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Abstract. We investigate the data driven choice of the cutoff parameter in density deconvolution problems
with unknown error distribution. To make the target density identifiable, one has to assume that some
additional information on the noise is available. We consider two different models: the framework where
some additional sample of the pure noise is available, as well as the model of repeated measurements, where
the contaminated random variables of interest can be observed repeatedly, with independent errors. We
introduce spectral cutoff estimators and present upper risk bounds. The focus of this work lies on the

optimal choice of the bandwidth by penalization strategies, leading to non-asymptotic oracle bounds.

Keywords. Adaptive estimation. Deconvolution. Density estimation. Mean squared risk. Nonparametric
methods. Replicate observations.

1. Introduction

This paper addresses the problem of the adaptive bandwidth selection via penalization in deconvolution
problems with unknown error distribution. We study in parallel two different models.

Model 1. The random variable X of interest is perturbed by some additional additive error ε, independent
of X, so the empirically accessible quantity is Y = X + ε. The distribution of the noise is assumed to be
unknown. One observes n independent copies of Y :

Yj = Xj + εj , j = 1, . . . , n.

In addition it is assumed that a sample (ε−j)j=1,...,M of the pure noise, independent of the Yj, is available.

Model 2. The noisy random variable X can be measured repeatedly, with independent errors. The obser-
vations are then of the form,

Yj,k = Xj + εj,k, j = 1, . . . , n and k ≥ 2.

All the Xj are assumed to be independent and identically distributed and all the εj,k are independent and
identically distributed and independent of the Xj. Again, it is assumed that the distribution of the εj,k is
unknown. In addition, the error terms are assumed to be centered.
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Density deconvolution is a classical topic in nonparametric statistics and a large amount of literature on
this subject has been published since the late 80s. Rates of convergence and their optimality have been
studied, for example, in Carroll and Hall (1988), Stefanski (1990), Stefanski and Carroll (1990), Fan (1991)
and Efromovich (1997). For the study of sharp asymptotic optimality, see Butucea (2004), Butucea and
Tsybakov (2008a,b). Adaptive estimation for deconvolution problems has then been investigated by Pensky
and Vidakovic (1999), who apply wavelet techniques, by Comte et al. (2006), who consider the adaptive
bandwidth selection for projection estimators and by Butucea and Comte (2009) for linear functionals.

However, the above mentioned papers have been working under the assumption that the distribution of
the errors is perfectly known, which is clearly not realistic in most fields of application. The systematic
study of deconvolution with unknown error distribution in presence of an additional noise sample, which
corresponds to Model 1, dates back to the late 90s. For the study of convergence rates, see Neumann (1997),
Johannes (2009) or Meister (2009).

The rigorous study of adaptive procedures in a deconvolution model with unknown errors has only recently
been addressed. We are aware of the work by Comte and Lacour (2011), by Johannes and Schwarz (2012)
who consider a model of circular deconvolution and by Dattner et al. (2013), who deal with adaptive quantile
estimation via Lespki’s method.

In comparison to the classical deconvolution model with unknown errors, the research on the model of
repeated measurements has not been so intense. For the more general model of repeated measurements
with skew error densities, rates of convergence have been studied in Li and Vuong (1998) and recently
been improved in Comte and Kappus (2014). Consistent estimation under minimal a priori assumptions
is investigated in Neumann (2007). For repeated measurements with symmetric error density, we refer to
Delaigle et al. (2008) and Comte et al. (2012). This model has various applications in economics, see, for
example, Bonhomme and Robin (2010), but also in a medical context, see Comte et al. (2012).

In the last mentioned paper, as well as in Delaigle et al. (2008), practical strategies for the adaptive
bandwidth selection have been proposed, but a theoretical justification is not given. Hence our motivation
for the rigorous study presented in this paper. Essential tools for our approach rely on considerations
presented in Kappus (2014). There are also many common points with recent contributions by Dattner
et al. (2013). In comparison to the last mentioned authors, the main difference lies in the fact that their
approach is minimax and asymptotic, thus taking the point of view of Lepski’s method, whereas we are
interested in non-asymptotic oracle bounds, thus following the model selection paradigma in the sense of
Birgé (1999) and Massart (2003).

Model 1 corresponds, in many respects, to the situation which has been investigated in Comte and Lacour
(2011). Let us clarify the essential differences: in a deconvolution model with estimated characteristic
function of the errors, the risk bounds are determined by the size M of the noise sample, as well as the
number n of observations of Y . For sample sizes M ≥ n the risk bounds correspond to the model with
known error distribution. However, for M < n the bound on the risk gets worse. The approach by Comte
and Lacour (2011) is tailored for the case where M is, by a polynomial factor, larger than n, and cannot be
extended to M < n. The additional considerations presented in the present work allow to handle the case
of small noise samples. This seems to be of some practical relevance when one turns away from the classical
measurement error model and regards, in some context of physics or biology, ε as a signal overlying some
other signal X. In such a framework, the size of the noise sample will be determined by some extraneous
influence and the assumption that M > n may fail to hold true.

We want to emphasize another important difference between our reasoning and the arguments given in
Comte and Lacour (2011), but also in Dattner et al. (2013). The last mentioned papers do always work under
the standing assumption that the interesting density and error density belong to certain prescribed classes
of functions. More precisely, it is assumed therein that the characteristic functions have an exponential or
polynomial decay behavior. We are able to dispose completely of any of such semi-parametric assumptions.

This is motivated by arguments given in Birgé (1999): from the point of view of Lepski’s method,
one considers a family (Sθ) of parameter sets and aims at building an estimator which is simultaneously
asymptotically minimax over all Sθ. Contrarily, from a model selection point of view, the target is to find
the best estimator within a collection of estimators, leading to non-asymptotic oracle inequalities. It is
argued in Birgé (1999) that these considerations make sense without specifying any particular family of
parameter sets. From this point of view, it is desirable to avoid, as far as possible, any a priori parametric
assumptions and provide a fully general treatment.

This paper is organized as follows. In Section 2, we fix the notation and assumptions, introduce the
estimators and present upper risk bounds. In Section 3, the data driven choice of the cutoff parameter is
investigated. We introduce penalized criteria and derive non asymptotic oracle bounds for the corresponding
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estimators. In Section 4, we present some data examples to illustrate the practical performance of our
estimator. All proofs are postponed to Section 6.

2. Statistical model, estimation procedure and risk bounds

In the present section we fix the statistical model and assumptions, introduce the estimators and recall, for
the readers convenience, the non asymptotic risk bounds which have been presented in earlier publications
on the subject. We start by introducing some notation which will be used throughout the rest of the text.

2.1. Notations. For two real numbers a and b, a∨ b := max(a, b) and a∧ b := min(a, b). For two functions
ϕ, ψ : R → C belonging to L1(R) ∩ L2(R), ‖ϕ‖ denotes the L2-norm of ϕ, defined by ‖ϕ‖2 =

∫
R
|ϕ(x)|2 dx,

and 〈ϕ, ψ〉 the scalar product between ϕ and ψ, defined by 〈ϕ, ψ〉 =
∫
R
ϕ(x)ψ(x) dx. The Fourier transform

ϕ∗ is defined by

ϕ∗(x) =

∫
eixuϕ(u) du.

