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QUANTITATIVE RESULTS FOR THE FLEMING-VIOT PARTICLE SYSTEM IN

DISCRETE SPACE

BERTRAND CLOEZ AND MARIE-NOÉMIE THAI

ABSTRACT. We show, for a class of discrete Fleming-Viot type particle systems, that the conver-
gence to the equilibrium is exponential for a suitable Wassertein coupling distance. The approach
provides an explicit quantitative estimate on the rate of convergence. As a consequence, we show
that the conditioned process converges exponentially fast to a unique quasi-stationary distribution.
Moreover, by estimating the two-particle correlations, we prove that the Fleming-Viot process con-
verges, uniformly in time, to the conditioned process with an explicit rate of convergence. We
illustrate our results on the examples of the complete graph and of the two point space.

AMS 2000 Mathematical Subject Classification: 60K35, 60B10, 37A25.

Keywords: Fleming-Viot process - quasi-stationary distributions - coupling - Wasserstein distance - chaos propagation

- commutation relation.

. CONTENTS

1. Introduction 1
Long time behavior 3
Propagation of chaos 4
Two main consequences 5
2. Proof of the main theorems 6
2.1. Proof of Theorem 1.1 6
2.2. Proof of Theorem 1.2 9
2.3. Proof of the corollaries 12
3. Complete graph dynamics 13
3.1. The associated killed process 14
3.2. Correlations at fixed time 14
3.3. Properties of the invariant measure 15
3.4. Long time behavior and spectral analysis of the generator 17
4. The two point space 18
4.1. The associated killed process 19
4.2. Explicit formula of the invariant distribution 19
4.3. Rate of convergence 20
4.4. Correlations 21
References 22

1. INTRODUCTION

Let (Qi,j)i,j∈F ∗ be the transition rate matrix of an irreducible and positive recurrent continuous
time Markov process on a discrete and countable state space F ∗. Set F = F ∗ ∪ {0} and let
p0 : F ∗ 7→ R+ be a non-null function. The generator of the Markov process (Xt)t≥0, with
transition rate Q and death rate p0, when applied to bounded functions f : F 7→ R, gives

Gf(i) = p0(i)(f(0)− f(i)) +
∑

j∈F ∗

Qi,j(f(j)− f(i)),
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for every i ∈ F ∗ and Gf(0) = 0. If this process does not start from 0 then it moves according to
the transition rate Q until it jumps to 0 with rate p0; the state 0 is absorbing. Consider the process
(Xt)t≥0 generated by G with initial law µ and denote by µTt its law at time t conditioned on non
absorption up to time t. That is defined, for all non-negative function f on F ∗, by

µTtf =
µPtf

µPt1{0}c
=

∑
y∈F ∗ Ptf(y)µ(y)∑

y∈F ∗ Pt1{0}c(y)µ(y)
,

where (Pt)t≥0 is the semigroup generated by G and we use the convention f(0) = 0. For every
x ∈ F ∗, k ∈ F ∗ and non-negative function f on F ∗, we also set

Ttf(x) = δxTtf and µTt(k) = µTt1{k}, ∀t ≥ 0.

A quasi-stationary distribution (QSD) for G is a probability measure νqs on F ∗ satisfying, for
every t ≥ 0, νqsTt = νqs.The QSD are not well understood, nor easily amenable to simulation.
To avoid these difficulties, Burdzy, Holyst, Ingerman, March [5], and Del Moral, Guionnet, Miclo
[10, 11] introduced, independently from each other, a Fleming-Viot or Moran type particle system.
This model consists of finitely many particles, say N , moving in the finite set F ∗. Particles are
neither created nor destroyed. It is convenient to think of particles as being indistinguishable,
and to consider the occupation number η with, for k ∈ F ∗ , η(k) = η(N)(k) representing the
number of particles at site k. Each particle follows independent dynamics with the same law as
(Xt)t≥0 except when one of them hits state 0; at this moment, this individual jumps to another
particle chosen uniformly at random. The configuration (ηt)t≥0 is a Markov process with state
space E = E(N) defined by

E =

{
η : F → N |

∑

i∈F

η(i) = N

}
.

Applying its generator to a bounded function f gives

Lf(η) = L(N)f(η) =
∑

i∈F ∗

η(i)



∑

j∈F ∗

(f(Ti→jη)− f(η))

(
Qi,j + p0(i)

η(j)

N − 1

)
 , (1)

for every η ∈ E, where, if η(i) 6= 0, Ti→jη is the configuration defined by

Ti→jη(i) = η(i)− 1, Ti→jη(j) = η(j) + 1, and Ti→jη(k) = η(k) k /∈ {i, j}.
For η ∈ E, the associated empirical distribution m(η) of the particle system is given by

m(η) =
1

N

∑

k∈F ∗

η(k)δ{k}.

We also setm(η)(k) = m(η)({k}). The aim of this work is to quantify (if they hold) the following
limits:

m(η
(N)
t )

(a)−→
t→+∞

m(η
(N)
∞ )

(b)
y y(c)

m(η0)Tt
(d)−→

t→+∞
νqs

where all limits are in distribution and the limits (b), (c) are taken as N tends to infinity. More
precisely, Theorem 1.1 gives a bound for the limit (a), Theorem 1.2 for the limit (b), Corollary
1.5 for the limit (c) and finally Corollary 1.4 for the limit (d).
To illustrate our main results, we develop, in detail, the study of two examples. The first one
concerns a random walk on the complete graph with sites {0, 1, . . . ,K}, killed when reaching 0.
Namely

Qi,j = p0(i) =
1

K
, ∀i, j ∈ {1, . . . ,K}.
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The quasi-stationary distribution is trivially the uniform distribution. However, the associated par-
ticle system does not behave as independent identically distributed copies of uniformly distributed
particles and its behavior is less trivial. One interesting point of the complete graph approach is
that it permits to reduce the difficulties of the Fleming-Viot to the interaction. Due to its simple
geometry, several explicit formulas are obtained such as the invariant distribution, the correlations
and the spectral gap. It seems to be new in the context of Fleming-Viot particle systems. The
second example is the case where F ∗ contains only two elements. Its study is reduced to the study
of a birth-death process with quadratic rates. For this example, the only trivial limit to quantify is
the limit (d). The analysis of these two examples shows the subtlety of Fleming-Viot processes.

Long time behavior. To bound the limit (a), we introduce the parameter λ defined by

λ = inf
i,i′∈F ∗


Qi,i′ +Qi′,i +

∑

j 6=i,i′

Qi,j ∧Qi′,j


 .

