + |x| 2 ) -2 , an integration shows that

R d f g (1 + |x| 2 ) 2 dx = R d |f | 2 (1 + |x| 2 ) 2 dx
using the fact that f satisfies [START_REF] Cianchi | The sharp Sobolev inequality in quantitative form[END_REF]. On the other hand, if g satisfies ( 16), after multiplying by g (1 + |x| 2 ) -2 , an integration gives

R d |g| 2 (1 + |x| 2 ) 2 dx = R d f g (1 + |x| 2 ) 2 dx ,
which establishes the first identity of duality. As for the second identity, the optimal function satisfies the Euler-Lagrange equation

g (1 + |x| 2 ) 2 + ∆ f = d+1 i=0 µ i f i (1 + |x| 2 ) 2
for some Lagrange multipliers that we again denote by µ i . By multiplying by f and (-∆) -1 g (1 + |x| 2 ) -2 , we find that

R d f g (1 + |x| 2 ) 2 dx = R d |∇f | 2 dx R d g (1 + |x| 2 ) 2 (-∆) -1 g (1 + |x| 2 ) 2 dx = R d f g (1 + |x| 2 ) 2 dx
where we have used the fact that

R d f i (1 + |x| 2 ) 2 (-∆) -1 g (1 + |x| 2 ) 2 dx = R d g (1 + |x| 2 ) 2 (-∆) -1 f i (1 + |x| 2 ) 2 dx = 0 because (-∆) -1 f i (1 + |x| 2 ) -2 is proportional to f i .
As a straightforward consequence, the dual form of Lemma 17 then reads as follows.

Corollary 6. For any g satisfying the orthogonality conditions (16), we have

R d g (1 + |x| 2 ) 2 (-∆) -1 g (1 + |x| 2 ) 2 dx ≤ 1 (d + 2) (d + 4) R d g 2 (1 + |x| 2 ) 2 dx .
Moreover, if f obeys to (16), then we have

4 d (d + 2) (d + 4) R d f 2 (1 + |x| 2 ) 2 dx ≤ G[f ] ≤ 1 d (d + 2) 2 (d + 4) F[f ]
and equalities are achieved in L 2 (R d , (1 + |x| 2 ) -2 dx).

Proof. The first inequality follows from the above considerations on duality and the second one from the definition of G, using

4 d (d + 2) (d + 4) = 1 d (d + 2) - 1 (d + 2) (d + 4)
.

To establish the last inequality, we can decompose f on (f k ) k , the stereographic projection of the spherical harmonics associated to eigenvalues λ k = k (k+d-1) with k ≥ 2, so as to meet condition [START_REF] Cianchi | The sharp Sobolev inequality in quantitative form[END_REF]. See Appendix B for more details. The corresponding eigenvalues for the Laplacian operator on the Euclidean space are

µ k = 4 λ k + d (d -2), so that -∆f k = µ k f k (1 + |x| 2 ) -2 , with f k L 2 (R d , (1+|x| 2 ) -2 dx) = 1. By writing f = k≥2 a k f k we have F[f ] = k≥2 c k , with c k := a 2 k (µ k -µ 1 ) , G[f ] = k≥2 d k , with d k := a 2 k 1 µ 1 - 1 µ k , with c k = µ 1 µ k d k ≤ µ 1 µ 2 d k since (µ k ) k is increasing in k. This yields F[f ] G[f ] ≤ µ 1 µ 2 = d (d + 2) 2 (d + 4) , with equality for f = f 2 .
As a consequence of Corollary 6 and ( 15), we have found that

1 C := S d C d = inf G[u q ] =0 u 8 d-2 L 2 * (R d ) S d F [u] G[u q ] ≤ 1 d 2 (d + 2) 2 inf f F[f ] G[f ] = d + 4 d , (17) 
where the last infimum is taken on the set of all non-trivial functions in L 2 (R d , (1+|x| 2 ) -2 dx) satisfying ( 16). This establishes the lower bound in (3).