Besides, if ϕ∗ belongs to L1(R) ∩ L2(R), then the function ϕ is the inverse Fourier transform of ϕ∗ and
can be written ϕ(x) = 1/(2π)

∫
e−ixuϕ∗(u) du. The convolution product ∗ is defined as (ϕ ∗ ψ)(x) =∫

ϕ(x − u)ψ(u) du. Lastly, we abbreviate Model 1 by ns-model, where ns stands for noise sample, and
Model 2 by rd-model for replicate data.

2.2. Statistical model and estimators. In the situation of Model 1 and Model 2 defined in the introduc-
tory part, the target is to recover the density f of X from the data. In the sequel, we limit our considerations
to the case where the number k of repeated measurements is equal to two. This setting easily generalizes
to a higher dimensional model. However, for sake of clarity, we omit the details.

Throughout the paper, we make the following assumptions:

(A1) X and ε have square integrable densities f and fε w.r.t. Lebesgue measure.
(A2) ∀x ∈ R, f∗ε (x) 6= 0.
(A3) fε is symmetric around zero.

Let fY denote the density of X + ε. By independence of X and ε, fY = f ∗ fε. Under (A2), we have the

equality f∗ = f∗Y /f
∗
ε . An estimator f̂∗Y of fY can be calculated from the data. If f∗ε is known, an unbiased

plug-in-estimator of f∗ is then given by f̂∗Y /f
∗
ε . The inverse Fourier transform is then applied to get an

estimate of f . However, since neither f̂∗Y nor 1/f∗ε are integrable, it is necessary to apply some regulariza-
tion technique, for example, a spectral cutoff estimator. In this particular case, the estimator of f would

be 1/(2π)
∫
|u|≤πm

e−iuxf̂∗Y (u)/f
∗
ε (u) du. We can notice that this estimator corresponds both to a kernel es-

timator built with a sinc kernel (Butucea (2004)) or to a projection type estimator as in Comte et al. (2006).

In the present case, the error distribution is assumed to be unknown. To make the problem identifiable, some
additional information on the noise is required. In the ns-model, we introduce the empirical characteristic
function of ε,

∀u ∈ R, f̂∗ε,ns(u) =
1

M

M∑

j=1

eiuε−j .

In the same way, f∗Y is estimated by its empirical version

∀u ∈ R, f̂∗Y,ns(u) =
1

n

n∑

j=1

eiuYj .

Secondly the identification of f∗ε is also possible in the model of repeated observations. Under the
symmetry assumption (A3), we have the following equalities

∀u ∈ R, E
[
eiu(Yn+j,1−Yn+j,2)

]
= E

[
eiu(εn+j,1−εn+j,2)

]
=
∣∣E
[
eiuεn+j,1

]∣∣2 =
(
E
[
eiuεn+j,1

])2
= (f∗ε (u))

2
. (1)

When (A3) is violated, the model is much more complicated and requires a completely different approach
since f∗ε is not a real positive function anymore. For further discussion, see Comte and Kappus (2014).
Formula (1) suggests to define the following unbiased estimator of (f∗ε )

2:

∀u ∈ R, f̂∗2ε,rd(u) =
1

n

n∑

j=1

cos (u(Yj,1 − Yj,2)) .
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Moreover, an unbiased estimator of f∗Y is given by

∀u ∈ R, f̂∗Y,rd(u) =
1

2n

n∑

j=1

(
eiuYj,1 + eiuYj,2

)
.

When considering the empirical characteristic functions, one has to be careful about the fact that the Yj,k
are not independent of each other, nor independent of the εj,k.

Finally, one has to pay attention to the fact that small values of the empirical characteristic function
in the denominator lead to unfavorable effects and a bad performance of the estimator. This is an imme-
diate consequence of the fact that a reasonable estimation of the ratio 1/f∗ε is impossible as soon as the
denominator is smaller than the standard deviation. This phenomenon has been investigated in Neumann
(1997). This entails the necessity to consider a regularized version of the empirical characteristic function
in the denominator. Delaigle et al. (2008) propose a ridge-parameter approach. However, this requires
a careful discussion of the choice of the ridge parameter. For this reason, we prefer the completely data
driven approach proposed in Neumann (1997), which has also been applied by Comte and Lacour (2011)
for the ns-model and by Comte et al. (2012) for the rd-model. This approach corresponds to the following
estimators of the ratio:

1

f̃∗ε,ns(x)
=

1

{
|f̂∗ε,ns(x)| ≥M−1/2

}

f̂∗ε,ns(x)
and

1

f̃∗ε,rd(x)
:=

1

{
f̂∗2ε,rd(x) ≥ n−1/2

}

√
f̂∗2ε,rd(x)

.

These definitions lead to defining the empirical versions of f∗ as follows:

f̌∗ns(u) :=
f̂∗Y,ns(u)

f̃∗ε,ns(u)
and f̌∗rd(u) :=

f̂∗Y,rd(u)

f̃∗ε,rd(u)
.

Finally, the objects to be estimated are characteristic functions, so the absolute values are bounded by 1.
For this reason, one should prefer the regularized versions

f̂∗ns(u) :=
f̌∗ns(u)

max{
∣∣f̌∗ns(u)

∣∣, 1}
and f̂∗rd(u) :=

f̌∗rd(u)

max{
∣∣f̌∗rd(u)

∣∣, 1}
.

Given any positive, real valued m, the above considerations lead to defining the spectral cutoff estimators
of f as follows:

f̂m,ns(x) :=
1

2π

∫
e−iuxf̂∗m,ns(u) du and f̂m,rd(x) :=

1

2π

∫
e−iuxf̂∗m,rd(u) du, (2)

with

f̂∗m,ns(u) := f̂∗ns(u)1[−πm,πm](u) and f̂∗m,rd(u) := f̂∗rd(u)1[−πm,πm](u).

Moreover, we use the notation

fm(x) :=
1

2π

∫
e−iuxf∗m(u) du and f∗m(u) := f∗(u)1[−πm,πm](u).

2.3. Upper risk bounds. The following non-asymptotic risk bounds are valid for the estimators defined
in the preceding section.