This parameter controls the ergodicity of a Markov chain with transition rate Q without killing.
Note that λ is slightly larger than the ergodic coefficient α defined in [14] by:

α =
∑

j∈F ∗

inf
i 6=j

Qi,j .

In particular, if there exists j ∈ F ∗ such that for every i 6= j, Qi,j > c > 0 then λ ≥ c, for some
c. Before expressing our results, let us describe the different distances that we use. We endow E
with the distance d1 defined, for all η, η′ ∈ E, by

d1(η, η
′) =

1

2

∑

j∈F

|η(j)− η′(j)|,

which is the total variation distance between m(η) and m(η′) up to a factor N : d1(η, η′) =
NdTV(m(η),m(η′)). Indeed, recall that, for every two probability measures µ and µ′, the total
variation distance is given by

dTV(µ, ν) =
1

2
sup

‖f‖∞≤1

(∫
fdµ−

∫
fdµ′

)
= inf

X∼µ
X′∼µ′

P
(
X 6= X ′

)
,

where the infimum runs over all the couples of random variables with marginal laws µ and µ′.
Now, if µ and µ′ are two probability measures on E, the d1−Wasserstein distance between these
two laws is defined by

Wd1(µ, µ
′) = inf

η∼µ
η′∼µ′

E
[
d1(η, η

′)
]
,

where the infimum runs again over all the couples of random variables with marginal laws µ and
µ′. Along this paper, L(X) design the law of the random variable X . Along the paper, we assume
that

sup(p0) <∞.

Our first main result is:

Theorem 1.1 (Wasserstein exponential ergodicity). If ρ = λ− (max(p0)−min(p0)) then for any
processes (ηt)t>0 and (η′t)t>0 generated by (1), and for any t ≥ 0, we have

Wd1(L(ηt),L(η′t)) ≤ e−ρtWd1(L(η0),L(η′0)).
In particular, if ρ > 0 then there exists a unique invariant distribution νN verifying for every
t ≥ 0,

Wd1(L(ηt), νN ) ≤ e−ρtWd1(L(η0), νN ).
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To our knowledge, it is the first theorem which establishes an exponential convergence for the
Fleming-Viot particle system. When the death rate p0 is constant, this bound is optimal in terms
of contraction. See for instance section 3, where the example of a random walk on the complete
graph is developed. When the death rate is not constant, this bound is not optimal, for instance if
the state space is finite, we can have ρ < 0 even if the process can converge exponentially fast.
Indeed, it can be an irreducible Markov process on a finite state space. Nevertheless, finding a
general optimal bound is a complex problem. See for instance Section 4, where we study the case
where F ∗ contains only two elements. Even though in this case, the study seems to be easy we
were not able to give a closed formula for the spectral gap. Also, note that the previous inequality
is a contraction, gives some information for small times and is more than a convergence result.
Finally the previous convergence is stronger than a convergence in total variation distance as can
be checked with Corollary 2.3.

Propagation of chaos. Two tagged particles in a large population of interacting ones behave in an
almost independent way under some assumptions; see [24]. In our case, two particles are almost
independent when N is large and this gives the convergence of (m(ηt))t≥0 to (Tt)t≥0.
To prove this result, we will assume that:

(A1) Q1 = supi∈F ∗

∑
j∈F ∗ Qi,j < +∞ and p = supi∈F ∗ p0(i) < +∞;

(A2) Q2 = supj∈F ∗

∑
i∈F ∗ Qi,j < +∞.

Under these (boundedness) assumptions, the particle system converges to the conditioned semi-
group. When the state space is finite, this convergence is quantified in terms of total variation
distance. To express this convergence, we set

Eη[f(X)] = E[f(X) | η0 = η],

for every bounded function f , every η ∈ E and every random variable X .

Theorem 1.2 (Convergence to the conditioned process). Under Assumptions (A1) and (A2), there
exists an explicit constant C > 0 such that, for all η ∈ E, k ∈ F ∗, T ≥ 0 and any probability
measure µ, we have

sup
t∈[0,T ]

Eη [|m(ηt)(k)− µTt(k)|] ≤ eCT

(
1√
N

+ dTV(m(η), µ)

)
,

and when F is finite, we have

sup
t∈[0,T ]

Eη[dTV(m(ηt), µTt)] ≤ eCT |F ∗|
(

1√
N

+ dTV(m(η), µ)

)
.

The proof is based on an estimation of the correlation and on an argument of supersolution inspired
by [16]. More precisely our correlation estimate is given by:

Theorem 1.3 (Covariance estimates). Under Assumption (A1), there exists an explicit constantD
such that, for all k, l ∈ F ∗, η ∈ E and t ≥ 0 we have

Eη

[
ηt(k)

N

ηt(l)

N

]
− Eη

[
ηt(k)

N

]
Eη

[
ηt(k)

N

]
≤ D

N

1− e−2ρt

ρ
,

with the convention (1− e−2ρt)ρ−1 = 2t when ρ = 0.

This theorem gives a decay of the variances and the covariances of the marginals of η. Actually,
it does not give any information on the correlation but this slight abuse of language is used to be
consistent with other previous works.
The previous theorem is a consequence of Theorem 2.5 which gives the correlation of more general
functional of η. The proof of these results comes from a commutation relation between the carré
du champs operator and the semigroup of η. This commutation-type relation gives a decay of the
variance and thus, by the Cauchy-Schwarz inequality, of the correlations. The previous bound is
uniform in time when ρ > 0 and it generalizes several previous work [1, 14].
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Theorem 1.2 is a generalization of [1, Theorem 1.3], [14, Theorem 1.2] and a slight generalization
of [16, Theorem 2.2]. Indeed,

∑
k∈F ∗ p0(k) < +∞ is not necessary. We can also cite [11,

Theorem 1.1] and [25, Theorem 1] which give the same kind of bound with a less explicit constant.
However, these two theorems cover a more general setting. This theorem permits to extend the
properties of the particle system to the conditioned process; see the next subsection. Finally, we
can improve the previous bound in the special case of the complete graph random walk but, in
general, we do not know how improve it even when card(F ∗) = 2; see Sections 3 and 4.

Two main consequences. We summarize two important consequences of our main theorems.
Firstly, as ρ, defined in Theorem 1.1, does not depend on N , we can take the limit N → +∞
in Theorem 1.1. This gives an “easy-to-verify”criterion to prove the existence, uniqueness of a
quasi-stationary distribution and the exponential convergence of the conditioned process to it.