Remark 7. One may hope to get a better estimate by considering the case f ∈ Ker(F) = Ker(G) and expanding F and G to the fourth order in ε but, interestingly, this yields exactly the same lower bound on C d as the linearization shown above.

Improved inequalities and nonlinear flows

In Section 3, the basic strategy was based on the completion of a square. The initial approach for the improvement of Sobolev inequalities in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] was based on a fast diffusion flow. Let us give some details and explain how even better results can be obtained using a combination of the two approaches.

Let us start with a summary of the method of [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF]. It will be convenient to define the functionals

J d [v] := R d v 2 d d+2 dx and H d [v] := R d v (-∆) -1 v dx -S d v 2 L 2 d d+2 (R d )
.

Consider a positive solution v of the fast diffusion equation

∂v ∂t = ∆v m t > 0 , x ∈ R d , m = d -2 d + 2 (18) 
and define the functions

J(t) := J d [v(t, •)] and H(t) := H d [v(t, •)] .
We shall denote by J 0 and H 0 the corresponding initial values. Elementary computations show that

J ′ = -(m + 1) ∇v m 2 L 2 (R d ) ≤ - m + 1 S d J 1-2 d = - 2 d d + 2 1 S d J 1-2 d , (19) 
where the inequality is a consequence of Sobolev's inequality. Hence v has a finite extinction time T > 0 and since

J(t) 2 d ≤ J 2 d 0 - 4 d + 2 t S d ,
we find that

T ≤ d + 2 4 S d J 2 d 0 .
We notice that H is nonpositive because of the Hardy-Littlewood-Sobolev inequality and by applying the flow of ( 18), we get that

1 2 J -2 d H ′ = S d ∇u 2 L 2 (R d ) -u 2 L 2 * (R d ) with u = v d-2 d+2 .
The right hand side is nonnegative because of Sobolev's inequality. One more derivation with respect to t gives that

H ′′ = J ′ J H ′ -4 m S d J 2 d K ( 20 
)
where

K := R d v m-1 |(-∆)v m -Λ v| 2 dx and Λ := -d+2 2 d J ′
J . This identity makes sense in dimension d ≥ 5, because, close to the extinction time, v behaves like the Aubin-Talenti functions. The reader is invited to check that all terms are finite when expanding the square in K and can refer to [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] for more details. It turns out that the following estimate is also true if d = 3 or d = 4. Lemma 8. Assume that d ≥ 3. With above notations, we have

H ′′ H ′ ≤ J ′ J .
The main idea is that even if each of the above integrals is infinite, there are cancellations in low dimensions. To clarify this computation, it is much easier to get rid of the time-dependence corresponding to the solution with separation of variables and use the inverse stereographic projection to recast the problem on the sphere. The sketch of the proof of this lemma will be given in Appendix C.

A straightforward consequence is the fact that

H ′′ H ′ ≤ -κ with κ := 2 d d + 2 J -2 d 0 S d
where the last inequality is a consequence of [START_REF] Daskalopoulos | Type II extinction profile of maximal solutions to the Ricci flow in R 2[END_REF]. Two integrations with respect to t show that

-H 0 ≤ 1 κ H ′ 0 (1 -e -κ T ) ≤ 1 2 C S d J 2 d 0 H ′ 0 with C = d + 2 d (1 -e -d/2 ) ,
which is the main result of [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] (when d ≥ 5), namely

-H 0 ≤ C S d J 4 d 0 S d ∇u 0 2 L 2 (R d ) -u 0 2 L 2 * (R d ) with u 0 = v d-2 d+2 0 .
Since this inequality holds for any initial datum u 0 = u, we have indeed shown that

-H d [v] ≤ C S d J d [v] 4 d S d ∇u 2 L 2 (R d ) -u 2 L 2 * (R d ) ∀ u ∈ D 1,2 (R d ) , v = u d+2 d-2 .
It is straightforward to check that our result of Theorem 1 is an improvement, not only because the restriction d ≥ 5 is removed, but also because the inequality holds with

d d+4 ≤ C < 1 < d+2 d (1 -e -d/2
). In other words, the result of Theorem 1 is equivalent to