Proposition 2.1.
(i) In presence of an additional noise sample, under (A1)-(A2), there exists a universal positive constant
C such that

E

∥∥∥f − f̂m,ns

∥∥∥
2

≤ 2 ‖f − fm‖2 + C

(
1

n

∫ πm

−πm

1

|f∗ε (u)|2
du+

1

M

∫ πm

−πm

|f∗(u)|2
|f∗ε (u)|2

du

)
. (3)

(ii) In the model of repeated measurements, under (A1) - (A3), there exists a universal positive constant
C ′ such that

E

∥∥∥f − f̂m,rd

∥∥∥
2

≤ 2 ‖f − fm‖2 + C ′
(
1

n

∫ πm

−πm

1

|f∗ε (u)|2
du+

1

n

∫ πm

−πm

|f∗(u)|2
|f∗ε (u)|2(|f∗ε (u)|2 ∨ n−1/2)

du

)
. (4)

Remark 1. The first two terms on the right-hand side of Equations (3) and (4) correspond to the usual
terms when the distribution of the errors is known: the squared bias term and a bound on the variance.
The last term is due to the estimation of f∗ε which depends on the considered model. These bounds have
already been established in the literature on deconvolution, see Neumann (1997), Delaigle et al. (2008) or
Comte and Lacour (2011), Comte et al. (2012). We can hence omit the proof.
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In view of the rates of convergence, we observe the following: consider first the ns-model. If M ≥ n,
there is no loss in the rate in comparison to a deconvolution problem with known fε. However, a loss in
the rate may occur for M < n. More precisely, if the ratio M/n is small, in comparison to f∗/f∗ε , the
estimator does not achieve the rates of convergence which are known to be optimal for deconvolution with
known error distribution. This is intuitive, since f can only be identified through fε and there is no hope
to estimate f with high precision when the information on fε is not reliable. For a detailed discussion and
minimax lower bounds, we refer to Neumann (1997). Next, consider the rd-model. From Equation (4),
one derives immediately, that there is no loss in the rate, in comparison to deconvolution with known error
distribution, if the decay of f∗ outbalances the decay of f∗ε . If this is no longer true, the following holds:
the smoother fε is, in comparison to f , the worse are the resulting rates of convergence. It can be shown
that a loss in the rate is unavoidable in this context (Alexander Meister, unpublished manuscript), but to
the best of our knowledge, minimax lower bounds have not been published for this particular case.

3. Data driven bandwidth selection and oracle bounds

The goal of this section is to provide a strategy for the optimal data driven choice of the smoothing parameter.
Given a collection M of cutoff parameters, which may vary with M and n, the bandwidth m̂ should ideally
outbalance the bias and variance term displayed in Equations (3) and (4). This trade-off is easier to realize
when the variance term is assumed to be known, which is often the case in the literature on model selection.
In a deconvolution problem with perfectly known error distribution m̂ should mimic the oracle choice

mth = argmin
m∈M

{
−‖fm‖2 + 1

n

1

2π

∫ πm

−πm

(1− |f∗Y (u)|2)
|f∗ε (u)|2

du

}
.

In the present framework, the considerations are even more involved since the characteristic function in
the denominator is unknown and the variance is hence not feasible to actually compute. Following the
model selection paradigm, see Birgé and Massart (1997), Birgé (1999) or Massart (2003), we select m̂ as
the minimizer of a penalized criterion such that

m̂ = argmin
m∈M

{
−‖f̂m‖2 + p̂en(m)

}
.

The penalty term should be chosen large enough to annihilate the fluctuation of f̂m around its target, for all
m in the model collection M simultaneously, but on the other hand, should ideally be as close as possible to
the variance term in order to preserve the non-asymptotic risk bounds. In a model selection problem with
known variance, the penalty term is deterministic, which is no longer the case in the present situation.
Before introducing the stochastic penalty terms, we shall need the following definitions: for δ > 0 and u ∈ R,

w(u) := (log(e+ |u|))− 1
2
−δ.

Moreover
kN (u) := N−1/2(logN)1/2w(u)−1, N = n,M.

The weight function w has been introduced in Neumann and Reiß (2009) and the considerations presented
in that paper, combined with ideas given in Kappus (2014) play an important role for our arguments. Since
the penalty terms will involve an empirical version of the characteristic function in the denominator, the

oracle inequalities depend on a precise control of the deviation of f̂∗ε from fε, simultaneously on the real
line. It is shown in Neumann and Reiß (2009) that the distance between both object, weighted by w, is
simultaneously small on the real axes. In the penalty terms, there will hence occur a loss of logarithmic
order, in comparison to the variance term.

Let us now introduce the stochastic penalty terms. In the ns-model,

p̂enns(m) := p̂en1,ns(m) + p̂en2,ns(m),

:=
16

3π

∫ πm

−πm

τ2Y k
2
n(u)

|f̃∗ε,ns(u)|2
du+

2

3π

∫ πm

−πm

τ2ε k
2
M (u)|f̂∗Y,ns(u)|2

|f̃∗ε,ns(u)|4
du, (5)

with τY = τε =
√
6.

In the rd-model,

p̂enrd(m) := p̂en1,rd(m) + p̂en2,rd(m),

:=
16

3π

∫ πm

−πm

τ2Y k
2
n(u)

|f̃∗ε,rd(u)|2
du+

4

9π

∫ πm

−πm

τ2ε k
2
n(u)|f̂∗Y,rd(u)|2

|f̃∗ε,rd(u)|6
du, (6)
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with τY as previously and τε =
√
3.

The cutoff parameters are selected as the minimizers of the following penalized criteria.

m̂ns = argmin
m∈M

{
−
∥∥∥f̂m,ns

∥∥∥
2

+ p̂enns(m)

}
and m̂rd = argmin

m∈M

{
−
∥∥∥f̂m,rd

∥∥∥
2

+ p̂enrd(m)

}
. (7)

Before formulating the oracle bound for the corresponding estimators, let us introduce the deterministic
counterparts of the stochastic penalty terms:

penns(m) := pen1,ns(m) + pen2,ns(m)

:=
16

3π

∫ πm

−πm

τ2Y k
2
n(u)

|f∗ε (u)|2
du+

2

3π

∫ πm

−πm

τ2ε k
2
M (u)|f∗(u)|2
|f∗ε (u)|4

du.

and

penrd(m) := pen1,rd(m) + pen2,rd(m)

:=
16

3π

∫ πm

−πm

τ2Y k
2
n(u)

|f∗ε (u)|2
du+

4

9π

∫ πm

−πm

τ2ε k
2
n(u)|f∗(u)|2
|f∗ε (u)|4

du.

We are now ready to formulate the oracle bounds and hence the main result of this paper:

Theorem 3.1.
(i) Let M be a collection of cutoff parameters, with maxM ≤

√
M ∧ n. Assume that (A1) and (A2) are

satisfied. Let m̂ns be defined by (7) and f̂m̂ns,ns according to (2). Then there exists a universal positive
constant Cad and a positive constant C depending on the particular choice of τ and δ, but not on any of the
underlying distributions, such that

E‖f − f̂m̂ns,ns‖2 ≤ Cad inf
m∈M

{
‖f − fm‖2 + penns(m)

}
+

C

M ∧ n.

(ii) Let M a collection of cutoff parameters with maxM ≤ √
n. Assume that (A1) -(A3) are satisfied. Let

m̂rd and f̂m̂rd,rd be defined according to (7) and (2). Then there is a universal positive constant Cad and a
positive constant C depending on the choice of γ and δ, but not on the underlying distributions, such that

E‖f − f̂m̂rd,rd‖2 ≤ Cad inf
m∈M

{
‖f − fm‖2 + penrd(m)

}
+
C

n
.

Remark 2. It is remarkable that we are able to establish non-parametric oracle bounds which make sense
without specifying any particular semi-parametric model. Related problems are frequently discussed under
specific a priori assumptions on the decay behavior of f∗ and f∗ε , see for example Comte et al. (2006) or
Comte and Lacour (2011). In the present work, we can completely dispose of any such assumptions, so our
approach is as general as possible.