Corollary 1.4 (Convergence to the QSD). Suppose that ρ is positive and that Assumptions (A1)
and (A2) hold. For any probability measure µ, ν, we have

∀t ≥ 0, dTV (µTt, νTt) ≤ e−ρtdTV (µ, ν) . (2)

In particular, there exists a unique quasi-stationary distribution νqs for (Tt)t≥0 and for any prob-
ability measure µ, we have

∀t ≥ 0, dTV (µTt, νqs) ≤ e−ρt.

This corollary is closely related to several previous work [9], [12, Theorem 1.1], [20, Theorem
3] and [14, Theorem 1.1]. When F is finite, the oldest result dates from 1967 [9] where Darroch
and Seneta give a similar bound without additional assumption. Nevertheless, the constants are
less explicit because the proof is based on Perron-Frobenius Theorem. The other results are more
recent. Under a slightly weaker condition, we recover [14, Theorem 1.1] in a stronger convergence
and with an estimation of the rate of convergence. As in [12, Theorem 1.1], a mixing condition for
Q and a regularity one for p0 are assumed to obtain an exponential convergence to a QSD; namely,
we assume that λ is large enough and (max(p0) − min(p0)) is small enough. In [12, Theorem
1.1] they only need that max(p0) < +∞ but, their mixing condition is stronger than ours. Finally
[20, Theorem 3] gives a weaker condition to obtain an exponential convergence with (generally)
a lower and less explicit rate of convergence when our result applies. Also note that Assumptions
(A1) and (A2) are not necessary; see Remark 2.7.
Our second corollary gives a uniform bound for the limit (d):

Corollary 1.5 (Uniform bounds). If ρ > 0, then under the assumptions of Theorem 1.2, there exist
K0, γ > 0 such that , for every η ∈ E,

sup
t≥0

Eη [|m(ηt)(k)−m(η)Tt(k)|] ≤
K0

Nγ
,

for every k ∈ F ∗. Furthermore, if F ∗ is finite then there exists K1 > 0 such that

sup
t≥0

Eη[dTV(m(ηt),m(η)Tt)] ≤
K1

Nγ
.

All constants are explicit.

In particular, if η is distributed according to the measure νN , then under the assumptions of the
previous corollary, there exist K0,K1 > 0 and γ > 0 such that

E
[
|m(η)(k)− νqs(k)|

]
≤ K0

Nγ
,

for every k ∈ F ∗. Moreover, if F ∗ is finite then

E[dTV(m(η), νqs)] ≤
K1

Nγ
.

Without rate of convergence, this limiting result was proved in [1, Theorem 2] when F is finite.
Whereas, here, a rate of convergence, which is not of the right order (since γ ≪ 1/2) is given.
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To our knowledge, it is the first bound of convergence for this limit. Whenever F ∗ is finite, the
conclusion of the previous corollary holds with a less explicit γ even when ρ ≤ 0; see Remark 2.8.

The remainder of the paper is as follows. Section 2 gives the proofs of our main theorems; Subsec-
tion 2.1 contains the proof of Theorem 1.1, Subsection 2.2 the proof of Theorem 1.2 and the last
subsection the proof of the corollaries. We conclude the paper with Sections 3 and 4, where we
give the two examples mentioned above. The first one illustrates the sharpness of our results. The
study of the second one is reduced to a very simple process for which few properties are known.
It illustrates the need of general theorems as those previously introduced.

2. PROOF OF THE MAIN THEOREMS

In this section, we prove Theorems 1.1 and 1.2 and the corollaries stated before. Let us recall
that the generator of the Fleming-Viot process with N particles applied to bounded functions
f : E → R and η ∈ E, is given by

Lf(η) =
∑

i∈F ∗

η(i)
∑

j∈F ∗

(
Qi,j + p0(i)

η(j)

N − 1

)
(f(Ti→jη)− f(η)) . (3)

Now let us give two remarks about the dynamics of the Fleming-Viot particle system.

Remark 2.1 (Translation of the death rate). Let (Pt)t≥0 and (P ′
t)t≥0 be two semi-groups with

the same transition rate Q but different death rates p0, p′0 and let (Tt)t≥0, (T
′
t)t≥0 be their corre-

sponding conditioned semi-groups respectively. Using the fact that

Pt1{0}c = E

[
e−

∫ t

0 p0(Xs)ds
]

and P ′
t1{0}c = E

[
e−

∫ t

0 p′0(X
′

s)ds
]
,

for every t ≥ 0, it is easy to see that (Tt)t≥0 = (T ′
t)t≥0 as soon as p0 − p′0 is constant. This

invariance by translation is not conserved by the Fleming-Viot processes. The larger p0 is, the
more jumps are obtained and the larger the variance becomes. This is why our criterion about the
existence of QSD does not depend on min(p0) and why our propagation of chaos result depends
on it.

Remark 2.2 (Non-explosion). The particle dynamics guarantees the existence of the process
(ηt)t≥0 under the condition that there is no explosion. In other words, our construction is global
as long as the particles only jump finitely many times in any finite time interval. An example of
explosive Fleming-Viot particle system can be found in [4]. However, the assumption that p0 is
bounded is sufficient to guarantee this non-explosion.

2.1. Proof of Theorem 1.1.

Proof of Theorem 1.1. We build a coupling between two Fleming-Viot particle systems, (ηt)t≥0

and (η′t)t≥0, generated by (1), starting respectively from some random configurations η0, η′0 in E.
This couple is Markovian and we describe it by expressing its generator L; for every bounded
function f and η, η′ ∈ E, it is given by

Lf(η, η′) =
∑

i,i′,j,j′∈F ∗

A(i, i′, j, j′)(f(Ti→jη, Ti′→j′η
′)− f(η, η′)),

where we decompose the jump rate A into two parts A = AQ + Ap. The jumps rate AQ, that
depends only on the transition rateQ, corresponds to the jumps related to the underlying dynamics,
namely it is the dynamics when a particle does not die. The jumps rate Ap, corresponds to the
redistribution dynamics and depends only on p0. We will give the expression of AQ and Ap by
describing the jump dynamics of two selected particles of each configuration.