-H 0 ≤ 1 2 C S d J 2 d 0 H ′ 0 with C = d d + 4 . ( 21 
)
Up to now, we have not established yet the fact that C < 1. This is what we are now going to do. Now let us reinject in the flow method described above our improved 20 inequality of Theorem 1, which can also be written as

C S d J 4 d d + 2 2 d S d J ′ + J 1-2 d -H ≤ 0 ( 22 
)
if v is still a positive solution of [START_REF] Daskalopoulos | On a singular diffusion equation[END_REF]. From Lemma 8, we deduce that

H ′ ≤ κ 0 J with κ 0 := H ′ 0 J 0 .
Since t → J(t) is monotone decreasing, there exists a function Y such that

H(t) = -Y(J(t)) ∀ t ∈ [0, T ) .
Differentiating with respect to t, we find that

-Y ′ (J) J ′ = H ′ ≤ κ 0 J
and, by inserting this expression in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF], we arrive at

C - d + 2 2 d κ 0 S 2 d J 1+ 4 d Y ′ + S d J 1+ 2 d + Y ≤ 0 .
Summarizing, we end up by considering the differential inequality

Y ′ C S d s 1+ 2 d + Y ≤ d + 2 2 d C κ 0 S 2 d s 1+ 4 d , Y(0) = 0 , Y(J 0 ) = -H 0 (23)
on the interval [0, J 0 ] ∋ s. It is then possible to obtain estimates as follows.

On the one hand we know that

Y ′ ≤ d + 2 2 d κ 0 S d s 2 d
and, hence,

Y(s) ≤ 1 2 κ 0 S d s 1+ 2 d ∀ s ∈ [0, J 0 ] .
On the other hand, after integrating by parts on the interval [0, J 0 ], we get

1 2 H 2 0 -C S d J 1+ 2 d 0 H 0 ≤ 1 4 C κ 0 S 2 d J 2+ 4 d 0 + d + 2 d C S d J 0 0 s 2 d Y(s) ds .
Using the above estimate, we find that

d + 2 d S d J 0 0 s 2 d Y(s) ds ≤ 1 4 J 2+ 4 d 0 ,
and finally 1 2

H 2 0 -C S d J 1+ 2 d 0 H 0 ≤ 1 2 Cκ 0 S 2 d J 2+ 4 d 0 .
This is a strict improvement of ( 21) when C = 1 since ( 21) is then equivalent to -S d J

1+ 2 d 0 H 0 ≤ 1 2 Cκ 0 S 2 d J 2+ 4 d 0 .
However, it is a strict improvement of (21) if C < 1 only when |H 0 | = -H 0 is large enough (we will come back to this point in Remarks 10 and 11). Altogether, we have shown an improved inequality that can be stated as follows.

Theorem 9. Assume that d ≥ 3. Then we have

0 ≤ H d [v] + S d J d [v] 1+ 2 d ϕ J d [v] 2 d -1 S d ∇u 2 L 2 (R d ) -u 2 L 2 * (R d ) ∀ u ∈ D 1,2 (R d ) , v = u d+2 d-2
where ϕ(x) := √ C 2 + 2 C x -C for any x ≥ 0.

Proof. We have shown that

y 2 + 2 C y-C κ 0 ≤ 0 with y = -H 0 /(S d J 1+ 2 d 0 ) ≥ 0. This proves that y ≤ √ C 2 + Cκ 0 -C, which proves that -H 0 ≤ S d J 1+ 2 d 0 C 2 + C κ 0 -C after recalling that 1 2 κ 0 = H ′ 0 J 0 = J d [v 0 ] 2 d -1 S d ∇u 0 2 L 2 (R d ) -u 0 2 L 2 * (R d ) .
Remark 10. We may observe that x → x -ϕ(x) is a convex nonnegative function which is equal to 0 if and only if x = 0. Moreover, we have