Another interesting point about our considerations is the following: the only assumption imposed on the
collection M of cutoff parameters is some upper bound on the largest index. No further specification is
necessary and we may work with an arbitrarily fine grid, allowing good approximation properties. This is a
consequence of the fact that our proofs rely on one sole application of the Talagrand inequality. Additional
applications of the Bernstein inequality and sums over M are not required.

Finally, it is worth emphasizing that, to the best of our knowledge, the non-asymptotic oracle bounds for
the rd-model are completely new and the same is true for the bounds in the ns model with M < n.

We have considered the problem from a non-asymptotic perspective, but Theorem 3.1 entails, from the
asymptotic and minimax point of view, the following observation: in those cases where minimax rates
of convergence are known, the procedure achieves, up to a logarithmic loss, automatic adaptation over
prescribed non-parametric function classes, typically Sobolev-spaces or classes of super-smooth functions.

4. Illustrations

4.1. Practical estimation procedure. Let us describe first the adaptive procedures as it is implemented
for the both models:

⊲ For m ∈ M = {m1, . . . ,mn}, compute −‖f̂m‖2 + p̂en(m).

⊲ Choose m̂ such as m̂ = argmin
m∈M

{
−‖f̂m‖2 + p̂en(m)

}
.

⊲ Compute f̂m̂(x) =
1

2π

∫ πm̂

−πm̂

e−ixu f̂
∗
Y (u)

f̃∗ε (u)
du.
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As often in model selection methods, the values of the constants in the penalty, here denoted by τY and τε,
which are obtained from the theory are too large in practice. Therefore a calibration step is required and
done: for a small set of densities and different sample sizes the MISE is computed in order to determine
admissible range for the values of the constants (see Baudry et al. (2012) for a description of this step).
Finally, the penalties are chosen according to Equations (5) and (6) with τY replaced by 0.6 and τε by 0.3
for the ns-model and rd-model. Besides we consider the model collection M = {m = k/10, 1 ≤ k ≤ 25}.
In practice, one can take k in a much larger set and propose larger values for m; the first selected value
can be followed by another run of the estimation algorithm with a thinner grid of proposals around the
selected value. We limited the set here because the proposed values seemed adequate and allowed less
time-consuming repeated experiments.

In the sequel we also use the notations r̂or and r̂ad define as follow

r̂or = min
m∈M

Ê‖f − f̂m‖2 and r̂ad = Ê‖f − f̂m̂‖2,

where Ê is the approximation of theoretical expectation computed via Monte-Carlo repetitions.

The whole implementation is conducted using R software. The integrated squared error ‖f − f̂m̂‖2 is
computed via a standard approximation and discretization (over 300 points) of the integral on an interval of

R denoted by I. Then the mean integrated squared error (MISE) E‖f − f̂m̂‖2 is computed as the empirical
mean of the approximated ISE over 500 simulation samples.

4.2. Comparison with Comte and Lacour (2011) and influence of M in the NS-model. We
compute different estimators of the signal for different values of M and consider different signal densities
and two noises. Following Comte et al. (2006), we study the following densities on the interval I:

⊲ Laplace distribution, f(x) = e−
√
2|x|/

√
2, I = [−5, 5].

⊲ Mixed Gamma distribution : X =W/
√
5.48, with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1), I = [−1.5, 26].

⊲ Cauchy distribution : f(x) =
(
π(1 + x2)

)−1
, I = [−10, 10].

⊲ Standard Gaussian distribution, I = [−4, 4].

All the densities are normalized with unit variance except the Cauchy density.

We consider the two following noise densities with same variance 1/10.

⊲ Gaussian noise : fε(x) =
1

σε
√
2π

exp

(
− x2

2σ2
ε

)
, f∗ε (x) = exp

(
−σ

2
εx

2

2

)
.

⊲ Laplace noise : fε(x) =
1

2σε
exp

(
−|x|
σε

)
, f∗ε (x) =

1

1 + σ2
εx

2
.

We want to study the influence of the relationship of n and M on the estimation of f in the ns-model.
We then consider different values of n and values of M =

√
n and M = n.

Results. The results of the simulations are given in Table 1. Table 1 illustrates the case where we can
recover a preliminary sample of the noise ε (our so-called ns-model). First we see that the risk decreases
when the sample size increases. Likewise the risk increases when the variance increases. Secondly the results
are very close to those of Comte and Lacour (2011). Nevertheless our procedure is equivalent or better. The
main improvement is that our procedure has better performances when the size of the preliminary sample
is small. Moreover we show that the procedure does not need big M since we reach the same performances
as Comte and Lacour (2011) for M = n when they take M = n2. Indeed if we consider the mixed Gamma
distribution for n =M = 500, our risk is 0.232 with a Laplace noise, while for Comte and Lacour (2011) with
M = n2 they have 0.382. We can make the same remarks for the other distributions (except for the Laplace
ditribution) with a sample size 100 or 250 and with the two noise distributions. For the Laplace distribution,
the results of Comte and Lacour (2011) are better but they do not outperform ours. Nonetheless, in our
model, the risk decreases more rapidly when M and n increase.

Effect of the variance. We also test how our procedure behaves when the variance is increased. In Table 2,
we present the results of simulations where the variance takes the values 1/4, 1/2 and 1. We only report
the case of a Gaussian error distribution since the results of the Laplace error are very similar. Moreover
a Gaussian distribution is a case less favorable. Indeed its Fourier transform decays exponentially and it is
known to imply possibly slower asymptotic rates. Thus it is more difficult to recover the target density f .
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n = 100 n = 250 n = 500
Lap. Gaus. Lap. Gaus. Lap. Gaus.

Laplace M = ⌊√n⌋ r̂ad 2.779 2.714 1.790 1.933 1.304 1.403
r̂or (2.223) (1.370) (1.342) (0.828) (0.988) (0.544)

M = n r̂ad 2.606 2.620 1.543 1.626 1.136 1.339
r̂or (1.848) (1.357) (1.107) (0.786) (0.796) (0.539)

Mixed M = ⌊√n⌋ r̂ad 0.787 0.777 0.377 0.385 0.247 0.247
Gamma r̂or (0.671) (0.710) (0.331) (0.337) (0.205) (0.209)

M = n r̂ad 0.751 0.725 0.360 0.365 0.232 0.234
r̂or (0.642) (0.682) (0.325) (0.319) (0.194) (0.197)

Cauchy M = ⌊√n⌋ r̂ad 0.891 0.888 0.433 0.465 0.311 0.325
r̂or (0.721) (0.731) (0.386) (0.418) (0.361) (0.275)

M = n r̂ad 0.817 0.806 0.402 0.416 0.285 0.301
r̂or (0.687) (0.687) (0.361) (0.379) (0.232) (0.254)

Gaussian M = ⌊√n⌋ r̂ad 0.774 0.777 0.450 0.446 0.275 0.303
r̂or (0.657) (0.655) (0.388) (0.415) (0.190) (0.211)

M = n r̂ad 0.666 0.644 0.406 0.392 0.247 0.272
r̂or (0.512) (0.540) (0.345) (0.325) (0.127) (0.126)

Table 1. Results of simulation as MISE E

(
‖f − f̂m̂ns,ns

‖2
)
×100 averaged over 500 samples

with a Laplace and Gaussian noise of variance 1/10.