• If these two particles are in the same site (i = i′), we can couple them as follows
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– either they jump in a same site (j = j′) with rates

AQ(i, i, j, j) =
(
η(i) ∧ η′(i)

)
Qi,j , and Ap(i, i, j, j) = p0(i)

(
η(i) ∧ η′(i)

) η(j) ∧ η′(j)
N − 1

;

– or they jump in different sites (j 6= j′) with rate

Ap(i, i, j, j
′) = p0(i)

(
η(i) ∧ η′(i)

) (η(j)− η′(j))+ × (η′(j′)− η(j′))+
(N − 1)d1(η, η′)

.

• If these two particles are in different sites (i 6= i′)
– they jump to the same site (j = j′ ) with rates

AQ(i, i
′, j, j) =

(η(i)− η′(i))+ × (η′(i′)− η(i′))+
d1(η, η′)

(
Qi,j ∧Qi′,j

)
1j 6=i,i′ ,

and

Ap(i, i
′, j, j) =

(η(i)− η′(i))+ × (η′(i′)− η(i′))+
d1(η, η′)

(
p0(i) ∧ p0(i′)

) η(j) ∧ η′(j)
N − 1

;

– they jump to different sites (j 6= j′) with rate

Ap(i, i
′, j, j′) =

(
p0(i) ∧ p0(i′)

) (η(i)− η′(i))+(η
′(i′)− η(i′))+

d1(η, η′)

× (η(j)− η′(j))+(η
′(j′)− η(j′))+

(N − 1)d1(η, η′)
;

– a particle jumps to another site while the other one does not jump; namely
∗ if i′ = j′ then the rates are given by

AQ(i, j, i
′, i′) =

(η(i)− η′(i))+ × (η′(i′)− η(i′))+
d1(η, η′)

(Qi,j −Qi′,j)+1j 6=i,i′

and

Ap(i, j, i
′, i′) =

(η(i)− η′(i))+ × (η′(i′)− η(i′))+
d1(η, η′)

(
p0(i)− p0(i

′)
)
+

η(j)

N − 1
;

∗ similarly, if i = j then the rates are given by

AQ(i, i, i
′, j′) =

(η(i)− η′(i))+ × (η′(i′)− η(i′))+
d1(η, η′)

(Qi′,j′ −Qi,j′)+1j′ 6=i,i′

and

Ap(i, i, i
′, j′) =

(η(i)− η′(i))+ × (η′(i′)− η(i′))+
d1(η, η′)

(
p0(i

′)− p0(i)
)
+

η(j′)

N − 1
;

– finally, a particle jumps to the site of the second one,
∗ if j = i′ = j′, with rate

AQ(i, i
′, i′, i′) =

(η(i)− η′(i))+ × (η′(i′)− η(i′))+
d1(η, η′)

Qi,i′ ;

∗ if j = i′ and i = j′ with rate

AQ(i, i
′, i′, i) =

(η(i)− η′(i))+ × (η′(i′)− η(i′))+
d1(η, η′)

Qi′,i.

We also set, for every measurable function f ,

LQf(η, η
′) =

∑

i,i′,j,j′∈F ∗

AQ(i, i
′, j, j′)(f(Ti→jη, Ti′→j′η

′)− f(η, η′)),
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and

Lpf(η, η
′) =

∑

i,i′,j,j′∈F ∗

Ap(i, i
′, j, j′)(f(Ti→jη, Ti′→j′η

′)− f(η, η′)).

We have

Lpd1(η, η
′) ≤

∑

i∈F ∗

p0(i)
(
η(i) ∧ η′(i)

) d1(η, η′)
N − 1

−
∑

i,i′∈F ∗

(
p0(i) ∧ p0(i′)

) (η(i)− η′(i))+(η
′(i′)− η(i′))+

d1(η, η′)

∑

j∈F ∗

η(j) ∧ η′(j)
N − 1

≤ (max(p0)−min(p0))d1(η, η
′),

and

LQd1(η, η
′) ≤ −λd1(η, η′).

We deduce that Ld1(η, η′) ≤ −ρd1(η, η′). Now let (Pt)t≥0 be the semi-group associated with the
generator L. Using the equality ∂tPtf = PtLf and Gronwall Lemma, we have, for every t ≥ 0,
Ptd1 ≤ e−ρtd1; namely

E[d1(ηt, η
′
t)] ≤ e−ρt

E[d1(η0, η
′
0)].

Taking the infimum over all couples (η0, η′0), the claim follows. The existence and the uniqueness
of an invariant distribution come from classical arguments; see for instance [7, Theorem 5.23]. �

Corollary 2.3 (Coalescent time estimate). For all t ≥ 0, we have

dTV(L(ηt),L(η′t)) ≤ e−ρtWd1(L(η0),L(η′0)).

In particular, if ρ > 0 the invariant distribution νN verifies

dTV(L(ηt), νN ) ≤ e−ρtWd1(L(η0), νN ).

Proof. Using Theorem 1.1, we find

dTV(L(ηt),L(η′t)) = inf
ηt∼L(ηt)
η′t∼L(η′t)

E

[
1ηt 6=η′t

]

≤ inf
ηt∼L(ηt)
η′t∼L(η′t)

E
[
d1(ηt, η

′
t)
]
= Wd1(L(ηt),L(η′t))

≤ e−ρtWd1(L(η0),L(η′0)).

�

Remark 2.4 (Generalization). As we can see at the end of the paper, in the case where F ∗ contains
only two elements, the coupling that we use is pretty good but our estimation of the distance is (in
general) too rough. There is some natural way to change the bound/criterion that we founded.
The first one is to use another more appropriate distance. This technique is in general useful in
other (Markovian) contexts [6, 8, 13]. Another way is to find a contraction after a certain time:
it’s the Lyapunov-type techniques [3, 19, 22]. Theses techniques give more general criteria but are
useless for small times and the formulas we get are less explicit. All of these techniques will give
different criteria that are not necessarily better. Finally note that, in all the paper, we can replace
ρ by

ρ′ = inf
i,i′∈F ∗



p0(i) ∧ p0(i

′) +Qi,i′ +Qi′,i +
∑

j 6=i,i′

Qi,j ∧Qi′,j



−max(p0),

and all conclusions hold.
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2.2. Proof of Theorem 1.2. The proof of Theorem 1.2 is done in two steps. Firstly, we estimate
the correlations between the number of particles over the sites and then we estimate the distance in
total variation via the Kolmogorov equation. Let us introduce some notations. For every bounded
functions f, g, every η ∈ E and every random variable X , we set

Covη[f(X), g(X)] = Eη[f(X)g(X)]− Eη[f(X)]Eη[g(X)],

and

Varη[f(X)] = Covη[f(X), f(X)].