ϕ(x) ≤ x ∀ x ≥ 0
with equality if and only if x = 0. However, one can notice that

ϕ(x) ≤ C x ⇐⇒ x ≥ 2 1 -C C .
Remark 11. A more careful analysis of [START_REF] Dolbeault | Radial symmetry and symmetry breaking for some interpolation inequalities[END_REF] shows that

Y(s) ≤ 1 2 1 + 2 κ 0 C -1 C S d s 1+ 2 d ,
which shows that the inequality of Theorem 9 holds with the improved function

ϕ(x) := C 2 + C x + 1 2 C 2 1 + 4 x C -1 -C
but again the reader is invited to check that ϕ(x) ≤ x for any x ≥ 0 and lim x→0 + ϕ(x)/x = 1.

Corollary 12. With the above notations, we have C < 1.

Proof. Assume by contradiction that C = 1. With the notations of Section 3, let us consider a minimizing sequence (u n ) n∈N for the functional u

→ F [u] G[u q ]
but assume that J d [u q n ] = J d [u q ⋆ ] =: J ⋆ for any n ∈ N. This condition is not restrictive because of the homogeneity of the inequality. It implies that (G[u q n ]) n∈N is bounded. If lim n→∞ G[u q n ] > 0, then we also have L := lim n→∞ F [u n ] > 0, at least up to the extraction of a subsequence. As a consequence we find that

0 = lim n→∞ S d J 4 d ⋆ F [u n ] -G[u q n ] = S d lim n→∞ J 4 d ⋆ F [u n ] -J 1+ 2 d ⋆ ϕ J 2 d -1 ⋆ F [u n ] + lim n→∞ S d J 1+ 2 d ⋆ ϕ J 3.1],
we know that up to translations and dilations, u k converges to u ⋆ . Thus there exists f k such that u k = u ⋆ + f k with f k → 0, and then

1 C = S d C d = lim k→∞ 1 d 2 (d + 2) 2 F[f k ] G[f k ] ≥ d + 4 d .
This shows that C ≤ d d+4 , a contradiction. We may observe that C < 1 means C d < S d . This completes the the proof of Theorem 1.

Caffarelli-Kohn-Nirenberg inequalities and duality

Let 2 * := ∞ if d = 1 or 2, 2 * := 2 d/(d -2) if d ≥ 3 and a c := (d -2)/2. Consider the space D 1,2 a (R d ) obtained by completion of D(R d \ {0}) with respect to the norm u → |x| -a ∇u 2 L 2 (R d ) .
In this section, we shall consider the Caffarelli-Kohn-Nirenberg inequalities

R d |u| p |x| bp dx 2 p ≤ C a,b R d |∇u| 2 |x| 2a dx (24) 
These inequalities generalize to D 1,2 a (R d ) the Sobolev inequality (1) and in particular the exponent p is given in terms of a and b by

p = 2 d d -2 + 2 (b -a)
as can be checked by a simple scaling argument. A precise statements on the range of validity of (24) goes as follows.

Lemma 13. [11] Let d ≥ 1. For any p ∈ [2, 2 * ] if d ≥ 3 or p ∈ [2, 2 * ) if d = 1 or 2, there exists a positive constant C a,b such that (24) holds if a, b and p are related by b = a -a c + d/p, with the restrictions a < a c , a ≤ b ≤ a + 1 if d ≥ 3, a < b ≤ a + 1 if d = 2 and a + 1/2 < b ≤ a + 1 if d = 1.
At least for radial solutions in R d , weights can be used to work as in Section 2 as if the dimension d was replaced by the dimension (d -2a). We will apply this heuristic idea to the case d = 2 and a < 0, a → 0 in order to prove Theorem 2. See Appendix D for symmetry results for optimal functions in [START_REF] Dolbeault | About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities[END_REF].