σ2
ε = 1/4 σ2

ε = 1/2 σ2
ε = 1

M n 100 250 500 100 250 500 100 250 500

Mixed ⌊√n⌋ r̂ad 1.767 0.889 0.471 2.170 1.229 0.673 2.798 1.973 1.232
Gamma r̂or (0.808) (0.473) (0.299) (0.940) (0.652) (0.456 (1.042) (0.865) (0.692)

n r̂ad 1.231 0.620 0.387 1.483 0.835 0.554 1.594 1.135 0.951
r̂or (0.791) (0.439) (0.265) (0.895) (0.581) (0.386 (0.979) (0.776) (0.585)

Gaussian ⌊√n⌋ r̂ad 1.663 0.920 0.543 1.951 1.185 0.867 3.163 2.139 1.898
r̂or (0.913) (0.531) (0.397) (1.489) (0.988) (0.747) (2.621) (1.988) (1.542)

n r̂ad 1.245 0.669 0.522 1.884 1.053 0.690 2.458 1.432 0.982
r̂or (0.578) (0.280) (0.180) (0.832) (0.444) (0.292 (1.400) (0.848) (0.613)

Table 2. Results of simulation as MISE E

(
‖f − f̂m̂ns,ns

‖2
)
×100 averaged over 500 samples

with a Gaussian noise.

Results. The results are reported in Table 2. As before the risk decreases when n and M increase.
Similarly when we increase the contamination of the variable of interest by increasing the variance of the
error distribution, the risk increases. The procedure performs still well since the adapative risk is close to
the oracle risk around twice bigger.

4.3. Illustrations in the RD-model. For this model, we use the same signal and error distributions as
described in 4.2. We consider different values of n: 200 and 2000, with variance 1/10 and 1/2.

Results. The results are reported in Table 3. We note that the values of the MISE are very close for
both error distributions. Moreover the adaptive risk is also close to the oracle risk. It is multiplied by
approximately 1.5 when the variance of the error distribution is 1/10 and 2 when the variance equals 1/2.
Again the risk decreases when n and M increase. And the risk increases when the variance increases.

4.4. Comparison with a kernel estimator. Recently, some papers as Comte et al. (2007) have investi-
gated the necessity of inversion in statistical inverse problem. The idea is to compare the performances of
a simple kernel estimator directly applied to the data Yi with the adaptive estimator of the ns-model. This
model allows us to choose a non symmetric noise which makes the estimation with a kernel estimator more
difficult.

We compute the estimator of the signal in the ns-model with M = ⌊√n⌋. We consider two densities
defined in the beginning of this section: mixed Gamma and Gaussian. We choose the error distribution as
follows
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σ2
ε = 1/10 σ2

ε = 1/2
n = 200 n = 2000 n = 200 n = 2000

Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.

Laplace r̂ad 1.706 1.683 0.655 0.725 3.901 3.539 1.938 2.007
r̂or (1.163) (1.216) (0.369) (0.438) (2.904) (2.710) (1.234) (1.536)

Mixed r̂ad 0.558 0.548 0.075 0.076 0.857 0.799 0.248 0.226
Gamma r̂or (0.381) (0.391) (0.061) (0.060) (0.583) (0.550) (0.144) (0.133)
Cauchy r̂ad 0.535 0.595 0.127 0.127 1.172 1.027 0.312 0.242

r̂or (0.358) (0.377) (0.068) (0.069) (0.599) (0.617) (0.181) (0.174)
Gaussian r̂ad 0.338 0.335 0.045 0.050 0.703 0.586 0168 0.155

r̂or (0.231) (0.235) (0.034) (0.035) (0.441) (0.399) (0.092) (0.076)

Table 3. Results of simulation as MISE E

(
‖f − f̂m̂rd,rd

‖2
)
× 100 averaged over 500 samples.

⊲ Gamma noise: fε(x) = xα−1 β
αe−βx

Γ(α)
1x≥0

with parameters α = 1 and β = 2. The variance of the error distribution is then 1/4. For the kernel
estimator, we use the function density of R with a Gaussian kernel where the bandwidth is selected by
cross-validation.

n = 100 n = 250 n = 500
Mixed r̂ker 1.086 0.881 0.785
Gamma M = ⌊√n⌋ r̂ad 1.063 0.573 0.332

r̂or (0.714) (0.428) (0.258)
Gaussian r̂ker 3.181 3.052 2.807

M = ⌊√n⌋ r̂ad 1.364 0.677 0.449
r̂or (0.844) (0.449) (0.329)

Table 4. Comparison of the method with the results of Gaussian kernel estimator
(MISE×100 averaged over 500 simulations).

Results. The results are reported in Table 4. We see that for the mixed Gamma, the kernel estimator
performs unexpectedly well. For n = 100, the risks are practically the same as those of the adaptive
estimator. When n increases the adaptive estimator performs better but the kernel estimator still gives
satisfying results.

On the other hand, the results of the Gaussian distribution illustrate well the importance of inversion in
statistical inverse problem. Indeed the risk with a kernel estimator is around 3.10−2 for the diverse values of
n while for the adaptive estimator the risk is divided by 3. More precisely for n = 100 the risk of the kernel
estimator is multiplied by 2 compared to the adaptive estimator, by 5 for n = 250 and by 7 for n = 500.
So when the error distribution is unknown and the signal to noise ratio (named s2n) is not too large, our
procedure is worthy of interest. When the s2n gets larger, we only expect the deconvolution procedure not
to deteriorate the results compared to direct estimation. It has been checked to be true for known noise
density by Comte et al. (2007) see section 4.7 and 4.9. As in practice, the value of the s2n is unknown, our
procedure is always recommended.

Figures 1 and 2 illustrate the estimation of a mixed Gamma using both penalized estimators in the cases
for n = M = 200 and n =M = 500. The estimation is made with additional Gaussian and Laplace noises
with a variance of 1/10. The bimodal specificity of the density is well described. Moreover the precision
increases with the sample size.

5. Concluding remarks

This paper deals with adaptive deconvolution estimation of a density when the noise density is unknown.
We have considered two cases: one where a preliminary sample of the noise can be observed and another
one where the variable of interest X can be observed repeatedly with independent errors. For both models,
we have proposed a theoretical adaptive procedure which automatically makes a data driven bias-variance
compromise. Moreover it allows us to not specify rates of convergence since they are mechanically reached.
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(a) Laplace noise (b) Gaussian noise

Figure 1. Estimations for n = M = 200 of a mixed Gamma (bold black line), in blue
dashed line for the ns estimator and in red longdashed for the rd estimator.

(a) Laplace noise (b) Gaussian noise

Figure 2. Estimations for n = M = 500 of a mixed Gamma (bold black line), in blue
dashed line for the ns estimator and in red longdashed for the rd estimator.