Let (St)t≥0 be the semigroup of (ηt)t≥0 defined by

Stf(η) = E [f(ηt) | η0 = η] ,

for every t ≥ 0, η ∈ E and bounded function f . If µ is a probability measure on E and t ≥ 0,
then µSt is the measure defined by

µStf =

∫

E
Stf(y)µ(dy).

It represents the law of ηt when η0 is distributed according to µ. We also introduce the carré du
champ operator Γ defined, for any bounded function f and η ∈ E, by

Γf(η) = L(f2)(η)− 2f(η)Lf(η) (4)

=
∑

i,j∈F ∗

η(i)

(
Qi,j + p0(i)

η(j)

N − 1

)
(f(Ti→jη)− f(η))2 .

We present now an improvement of Theorem 1.3.

Theorem 2.5 (Correlation for Lipschitz functional). Let g, h be two 1−Lipschitz mappings on
(E, d1); namely

|g(η)− g(η′)| ≤ d1(η, η
′) and |h(η)− h(η′)| ≤ d1(η, η

′),

for every η, η′ ∈ E. Under Assumption (A1) we have for all t ≥ 0 and η ∈ E,

|Covη(g(ηt), h(ηt))| ≤
1− e−2ρt

2ρ

(
NQ1 + p

N2

N − 1

)
,

with the convention (1− e−2ρt)ρ−1 = 2t when ρ = 0.

In particular, if ρ > 0 then the previous bound is uniform.

Proof. For any function g on E and t ≥ 0, we have

Varη(g(ηt)) = St(g
2)(η)− (Stg)

2(η) =

∫ t

0
SsΓSt−sg(η)ds.

Indeed, setting, for any s ∈ [0, t] and η ∈ E, Ψη(s) = Ss
[
(St−sg)

2
]
(η) and ψ(s) = St−sg, we

get

∀s ≥ 0, Ψ′
η(s) = Ss

[
Lψ2 − 2ψLψ

]
(η) = SsΓψ(s)(η),

and so,

Varη(g(ηt)) = Ψη(t)−Ψη(0) =

∫ t

0
SsΓSt−sg(η)ds.

Now, if g is a 1−Lipschitz mapping with respect to d1 then

| St−sg(Ti→jη)− St−sg(η) | ≤ E
[
|g(η′t−s)− g(ηt−s)|

]
≤ E

[
d1(ηt−s, η

′
t−s)

]
,
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where ηt−s, η
′
t−s evolve as Fleming-Viot particle systems with initial condition η and Ti→jη. Thus,

using Theorem 1.1, we obtain

| St−sg(Ti→jη)− St−sg(η) | ≤ Wd1(L(ηt−s),L(η′t−s)) (5)

≤ e−ρ(t−s)d1(Ti→jη, η)

≤ e−ρ(t−s)1i 6=j .

Hence,

‖ΓSt−sg‖∞ = sup
η∈E

| ΓSt−sg(η) |≤ e−2ρ(t−s)

(
NQ1 + p

N2

N − 1

)
.

Finally, the Cauchy-Schwarz inequality and the first part of the proof give

Covη(g(ηt), h(ηt)) ≤ Varη(g(ηt))
1/2Varη(h(ηt))

1/2

≤ 1− e−2ρt

2ρ

(
NQ1 + p

N2

N − 1

)
.

�

Proof of Theorem 1.3. Fix l ∈ F ∗ and set ϕl : η 7→ η(l). The function ϕl/2 is a 1−Lipschitz
mapping with respect to d1, so we apply the previous theorem . �

Remark 2.6 (Generalization). Assume that there exist C > 0 and λ > 0 such that for any
processes (ηt)t>0 and (η′t)t>0 generated by (1), and for any t > 0, we have

Wd1(L(ηt),L(η′t)) ≤ Ce−λtWd1(L(η0),L(η′0)), (6)

then under the previous assumptions we have, for all t ≥ 0,

Covη(ηt(k)/N, ηt(l)/N) ≤ 2C

N2

1− e−2λt

λ

(
NQ1 + p

N2

N − 1

)
.

A bound like (6) is proved in the two point space case.

Proof of Theorem 1.2. The proof is based on a bias-variance type decomposition. The variance
is bounded via Theorem 1.3 and the bias via a Gronwall-type argument. More precisely, for
t ∈ [0, T ] and k ∈ F ∗, we have

Eη [|m(ηt)(k)− µTt(k)|] ≤ Eη [|m(ηt)(k)− Eη[m(ηt)(k)]|] + |Eη [m(ηt)(k)]− µTt(k)|. (7)

Theorem 1.3 and the Cauchy-Schwarz inequality give

Eη [|m(ηt)(k)− Eη(m(ηt)(k))|] ≤
√

Varη(m(ηt)(k)) ≤
√
ct(N − 1)−1,

where ct = 2ρ−1(1− e−2ρt)(Q1 + p). Now, to study the bias term in (7), we follow the proof of
[16, Proposition 2.6]. So let us introduce the following notations

uk(t) = Eη[m(ηt)(k)] and vk(t) = µTt(k).

It is well known that (µTt)t≥0 is the unique measure solution to the (non linear) Kolmogorov
forward type equations: µT0 = µ, and

∀t ≥ 0, ∂tµTt(j) =
∑

i∈F ∗

(Qi,j µTt(i) + p0(i) µTt(i) µTt(j)) . (8)

Thus
∂tvk(t) =

∑

i∈F ∗

Qi,kvi(t) +
∑

i∈F ∗

p0(i)vi(t)vk(t),

and using (1) and ∂tut = L∗ut, we find

∂tuk(t) =
∑

i∈F ∗

Qi,kui(t) +
∑

i∈F ∗

p0(i)ui(t)uk(t)−
p0(k)

N − 1
uk(t) +Rk(t),
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where

Rk(t) =
∑

i∈F ∗

p0(i)

(
N

N − 1
Eη(m(ηt)(i)m(ηt)(k))− Eη(m(ηt)(i))Eη(m(ηt)(k))

)
.

Let us prove that
|Rk(t)| ≤ p(ct + 1)(N − 1)−1. (9)

We have

|Rk(t)| =
∣∣∣∣∣Covη

(
∑

i∈F ∗

p0(i)m(ηt)(i),m(ηt)(k)

)
+ (N − 1)−1

∑

i∈F ∗

p0(i)Eη[m(ηt)(i)m(ηt)(k)]

∣∣∣∣∣

≤ 4pN−2|Covη(g(ηt), h(ηt))|+ p(N − 1)−1,

where g and h are the 1−Lipschitz functions defined by

g : η 7→ 1

2p

∑

i∈F ∗

p0(i)η(i) and h : η 7→ η(k)

2
.