On D 1,2 a (R d ), let us define the functionals

F 1 [u] := 1 2 R d |u| p |x| bp dx 2 p and F 2 [u] := 1 2 C a,b R d |∇u| 2
|x| 2a dx so that Inequality [START_REF] Dolbeault | About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities[END_REF] amounts to

F 1 [u] ≤ F 2 [u]. Assume that •, • denotes the natural scalar product on L 2 R d , |x| -2a dx , that is, u, v := R d u v |x| 2a dx
and denote by u = u, u 1/2 the corresponding norm. Consider the operators

A a u := ∇u , A * a w := -∇ • w + 2a x |x| 2 • w and L a u := A * a A a u = -∆u + 2a x |x| 2 • ∇u defined for u and w respectively in L 2 R d , |x| -2a dx and L 2 R d , |x| -2a dx d .
Elementary integrations by parts show that

u, L a u = A a u, A a u = A a u 2 = R d |∇u| 2 |x| 2a dx .
If we define the Legendre dual of F i by

F * i [v] = sup u∈D 1,2 a (R d ) ( u, v -F i [u]
), then it is clear that we formally have the inequality

F * 2 [v] ≤ F * 1 [v] for any v ∈ L q (R d , |x| -(2a-b) q dx) ∩ L a (D 1,2 a (R d ))
, where q is Hölder's conjugate of p, i.e.

1 p + 1 q = 1 .
Using the invertibility of L a , we indeed observe that

F * 2 [v] = u, v -F 2 [u] with v = C a,b L a u ⇐⇒ u = 1 C a,b L -1 a v ,
hence proving that

F * 2 [v] = 1 2 C a,b v, L -1 a v .
Similarly, we get that

F * 1 [v] = u, v -F 1 [u] with |x| -2a v = κ 2-p |x| -bp u p-1 (25) 
and

κ = R d |u| p |x| bp dx 1 p = u, v = R d |v| q |x| (2a-b) q dx 1 q
, that is

F * 1 [v] = 1 2 R d |v| q |x| (2a-b) q dx 2 q
. This proves the following result. Lemma 14. With the above notations and under the same assumptions as in Lemma 13, we have

1 C a,b v, L -1 a v ≤ R d |v| q |x| (2a-b) q dx 2 q ∀ v ∈ L q (R d , |x| -(2a-b) q dx) ∩ L a (D 1,2 a (R d )) .
The next step is based on the completion of the square. Let us compute

A a u -λ A a L -1 a v 2 = A a u 2 -2 λ A a u, A a L -1 a v + λ 2 A a L -1 a v, A a L -1 a v = A a u 2 -2 λ u, v + λ 2 v, L -1 a v .
With the choice λ = 1/C a,b and v given by ( 25), we have proved the following Theorem 15. Under the assumptions of Lemma 13 and with the above notations, for any

u ∈ D 1,2 a (R d ) and any v ∈ L q (R d , |x| -(2a-b) q dx) ∩ L a (D 1,2 a (R d )) we have 0 ≤ R d |v| q |x| (2a-b) q dx 2 q - 1 C a,b v, L -1 a v ≤ C a,b R d |∇u| 2 |x| 2a dx - R d |u| p |x| bp dx 2 p
if u and v are related by [START_REF]Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations[END_REF], if a, b and p are such that b = a -a c + d/p and verify the conditions of Lemma 13, and if q = p/(p -1).

If, instead of (25), we simply require that

|x| -2a v = |x| -bp u p-1 ,
then the inequality becomes

0 ≤ C a,b R d |v| q |x| (2a-b) q dx 2 q -v, L -1 a v ≤ C a,b R d |u| p |x| bp dx 2 p (p-2) C a,b R d |∇u| 2 |x| 2a dx - R d |u| p |x| bp dx 2 p
Hence Theorem 15 generalizes Theorem 1, which is recovered in the special case a = b = 0, d ≥ 3. Because of the positivity of the l.h.s. due to Lemma 14, the inequality in Theorem 15 is an improvement of the Caffarelli-Kohn-Nirenberg inequality [START_REF] Dolbeault | About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities[END_REF]. It can also be seen as an interpolation result, namely 2