This procedure enables us to treat the problem of adaptive estimation in repeated observation model which
is completely new. The estimation procedure relies on the independence of the estimators of the charac-
teristic functions of f∗Y and f∗ε . Its advantage is to be very general under weak assumptions. Indeed, that
procedure takes into account cases where there can be small number of replications which matches realistic
applications as in medicine or economics. Besides of its theoretical properties, our procedure has showed
good performances in simulation.

At last we think that our procedure can be extended to density estimation of a random effect in linear
mixed-effects model. Indeed we are aware of the work of Comte and Samson (2012) who proposed an
adaptive procedure based on deconvolution methods in the unknown-error case which is not optimal and
Dion (2013) who used a Lepski’s method in the known-error case. In that model, the noise can also be
recovered by successive difference similarly to the repeated model but the characteristic function of the
noise would be raised to a greater power. We may then propose in the same spirit an adaptive procedure
for the random effect in linear mixed-effects model.

6. Proofs

6.1. Preliminaries. We start by restating, for the reader’s convenience, the following version of Talagrand’s
inequality:
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Lemma 6.1. Let I be some countable index set. For each i ∈ I, let Z
(i)
1 , . . . , Z

(i)
n be independent and

identically distributed random variables with values in [−1, 1], defined on the same probability space. Let

v2 := supi∈I Var[Z
(i)
1 ] and S

(i)
n := 1/n

∑n
j=1 Z

(i)
j . Then there are universal positive constants c1 and c2 such

that for any κ > 0,

P

[{
sup
i∈I

|S(i)
n | ≤ 3

2
E

[
sup
i∈I

|S(i)
n |
]
+ κ

}]
≤ 2 exp

(
−
(

nκ2

c1v2 + c2κ

))
.

A proof of this result is given in Massart (2003), see page 170. It follows from the arguments presented
therein that for any r, s > 0 with 1

s + 1
r = 1, the constants can be chosen c1 = 2s2 and c2 = 6r.

The following result will be essential for the theoretical justification of the adaptive procedure. The proof
was given in Kappus (2014). It uses a fundamental Lemma shown in Neumann and Reiß (2009) , combined
with Lemma 6.1.

Lemma 6.2. Let Z1, . . . , Zn be i.i.d. random variables. Assume that E|Z1| ≤ mZ for some mZ > 0. Let

f̂∗Z denote the empirical characteristic function. For some δ > 0, let

w(u) = (log(e+ |u|))−1/2−δ.

Assume that τ > 2
√
p. Then there exists a positive constant C depending on mZ and the choice of γ and δ

such that for arbitrary n ∈ N:

P

[
∃u ∈ R : |f̃∗Z(u)− f∗Z(u)| > τ (log(n))

1/2
w(u)−1n−1/2

]
≤ Cn−p (8)

Remark 3. In the situation of the preceding Lemma: if the Zj are assumed to have a symmetric distribution

and the empirical characteristic function is defined to be f̂∗Z(u) = 1/n
∑n

j=1 cos(uZj), it is enough to assume

τ >
√
2p to obtain (8).

The next result has been formulated and proved in (Neumann, 1997).

Lemma 6.3. Let Z1, . . . , Zn be i.i.d. random variables. Let f∗Z be the true and f̂∗Z the empirical character-

istic function. Moreover let 1/f̃∗Z(u) = 1{|f̂∗Z(u)| ≥ n−1/2}/f̂∗Z(u). Then for arbitrary p ∈ N, there exists a
positive constant C depending only on p such that

E

[∣∣∣∣∣
1

f̃∗Z(u)
− 1

f∗Z(u)

∣∣∣∣∣

p]
≤ C

(
1

|f∗Z(u)|p
∧ n− p

2

|f∗Z(u)|2p
)
. (9)

Remark 4. In the preceding lemma, one should keep in mind that in the rd-model, Yj,1−Yj,2 = εj,1− εj,2
plays the role of Zj .

Lemma 6.3 yields the following useful corollary, which allows to compare the stochastic penalty terms to
their deterministic counterparts.

Corollary 6.4. Let the penalty terms be defined according to Equations (5) and (6). Then for some C > 0,

E [p̂enns(m)] ≤ Cpenns(m) and E [p̂enrd(m)] ≤ Cpenrd(m).

Proof. It is enough to consider p̂enrd. Equation (9) gives immediately for some C > 0,

E

[∫ πm

−πm

τ2Y k
2
n(u)

|f̃∗ε,rd(u)|2
du

]
≤ C

∫ πm

−πm

τ2Y k
2
n(u)

|f∗ε (u)|2
du.

The Cauchy-Schwarz inequality and the estimate 1/|f̃∗ε,rd(u)|2 ≤ n1/2 imply

E

[∫ πm

−πm

|f̂∗Y,rd(u)|2
τ2ε k

2
n(u)

|f̃∗ε,rd(u)|6
du

]

≤2

∫ πm

−πm

E1/2

[∣∣∣f̂∗Y,rd(u)− f∗Y,rd(u)
∣∣∣
4
]
E1/2


 τ2ε k

2
n(u)∣∣∣f̃∗ε,rd(u)
∣∣∣
12


 du+ 2

∫ πm

−πm

E

[
τ2ε k

2
n(u) |f∗Y (u)|

2

|f̃∗ε,rd(u)|6

]
du

≤2

∫ πm

−πm

τ2ε k
2
n(u)

|f∗ε (u)|2
du+ 2

∫ πm

−πm

τ2ε k
2
n(u)|f∗(u)|2

|f∗ε (u)|2
(
|f∗ε (u)|2 ∨ n−1/2

) du.

This completes the proof for the rd-model. The arguments for the ns-model are the same, line for line, so

we omit the details. The only difference lies in the fact that, in the definition of f̂∗ε,ns and f̃∗ε,ns, M plays
now the role of n as defined in Lemma 6.3. �
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6.2. A technical auxiliary result. In the sequel, for arbitrary k > m, we use the notation

p̂enns(m, k) := p̂enns(k)− p̂enns(m) and p̂enrd(m, k) := p̂enrd(k)− p̂enrd(m),

as well as

p̂enℓ,ns(m, k) := p̂enℓ,ns(k)− p̂enℓ,ns(m) and p̂enℓ,rd(m, k) := p̂enℓ,rd(k)− p̂enℓ,rd(m), ℓ = 1, 2.

Moreover,

A(m, k) := {u ∈ R : m ≤ |u| ≤ k}.
The proof of Theorem 3.1 relies on the following auxiliary result which is, in turn, a consequence of Lemma
6.2.

Proposition 6.5.
(i) In the model of repeated measurements, there exists an universal positive constant C such that

E


 sup

k≥m
k,m∈M

{∥∥∥f̂k,rd − f̂m,rd

∥∥∥
2

− 6 ‖fk − fm‖2 − 3

4
p̂enrd(m, k)

}

+


 ≤ C

n
.

(ii) If an additional sample of the pure noise is available, for some universal positive constant C,

E


 sup

k≥m
k,m∈M

{∥∥∥f̂k,ns − f̂m,ns

∥∥∥
2

− 6 ‖fk − fm‖2 − 3

4
p̂enns(m, k)

}

+


 ≤ C

n ∧M .