Hence the inequality (9) comes from Theorem 2.5.
Now, for k ∈ F ∗ and t ≥ 0, we set δk(t) = uk(t)− vk(t), δ(t) = (δk(t))k∈F ∗ , δk(t) = AeBt and
δ(t) = (δk(t))k∈F ∗ . At this stage, we do not fix the value of A and B, but we allow ourselves the
freedom to tune it at the end of the proof. We have ∂tδk(t) = T+(δ(t)), where

T+(a) =
∑

i∈F ∗

Qi,kai +
∑

i∈F ∗

p0(i)vi(t)ak +
∑

i∈F ∗

p0(i)uk(t)ai −
p0(k)

N − 1
uk(t) +Rk(t), (10)

for any sequence a = (ak)k∈F ∗ . Now, from (9), we have

T+(δ(t)) = AeBt

[
∑

i∈F ∗

Qi,k +
∑

i∈F ∗

p0(i)vi(t) +
∑

i∈F ∗

p0(i)uk(t)

]
− p0(k)

N − 1
uk(t) +Rk(t)

≤ AeBt

[
∑

i∈F ∗

Qi,k +
∑

i∈F ∗

p0(i)vi(t) +
∑

i∈F ∗

p0(i)uk(t)

]
+
p0(k)

N − 1
uk(t) +Rk(t)

≤ AeBt [Q2 + 2p] +
p(ct + 2)

N − 1
.

We find that
∀k ∈ F ∗, T+(δ(t)) ≤ ∂tδk(t) = ABeBt,

if A ≥ 1

N − 1
and

B =





Q2 + 4p+ 2(−ρ−1)(Q1 + p) if ρ < 0
Q2 + 4p+ 2ρ−1(Q1 + p) if ρ > 0
Q2 + 4p+ 4(Q1 + p) if ρ = 0.

(11)

Now, if δk(0) ≥ δk(0) (namely A ≥ supk∈F ∗ |m(η0)(k)− µ(k)|), a classical argument of super-
solution gives δk(t) ≥ δk(t), for every t ≥ 0 and k ∈ F ∗; see [16, Lemma 2.7] for details. In the
same way, setting for any configuration a = (ak)k∈F ∗

T−(a) =
∑

i∈F ∗

Qi,kai +
∑

i∈F ∗

p0(i)vi(t)ak +
∑

i∈F ∗

p0(i)uk(t)ai +
p0(k)

N − 1
uk(t)−Rk(t), (12)

the same argument applied to δ + δk gives

δk(t) ≤ AeBt and δk(t) ≥ −AeBt, ∀t ≥ 0, ∀k ∈ F ∗,

which ends the proof. �
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2.3. Proof of the corollaries. In this subsection, we give the proofs of corollaries given in the
introduction.

Proof of Corollary 1.4. The proof is based on an approximation of the conditioned semigroups
by two particle systems. Theorem 1.1 gives a contraction for these particle systems. We then use
Theorem 1.2 and a discretization argument to prove that it implies a contraction for the conditioned
semigroups.
Let (m(N)

0 )N≥0 and (m̃
(N)
0 )N≥0 be two sequences of probability measures that converge to µ

and ν respectively , as N tends to infinity, and such that η(N)
0 = (Nm

(N)
0 (k))k∈F ∗ ∈ E(N) and

η̃
(N)
0 = (Nm̃

(N)
0 (k))k∈F ∗ ∈ E(N), for every N ≥ 0. The existence of these two sequences can

be proved via the law of large numbers. Now, for each N ≥ 0 and t ≥ 0 Theorem 1.1 establishes
a coupling between η(N)

t and η̃(N)
t , where each of its components is generated by (3), with initial

condition (η
(N)
0 , η̃

(N)
0 )) which satisfies

N−1
E

[
d1(η

(N)
t , η̃

(N)
t )

]
≤ e−ρtdTV

(
m

(N)
0 , m̃

(N)
0

)
.

Now let us prove that we can take the limit N → +∞. Since F is countable and discrete, there
exists an increasing sequence of finite sets (F ∗

n)n≥0 such that F ∗ = ∪n≥0F
∗
n and

dTV(µTt, νTt) =
1

2

∑

k∈F ∗

|µTt1{k} − νTt1{k}| = lim
n→+∞

1

2

∑

k∈F ∗

n

|µTt1{k} − νTt1{k}|.

The previous bound gives

E


1
2

∑

k∈F ∗

n

∣∣∣∣∣
η
(N)
t (k)

N
− η̃

(N)
t (k)

N

∣∣∣∣∣


 ≤ N−1

E

[
d1(η

(N)
t , η̃

(N)
t )

]
≤ e−ρtdTV

(
m

(N)
0 , m̃

(N)
0

)
.

Using Theorem 1.2 and taking the limit N → +∞, we find

1

2

∑

k∈F ∗

n

|µTt1{k} − νTt1{k}| ≤ e−ρtdTV (µ, ν) .

Indeed, as we work in discrete space, the convergence in distribution is equivalent to that in total
variation distance:

lim
N→+∞

dTV(m
(N)
0 , µ) = lim

N→+∞
dTV(m̃

(N)
0 , ν) = 0.

Thus, taking the limit n → +∞, we obtain (2). Finally, the existence of a QSD can be proved
as in the proof of [20, Theorem 1]. More precisely, let µ be any probability measure on F ∗. We
have, for all s, t ≥ 0 such that s ≥ t,

dTV (µTt, µTs) = dTV (µTt, µTs−t+t) = dTV (µTt, (µTs−t)Tt) ≤ e−ρt.

Thus (µTt)t≥0 is a Cauchy sequence for the total variation distance and thus admits a limit νqs.
This measure is then proved to be a QSD by standard arguments; see for instance [21, Proposition
1]. �

Remark 2.7 (Weaker assumptions). Assumptions (A1) and (A2) are not necessary (and even
useless) in the previous corollary. Indeed, we can use [25, Theorem 1] and a similar argument of
approximation. However, we used this proof for sake of completeness.

We can now proceed to the proof of the second corollary.