R d |v| q |x| (2a-b) q dx 2 q = 2 R d |u| p |x| bp dx 2 p ≤ C a,b R d |∇u| 2 |x| 2a dx + 1 C a,b v, L -1 a v
whenever u and v are related by [START_REF]Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations[END_REF]. The explicit value of C a,b is not known unless equality in [START_REF] Dolbeault | About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities[END_REF] is achieved by radial functions, that is when symmetry holds. See Proposition 19 in Appendix D for some symmetry results. Now, as in [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF], we may investigate the limit (a, b) → (0, 0) with b = α a/(1 + α) in order to investigate the Onofri limit case. A key observation is that optimality in ( 24) is achieved by radial functions for any α ∈ (-1, 0) and a < 0, |a| small enough. In that range C a,b is known and given by (D.1).

Proof of Theorem 2 (continued). Theorem 2 has been established for radial functions in Section 2. Now we investigate the general case. We shall restrict our purpose to the case of dimension d = 2. For any α ∈ (-1, 0), let us denote by dµ α the probability measure on R 2 defined by dµ α := µ α dx where

µ α := 1 + α π |x| 2 α (1 + |x| 2 (1+α) ) 2 .
It has been established in [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF] 

that log R 2 e u dµ α - R 2 u dµ α ≤ 1 16 π (1 + α) R 2 |∇u| 2 dx ∀ u ∈ D(R 2 ) , (26) 
where D(R 2 ) is the space of smooth functions with compact support. By density with respect to the natural norm defined by each of the inequalities, the result also holds on the corresponding Orlicz space.

We adopt the strategy of [30, Section 2.3] to pass to the limit in ( 24) as (a, b) → (0, 0) with b = α α+1 a. Let

a ε = - ε 1 -ε (α + 1) , b ε = a ε + ε, p ε = 2 ε , and 
u ε (x) = 1 + |x| 2 (α+1) -ε 1-ε ,
assuming that u ε is an optimal function for (24), define

κ ε = R 2 u ε |x| aε+ε 2/ε dx = R 2 |x| 2 α 1 + |x| 2 (1+α) 2 u 2 ε |x| 2aε dx = π α + 1 Γ 1 1-ε 2 Γ 2 1-ε , λ ε = R 2 |∇u ε | |x| a 2 dx = 4 a 2 ε R 2 |x| 2 (2 α+1-aε) 1 + |x| 2 (1+α) 2 1-ε dx = 4 π |a ε | 1 -ε Γ 1 1-ε 2 Γ 2 1-ε . Then w ε = (1 + 1 2 ε u) u ε is such that lim ε→0 + 1 κ ε R 2 |w ε | pε |x| bεpε dx = R 2 e u dµ α , lim ε→0 + 1 ε 1 λ ε R 2 |∇w ε | 2 |x| 2aε dx -1 = R 2 u dµ α + 1 16 (1 + α) π ∇u 2 L 2 (R 2 ) .
Hence we can recover (26) by passing to the limit in [START_REF] Dolbeault | About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities[END_REF] as ε → 0 + . On the other hand, if we pass to the limit in the inequality stated in Theorem 15,

A standard computation shows that

S d |∇v| 2 dω + 1 4 d (d -2) S d |v| 2 dω = R d |∇u| 2 dx and S d |v| q dω = R d |u| q 2 1+|x| 2 d-(d-2) q 2 dx .
On S d , the kernel of the Laplace-Beltrami operator is generated by the constants and the lowest positive eigenvalue is λ 1 = d. The corresponding eigenspace is generated by v 0 (ω) = 1 and v i (ω) = ω i , i = 1, 2, . . . d + 1. All eigenvalues of the Laplace-Beltrami operator are given by the formula

λ k = k (k + d -1) ∀ k ∈ N
according to [START_REF] Berger | Le spectre d'une variété riemannienne[END_REF]. We still denote by u ⋆ the Aubin-Talenti extremal function

u ⋆ (x) := (1 + |x| 2 ) -d-2 2 ∀ x ∈ R d .
Using the inverse stereographic projection, the reader is invited to check that Sobolev's inequality is equivalent to the inequality

4 d (d -2) S d |∇v| 2 dω + S d |v| 2 dω ≥ |S d | 2 d S d |v| 2 d d-2 dω d-2 d
so that the Aubin-Talenti extremal function is transformed into a constant function on the sphere and incidentally this shows that

S d = 4 d (d -2) |S d | -2 d .
With these preliminaries on the Laplace-Beltrami operator and the stereographic projection in hand, we can now state the counterpart on R d of the Poincaré inequality on S d .