Proof.
(i) Let us introduce the favorable events

EY,rd :=
{
∀u ∈ R : |f̂∗Y,rd(u)− f∗Y (u)| ≤ τY kn(u)

}
.

and

Eε,rd :=
{
∀u ∈ R : |f̂∗2ε,rd(u)− f∗2ε (u)| ≤ τεkn(u)

}
.

Applying Parseval’s equality we can estimate

‖f̂k,rd − f̂m,rd‖2 =
1

2π
‖f̂∗k,rd − f̂∗m,rd‖2 =

1

2π

∫

A(m,k)

|f̂∗Y,rd(u)|2

|f̃∗ε,rd(u)|2
du

≤ 1

π

∫

A(m,k)

|f̂∗Y,rd(u)− f∗Y (u)|2

|f̃∗ε,rd(u)|2
du+

1

π

∫

A(m,k)

|f∗Y (u)|2
|f̃∗ε,rd(u)|2

du. (10)

We start by dealing with the first summand appearing in the last line of (10). The definition of EY,rd and
the fact that

1

π

∫

A(m,k)

τ2Y k
2
n(u)

|f̃∗ε,rd(u)|2
du ≤ 3

8
p̂en1,rd(m, k)

immediately imply the following inequality

sup
k≥m

k,m∈M

{
1

π

∫

A(m,k)

|f̂∗Y,rd(u)− f∗Y (u)|2

|f̃∗ε,rd(u)|2
du− 3

8
p̂en1,rd(m, k))

}

+

1EY,rd

≤ sup
k≥m

k,m∈M

{
1

π

∫

A(m,k)

τ2Y k
2
n(u)

|f̃∗ε,rd(u)|2
du− 3

8
p̂en1,rd(m, k)

}

+

1EY,rd
= 0.

Consider now the second summand in the last line of (10). Recall that f∗ε and f̂∗2ε,rd are real valued and
(formally, with c/∞ := 0),

|f̃ε,rd(u)|2 =

{
f̂∗2ε,rd(u), if f̂∗2ε,rd(u) ≥ n−1/2

∞, else.
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This entails the series of inequalities

1

π

∫

A(m,k)

|f∗Y (u)|2
|f̃∗ε,rd(u)|2

du− 6‖fk − fm‖2 =
1

π

∫

A(m,k)

|f∗Y (u)|2
|f̃∗ε,rd(u)|2

du− 3

π
‖f∗k − f∗m‖2

=
1

π

∫

A(m,k)

|f∗Y (u)|2
(

1

|f̃∗ε,rd(u)|2
− 3

|f∗ε (u)|2

)
du

≤ 1

π

∫

A(m,k)

|f∗Y (u)|2
(

1

|f̃∗ε,rd(u)|2
− 3

|f∗ε (u)|2

)
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du

≤ 2

3π

∫

A(m,k)

|f̂∗Y,rd(u)|2
f∗2ε (u)− 3f̂∗2ε,rd(u)

|f̃∗ε,rd(u)|4
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du

+
2

π

∫

A(m,k)

|f∗Y (u)− f̂∗Y,rd(u)|2
f∗2ε (u)− 3f̂∗2ε,rd(u)

|f̃∗ε,rd(u)|2|f∗ε (u)|2
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du. (11)

For the expression appearing in the last line of formula (11), we observe that

2

π

∫

A(m,k)

|f∗Y (u)− f̂∗Y,rd(u)|2
f∗2ε (u)− 3f̂∗2ε,rd(u)

|f̃∗ε,rd(u)|2|f∗ε (u)|2
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du

≤ 2

π

∫

A(m,k)

|f∗Y (u)− f̂∗Y,rd(u)|2
∣∣f∗ε (u)

∣∣2

|f̃∗ε,rd(u)|2|f∗ε (u)|2
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du

=
2

π

∫

A(m,k)

|f∗Y (u)− f̂∗Y,rd(u)|2

|f̃∗ε,rd(u)|2
du.

The definition of p̂en1,rd and EY,rd readily imply that

sup
k≥m

k,m∈M

{
2

π

∫

A(m,k)

|f∗Y (u)− f̂∗Y,rd(u)|2

|f̃∗ε,rd(u)|2
du− 3

8
p̂en1,rd(m, k)

}

+

1EY,rd
= 0

Consider now the second to last line in Equation (11). We observe that 3|f̃∗ε,rd(u)|2 ≤ |f∗ε (u)|2 implies

|f̃∗ε,rd(u)|2 = f̂∗2ε,rd(u) ≤ (1/2)|f∗ε (u)2 − f̂∗2ε,rd(u)|. From this, we derive that

f∗ε (u)− 3f̂∗2ε,rd(u)

|f̃∗ε,rd(u)|4
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} ≤ 1

2

∣∣f∗ε (u)2 − f̃∗ε,rd(u)
2|2

|f̃∗ε,rd(u)|6
.

Using this and the definition of Eε,rd and p̂en2,rd, we arrive at

sup
k≥m

k,m∈M

{∫

A(m,k)

|f̂∗Y,rd(u)|2|f∗ε (u)2 − f̃∗ε,rd(u)
2|

3/2π|f̃∗ε,rd(u)|4
1{|f∗

ε (u)|2≥3|f̃∗

ε,rd(u)|2} du− 3

4
p̂en2,rd(m, k)

}

+

1Eε,rd

≤ sup
k≥m

k,m∈M

{∫

A(m,k)

|f̂∗Y,rd(u)|2
|f∗ε (u)2 − f̃∗ε,rd(u)

2|2

3π|f̃∗ε,rd(u)|6
du− 3

4
p̂en2,rd(m, k)

}

+

1Eε,rd

≤ sup
k≥m

k,m∈M

{∫

A(m,k)

|f̂∗Y,rd(u)|2
τ2ε k

2
n(u)

3π
∣∣f̃∗ε,rd(u)|6

du− 3

4
p̂en2,rd(m, k)

}

+

1Eε,rd
= 0.

Putting the above together, we have shown

E


 sup

k≥m
k,m∈M

{
‖f̂k,rd − f̂m,rd‖2 − 6‖fk − fm‖2 − 3

4
p̂enrd(m, k)

}

+

1EY,rd∩Eε,rd


 = 0.
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There remains to consider the exceptional set Ec
Y,rd∪Ec

ε,rd. Using the fact that for arbitrary m, the absolute

value of f̂∗m,rd is, by definition, bounded by 1, as well as the fact that maxM ≤ √
n, we can estimate

E


 sup

k≥m
k,m∈M

{
‖f̂∗k,rd − f̂∗m,rd‖2 − 6‖f∗k − f∗m‖2 − 3

4
p̂enrd(m, k)

}

+

1(Eε,rd∩EY,rd)c




≤E


 sup

k≥m
k,m∈M

‖f̂∗k,rd − f̂∗m,rd‖21(Eε,rd∩EY,rd)c


 ≤

√
nP ((Eε,rd ∩ EY,rd)c) ≤

√
n
(
P
(
Ec
Y,rd

)
+ P

(
Ec
ε,rd

))
.