Proof of Corollary 1.5. The proof is based on an "interpolation" between the bounds obtained in
Corollary 1.4 and Theorem 1.2.
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We only give the proof for the first inequality; the second one follows by the same argument. Let
us fix t > 0 and u ∈ [0, 1]. By the Markov property, we have

Eη[|m(ηt)(k)−m(η)Tt(k)|] ≤ Eη

[
|m(ηt)(k)−m(ηtu)Tt(1−u)(k)|

]

+ Eη

[
|m(ηtu)Tt(1−u)(k)−m(η)Tt(k)|

]

≤ Eη

[
Ẽηtu

[
|m(η̃t(1−u))(k)−m(ηtu)Tt(1−u)(k)|

]]

+ Eη

[
dTV(m(ηtu)Tt(1−u),m(η)TutTt(1−u))

]
,

where (η̃t)t≥0 is a Markov process generated by (1) and where, for all η ∈ E, we denote by Ẽη

the conditional expectation of (η̃t)t≥0 given the event {η̃0 = η}. On the one hand, Theorem 1.2 is
a uniform estimate on the initial condition, so that

Ẽηtu

[
|m(η̃t(1−u))(k)−m(ηtu)Tt(1−u)(k)|

]
≤ eBt(1−u)

√
N − 1

,

where B is defined in (11). On the other hand, from Corollary 1.4, we have

Eη

[
dTV(m(ηtu)Tt(1−u),m(η)TutTt(1−u))

]
≤ e−ρt(1−u).

Choosing

u = 1 +
1

t(B + ρ)
log

(
B

ρ
√
N − 1

)
,

this gives

Eη [|m(ηt)(k)−m(η)Tt(k)|] ≤
B + ρ

B

(
B

ρ
√
N − 1

) ρ

B+ρ

.

When F is finite, the same arguments give

Eη[dTV (m(ηt)(k)−m(η)Tt(k))] ≤
B + ρ

B

(
B|F ∗|

2ρ
√
N − 1

) ρ

B+ρ

.

�

Remark 2.8 (Weaker assumptions). We can weaken the assumption ρ > 0 in the previous corol-
lary. Indeed, it is enough to assume that there exist C > 0 and λ > 0 such that

∀t ≥ 0, dTV(µTt, νTt) ≤ Ce−λt.

Some sufficient conditions are given in [9, 12, 20]. We can also use a bound of convergence for
the Fleming-Viot particle system as in Theorem 1.1. In particular, when F ∗ is finite, the particle
system converges, uniformly in time, to the conditioned process; hence, if η is distributed by the
invariant distribution of the particle system (it exists since E is finite) then it converges in law
towards the quasi-stationary distribution.

3. COMPLETE GRAPH DYNAMICS

In all this section, we study the example of a random walk on the complete graph. Let us fix K ∈
N
∗ andN ∈ N

∗, the dynamics of this example is as follows: we consider a model withN particles
which move on the K + 1 vertices 0, 1, . . . ,K, of a complete graph uniformly at random. When
a particle reaches the node 0, it jumps instantaneously over another particle chosen uniformly at
random. This particle system corresponds to the model previously cited with parameters

Qi,j = p0(i) =
1

K
, ∀i, j ∈ F ∗ = {1, . . . ,K}.

The generator of the associated Fleming-Viot process is then given by

Lf(η) =
K∑

i=1

η(i)




K∑

j=1

(f(Ti→jη)− f(η))

(
1

K
+

1

K

η(j)

N − 1

)
 , (13)
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for every function f and η ∈ E. A process generated by (13) is an instance of inclusion processes
studied in [15, 17, 18]. It is then related to models of heat conduction and has applications in pop-
ulation genetics. One main point of [15, 17] is a criterion ensuring the existence and reversibility
of an invariant distribution for the inclusion processes. In particular, they give an explicit for-
mula of the invariant distribution of a process generated by (13) and we introduce its expression
in Subsection 3.3. They also study different scaling limits which seem to be irrelevant for our
problems.
In all this section, for any probability measure µ on E, we set in a classical manner Eµ[·] =∫
F ∗ Ex[·]µ(dx) and Pµ = Eµ[1·]; similarly Covµ and Varµ are defined with respect to Eµ.

3.1. The associated killed process. We define the process (Xt)t≥0 by setting

Xt =

{
Zt if t < τ
0 if t ≥ τ,

where τ is an exponential variable with mean K and (Zt)t≥0 is the classical complete graph
random walk (i.e. without extinction) on {1, . . . ,K}. We have, for any bounded function f ,

Ttf(x) = E [f(Xt) | X0 = x,Xt 6= 0] , t ≥ 0, x ∈ F ∗.

The conditional distribution of Xt is simply given by the distribution of Zt :

P(Xt = i | Xt 6= 0) = P(Zt = i).

The study of (Zt)t≥0 is trivial. Indeed, it converges exponentially fast to the uniform distribution
πK on {1, . . . ,K}. We deduce that for all t ≥ 0 and all initial distribution µ,

dTV(µTt, πK) =
K∑

i=1

|Pµ(Xt = i | τ > t)− πK(i)| ≤ e−t.

Thus in this case, the conditional distribution of X converges exponentially fast to the Yaglom
limit πK .

3.2. Correlations at fixed time. The special form of L, defined at (13), makes the calculation of
the two-particle correlations at fixed time easy.

Theorem 3.1 (Two-particle correlations). For all k, l ∈ {1, . . . ,K}, k 6= l and any probability
measure µ on E, we have for all t ≥ 0

Covµ(ηt(k), ηt(l)) = Eµ [η0(k)η0(l)] e
−

2(KN−K+1)
K(N−1)

t

+
−NK − 2N +K

K(KN −K + 2)
(Eµ [η0(k)] + Eµ [η0(l)])e

−t

− Eµ [η0(k)]Eµ [η0(l)] e
−2t +

−N2K +NK −N2

K2(KN −K + 1)
.

Remark 3.2 (Limit t→ +∞). By the previous theorem, we find for any probability measure µ

lim
t→+∞

Covµ(ηt(k), ηt(l)) =
−N2K +NK −N2

K2(KN −K + 1)
= Cov(η(k), η(l)),

where η is distributed according to the invariant distribution; it exists since the state space is finite,
see the next section.