Lemma 17. For any function

f ∈ D 1,2 (R d ) such that R d f u ⋆ (1 + |x| 2 ) 2 dx = 0 , R d f (1 -|x| 2 ) u ⋆ (1 + |x| 2 ) 3 dx = 0 , and 
R d f x i u ⋆ (1 + |x| 2 ) 3 dx = 0 ∀ i = 1 , 2 , . . . d the following inequality holds R d |∇f | 2 dx ≥ (d + 2) (d + 4) R d f 2 (1 + |x| 2 ) 2 dx .
Proof. On the sphere we know that 2 dσ d is monotone decreasing, and hence

S d |∇v| 2 dω + 1 4 d (d -2) S d v 2 dω ≥ λ 2 + 1 4 d (d -2) S d v 2 dω = 1 4 (d + 2)(d + 4) S d v 2 dω if v is orthogonal to v i for any i = 0,
H ′′ = J ′ J H ′ + 2 J S d Q ′ ≤ J ′ J H ′ .
This establishes the proof of Lemma 8 for any d ≥ 3.

Appendix D. Symmetry in Caffarelli-Kohn-Nirenberg inequalities

In this Appendix, we recall some known results concerning symmetry and symmetry breaking in the Caffarelli-Kohn-Nirenberg inequalities [START_REF] Dolbeault | About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities[END_REF]. Proposition 19. Assume that d ≥ 2. There exists a continuous function α : (2, 2 * ) → (-∞, 0) such that lim p→2 * α(p) = 0 for which the equality case in [START_REF] Dolbeault | About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities[END_REF] is not achieved among radial functions if a < α(p) while for a < α(p) equality is achieved by This result summarizes a list of partial results that have been obtained in various papers. Existence of optimal functions has been dealt with in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], while Condition (i) in Proposition 19 has been established in [START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF]. See [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] for the existence of the curve p → α(p), [START_REF] Dolbeault | Radial symmetry and symmetry breaking for some interpolation inequalities[END_REF][START_REF] Dolbeault | About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities[END_REF] for various results on symmetry in a larger class of inequalities, and [START_REF] Dolbeault | Symmetry of extremals of functional inequalities via spectral estimates for linear operators[END_REF] for Property (ii) in Proposition 19. Numerical computations of the branches of non-radial optimal functions and formal asymptotic expansions at the bifurcation point have been collected in [START_REF]A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities[END_REF][START_REF] Dolbeault | Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations[END_REF]. The paper [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF] 
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 2124 1, . . . d + 1. The conclusion follows from the stereographic projection. if v ⋆ is defined by (C.1). If v solves the fast diffusion equation (18) on R d , then we may use the inverse stereographic projection (see Appendix B) to define the function w on S d such that v(t, x) = e -where τ = -log(T -t), r = |x| and y = 2 x 1+r S d ⊂ R d × R. With no loss of generality, assume that c = λ = 1 and x 0 = 0. According to Lemma 18, w uniformly converges as τ → ∞ to 1 on S d . Let dσ d denote the measure induced on S d ⊂ R d+1 by Lebesgue's measure on R d+1 . We may then write J(t) = e -d with τ = -log(T -t), so that dτ dt = e τ . Hence w solves w τ = L w where L denotes the Laplace-Beltrami operator on the sphere S d , and d+2 dσ d .Using the Cauchy-Schwarz inequality, that is, by writing that

u 2 δ

 2 ⋆ (x) := 1 + |x| (ac-a) -δ ∀ x ∈ R d where δ = ac+b-a 1+a-b . Moreover the function α has the following properties (i) For any p ∈ (2, 2 * ), α(p) ≥ a c -2 d-1 p 2 -4 . (ii) For any p ∈ 2, 2 d 2 -d+1 d 2 -3 d+3 , α(p) ≤ a c -If d = 2, lim p→2 * β(p)/α(p) = 0 where β(p) := α(p) -a c + d/p.