Thanks to Lemma 6.2, it holds that

√
n
(
P
(
Ec
Y,rd

)
+ P

(
Ec
ε,rd

))
≤ C

n
.

This completes the proof of part (i).

(ii) The proof of the second part uses essentially the same arguments as the proof of the first part, so we
content ourselves with sketching the important steps.

EY,ns :=
{
∀u ∈ R : |f̂∗Y,ns(u)− f∗Y (u)| ≤ τY kn(u)

}
and Eε,ns :=

{
∀u ∈ R : |f̂∗ε,ns(u)− f∗ε (u)| ≤ τεkM (u)

}
.

In analogy with (10) and (11), we find that

‖f̂∗k,ns − f̂∗m,ns‖2 − 6‖f∗k − f∗m‖2

≤ 2

π

∫

A(m,k)

|f̂∗Y,ns(u)− f∗Y (u)|2

|f̃∗ε,ns(u)|2
du+

1

3π

∫

A(m,k)

|f̂∗Y,rd(u)|2
|f∗ε (u)|2 − 3|f̂∗ε,ns(u)|2

|f̃∗ε,ns(u)|4
du.

Again, on EY,ns,

sup
k≥m

k,m∈M

{
2

π

∫

A(m,k)

|f̂∗Y,ns(u)− f∗Y (u)|2

|f̃∗ε,ns(u)|2
du− 3

4
p̂en1,ns(m, k)

}

+

= 0.

Using the fact that for a > 0, x, y ∈ C, |x+ y|2 ≤ (1 + a)|x|2 + (1 + 1/a)|y|2 holds, we find that

1

3π

∫

A(m,k)

|f̂∗Y,rd(u)|2
|f∗ε (u)|2 − 3|f̂∗ε,ns(u)|2

|f̃∗ε,ns(u)|4
du ≤ 1

2π

∫

A(m,k)

|f̂∗Y,rd(u)|2
|f∗ε (u)− f̂∗ε,ns(u)|2

|f̃∗ε,ns(u)|4
du.

Consequently, on Eε,ns,

sup
k≥m

k,m∈M

{
1

3π

∫

A(m,k)

|f̂∗Y,rd(u)|2
|f∗ε (u)|2 − 3|f̂∗ε,ns(u)|2

|f̃∗ε,ns(u)|4
du− 3

4
p̂en2,ns(m, k)

}

+

≤ sup
k≥m

k,m∈M

{
1

2π

∫

A(m,k)

|f̂∗Y,rd(u)|2
τ2ε k

2
M (u)

|f̃∗ε,ns(u)|4
du− 3

4
p̂en2,ns(m, k)

}

+

= 0.

Finally, we find that

P
[
Ec
Y,ns ∪ Ec

ε,ns

]
≤ C(n−3/2 +M−3/2),

leading to the desired bound on the complement set.
�

6.3. Proof of the oracle bounds. Proposition 6.5 was the essential technical step towards proving the

oracle bounds. It shows how the penalty terms control the fluctuation of ‖f̂∗m‖2 around its target, be it in
the model of repeated measurements or in the deconvolution model with additional noise sample. Once this
result is fixed, the considerations for both models run exactly along the same line. For this reason, we may
henceforth drop all subscripts relative to one particular model.
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Proof of Theorem 3.1. We denote by m⋆ the oracle cutoff,

m⋆ = argmin
m∈M

{
−‖f̂m‖2 + pen(m)

}
.

We have

‖f − f̂m̂‖2 ≤ 2‖f − f̂m⋆‖2 + 2‖f̂m⋆ − f̂m̂‖2. (12)

Taking expectation and applying Proposition 2.1 gives for the first summand on the right hand side

E

[
‖f − f̂m⋆‖2

]
≤ 2‖f − fm⋆‖2 + pen(m⋆),

since the variance term is a fortiori bounded from above by the penalty term. So there remains to consider
the second summand on the right hand side of (12).

• Consider first the set G = {m̂ ≤ m⋆}. Let us notice that on G
∥∥∥f̂m⋆ − f̂m̂

∥∥∥
2

1G =

(∥∥∥f̂m⋆

∥∥∥
2

−
∥∥∥f̂m̂

∥∥∥
2
)
1G .

Besides according to the definition of m̂, one has the following inequality:

−
∥∥∥f̂m̂

∥∥∥
2

+ p̂en(m̂) ≤ −
∥∥∥f̂m⋆

∥∥∥
2

+ p̂en(m⋆), (13)

which implies

−
∥∥∥f̂m̂

∥∥∥
2

≤ −
∥∥∥f̂m⋆

∥∥∥
2

+ p̂en(m⋆).

Thus ∥∥∥f̂m⋆ − f̂m̂

∥∥∥
2

1G =

(∥∥∥f̂m⋆

∥∥∥
2

−
∥∥∥f̂m̂

∥∥∥
2
)
1G ≤ p̂en(m⋆).

Taking expectation and applying Corollary 6.4 yields for some positive constant C,

E

[∥∥∥f − f̂m̂

∥∥∥
2

1G

]
≤ 2E

[∥∥∥f − f̂m⋆

∥∥∥
2
]
+ 2E [p̂en(m⋆)] ≤ 2 ‖f − fm⋆‖2 + 2Cpen(m⋆).

We have thus proved the desired result on G:

E

[
‖f − f̂m̂‖21G

]
≤ C inf

m∈M

{
‖f − fm‖2 + pen(m)

}
.

• Next, we consider the set Gc = {m̂ > m⋆}. It holds that
∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2

1Gc = 4
(∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2

− 3

4

∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2)

1Gc .

We realize that, by definition of f̂m̂, see (13), on Gc,

− 3

4

∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2

=
3

4

∥∥∥f̂m⋆

∥∥∥
2

− 3

4

∥∥∥f̂m̂
∥∥∥
2

≤ 3

4

∥∥∥f̂m⋆

∥∥∥
2

− 3

4

∥∥∥f̂m⋆

∥∥∥
2

+
3

4
p̂en(m⋆)− 3

4
p̂en(m̂) = −3

4
p̂en(m⋆, m̂).

It follows from there that
(∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2

− 3

4

∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2)

1Gc

≤ sup
k≥m⋆

k∈M

{∥∥∥f̂k − f̂m⋆

∥∥∥
2

− 6
∥∥∥fk − fm⋆

∥∥∥
2

− 3

4
p̂en(m⋆, k)

}

+

+ 6 sup
k≥m⋆

‖fk − fm⋆‖2.

Taking expectation and applying Proposition 6.5, as well as the monotonicity of the bias term, we conclude
that

E

[
‖f − f̂m̂‖21Gc

]
≤ 2E

[∥∥∥f − f̂m⋆

∥∥∥
2
]
+ 2E

[∥∥∥f̂m̂ − f̂m⋆

∥∥∥
2

1Gc

]
≤ CE

[∥∥∥f − f̂m⋆

∥∥∥
2
]
+
C

N
,

with N = n in the rd-model and N =M ∧ n in the ns-model.
This is the desired oracle bound for Gc. �
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