  deals with the special case of dimension d = 2 and contains Property (iii) in Proposition 19, which can be rephrased as follows: the region of radial symmetry contains the region corresponding to a ≥ α(p) and b ≥ β(p), and the parametric curve p → (α(p), β(p)) converges to 0 as p → 2 * = ∞ tangentially to the axis b = 0. For completeness, let us mention that [5, Theorem 3.1] covers the case a > a c -d/p also we will not use it. Finally, let us observe that in the symmetric case, the expression of C a,b can be computed explicitly in terms of the Γ function as C a,b = |S d-1 | of the unit sphere is given by |S d-1 | = 2 π d 2 / Γ d 2 .

d -1 ⋆ F [u n ] -G[u q n ] ,a contradiction since the last term is nonnegative by Theorem 9 and, as observed in Remark 10, J4/d ⋆ F [u n ] -J 1+2/d ⋆ ϕ J 2/d-1 ⋆ F [u n ] is positive unless F [u n ] = 0.Hence we know that L = lim n→∞ F [u n ] = 0 and lim n→∞ G[u q n ] = 0. According to the caracterisation of minimizers of G by Lieb[START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] Theorem 
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we arrive at the following result, for any α ∈ (-1, 0). Theorem 16. Let α ∈ (-1, 0]. With the above notations, we have

for any u ∈ D, where u and v are related by

.

The case α = 0 is achieved by taking the limit as α → 0 -. Since -∆ log µ α = 8 π (1 + α) µ α holds for any α ∈ (-1, 0], the proof of Theorem 2 is now completed, with µ = µ 0 .

Appendix A. Some useful formulae

We recall that

for any q > 0. An integration by parts shows that f (q + 2) = q q+1 f (q). The following formulae are reproduced with no change from [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] (also see [START_REF] Dolbeault | Symmetry of extremals of functional inequalities via spectral estimates for linear operators[END_REF][START_REF]Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations[END_REF]). The function w(t) := (cosh t)

and we can define

29

Using the function f , we can compute

+ 2 and get the relations

.

In particular, this establishes (9), namely

for any d > 2. The expression of the optimal constant in Sobolev's inequality (1):

denotes the volume of the unit sphere, for any integer d ≥ 3, follows from the duplication formula

according for instance to [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. See [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF]Appendix B.4] for further details.

Appendix B. Poincaré inequality and stereographic projection

On

, and define the stereographic projection Σ :

The North Pole N corresponds to z = 1 (and is formally sent at infinity) while the equator (corresponding to z = 0) is sent onto the unit sphere S d-1 ⊂ R d . Now we can transform any function v on S d into a function u on R d using

Appendix C. Flow on the sphere and consequences

We recall that Equation ( 18) admits special solutions with separation of variables given by

where u ⋆ (x) := (1 + |x| 2 ) -(d-2)/2 is the Aubin-Talenti extremal function, x ∈ R d and 0 < t < T . Such a solution is generic near the extinction time T , in the following sense. Lemma 18. [START_REF] Del Pino | On the extinction profile for solutions of u t = ∆u (N -2)/(N +2)[END_REF][START_REF] Vázquez | Smoothing and decay estimates for nonlinear diffusion equations[END_REF]. For any solution v of (18) with nonnegative, not identically zero initial datum v 0 ∈ L 2d/(d+2) (R d ), there exists T > 0, λ > 0, c > 0 and x 0 ∈ R d such that v(t, •) ≡ 0 for any t ∈ (0, T ) and