Remark 3.3 (Limit N → +∞). For all k, l ∈ {1, . . . ,K}, k 6= l and any probability measure µ,
if Covµ (η0(k), η0(l)) 6= 0 then we have

Covµ

(
ηt(k)

N
,
ηt(l)

N

)
∼N e−2tCovµ

(
η0(k)

N
,
η0(l)

N

)
,

where uN ∼N vN iff limN→+∞
uN
vN

= 1.
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Proof of Theorem 3.1. For k, l ∈ {1, ..,K}, let ψk,l be the function η 7→ η(k)η(l). Applying the
generator (13) to ψk,l we obtain

Lψk,l(η) = −2(KN −K + 1)

K(N − 1)
η(k)η(l) +

N − 1

K
(η(k) + η(l)).

So, for all t ≥ 0,

Lψk,l(ηt) = −2(KN −K + 1)

K(N − 1)
ηt(k)ηt(l) +

N − 1

K
(ηt(k) + ηt(l)).

Using Kolmogorov’s equation, we have

∂tEµ(ηt(k)ηt(l)) = −2(KN −K + 1)

K(N − 1)
Eµ(ηt(k)ηt(l))+

N − 1

K
(Eµ(ηt(k))+Eµ(ηt(l))). (14)

Now if ϕk(η) = η(k) then Lϕk(η) =
N

K
− η(k). We deduce that, for every t ≥ 0,

∂tEµ(ηt(k)) =
N

K
− Eµ(ηt(k)) and Eµ(ηt(k)) = Eµ(η0(k))e

−t +
N

K
.

Solving equation (14) ends the proof. �

3.3. Properties of the invariant measure. As (ηt)t≥0 is an irreducible Markov chain on a finite
state space, it is straightforward that it admits a unique invariant measure. In fact, this invariant
distribution is reversible and we know its expression. In what follows, we shall give an explicit
expression of this measure and some properties.

Theorem 3.4 (Invariant distribution). The process (ηt)t≥0 admits a unique invariant and re-
versible measure νN , which is defined, for every η ∈ E, by

νN ({η}) = Z−1
K∏

i=1

(
N − 2 + η(i)

N − 2

)
,

where Z is a normalizing constant given by

Z =

(
(K + 1)N −K − 1

KN −K − 1

)
.

Proof. Due to the simple geometry of the complete graph, it is easy to see that the invariant
measure is a product measure. The proof of this result is already proved in a more general setting
in [15, Section 4] and [17, Theorem 2.1]. �

Corollary 3.5 (Marginal laws). For all i ∈ {1, . . . ,K} we have

PνN (η(i) = x) =
1

Z

(
N − 2 + x

N − 2

)(
KN −K − x

(K − 1)N −K

)
,

Proof. Firstly let us recall the Vandermonde binomial convolution type formula: let n, n1, . . . , np
be some non-negative integers verifying

∑p
i=1 ni = n, we have

(
r − 1

n− 1

)
=

∑

r1+···+rp=r

p∏

j=1

(
rj − 1

nj − 1

)
.



16 BERTRAND CLOEZ AND MARIE-NOÉMIE THAI

The proof is based on the power series decomposition of z 7→ (z/(1− z))n =
∏p

i=1 (z/(1− z))ni .
Using this formula, we find

PνN (η(i) = x) =
∑

x∈E1

PνN (η = (x1, . . . , xi−1, x, xi+1 . . . , xK))

=
1

Z

(
N − 2 + x

N − 2

) ∑

x∈E1

i−1∏

l=1

K∏

l=i+1

(
N − 2 + xl
N − 2

)

=
1

Z

(
N − 2 + x

N − 2

)(
(K − 1)(N − 1) +N − x− 1

(K − 1)(N − 1)− 1

)
,

whereE1 = {x = (x1, . . . , xi−1, xi+1 . . . , xK)|x1 + · · ·+ xi−1 + xi+1 · · ·+ xK = N − x}. �

We are now able to express the particle correlations under this invariant measure.

Theorem 3.6 (Correlation estimates). For all i 6= j ∈ {1, . . . ,K}, we have

|CovνN (η(i)/N, η(j)/N)| ∼N
K + 1

K3N
,

Proof. Let η be a random variable with law νN . As η(1), . . . , η(K) are identically distributed and∑K
i=1 η(i) = N we have

CovνN (η(i)/N, η(j)/N) = −VarνN (η(i)/N)

K − 1
.

Using the results of Section 3.4, we have

L(η(i)2) = η(i)2
[
−2− 2

K(N − 1)

]
+ η(i)

[
2N

K
+

2N

K(N − 1)
+
K − 2

K

]
+
N

K
.

Using the fact that
∫
L(η(i)2)dνN = 0 and

∫
η(i)dνN = N

K , we deduce that
∫
η(i)2dνN =

(2N2 + (K − 2)(N − 1))N +NK(N − 1)

2K(KN − (K − 1))
.

Finally,

VarνN (η(i)) =
∫
η(i)2dνN −

(∫
η(i)dνN

)2

=
N2(K2 − 1)−NK(K − 1)

K2(KN − (K − 1))
,

and thus, for i 6= j,

|CovνN (η(i)/N, η(j)/N)| ∼N
K + 1

K3N
.

�

Remark 3.7 (Number of sites). Theorem 3.6 gives the rate of the decay of correlations with respect
to the number of particles, but we also have a rate with respect to the number of sites K: if η is
distributed under the invariant measure,

|CovνN (η(i)/N, η(j)/N)| ∼K
1

K(K − 1)N
.

The previous theorem shows that the occupation numbers of two distinct sites become non-
correlated when the number of particles increases. In fact, Theorem 3.6 leads to a propagation
of chaos:

Corollary 3.8 (Convergence to the QSD). We have

EνN [dTV(m(η), πK)] ≤
√
K

N
,

where πK is the uniform measure on {1, . . . ,K}.
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Proof. By the Cauchy-Schwarz inequality, we have

EνN

[∣∣∣∣
η(k)

N
− 1

K

∣∣∣∣
]
≤
(
EνN

[∣∣∣∣
η(k)

N
− 1

K

∣∣∣∣
2
]) 1

2

= VarνN

(
η(k)

N

)1/2

≤
√
K2 − 1

K3N
.

Summing over {1, . . . ,K} ends the proof. �

The previous bound is better than the bound obtained in Theorem 1.2 and its corollaries. This
comes from the absence of bias term. Indeed,

∀k ∈ F ∗, EνN [m(η)(k)] =
1

K
= πK(k).

The bad term in Theorem 1.2 comes from, with the notations of its proof, the estimation of |uk(t)−
vk(t)| and Gronwall Lemma.

3.4. Long time behavior and spectral analysis of the generator. In this subsection, we point
out the optimality of Theorem 1.1 in this special case. It gives

Corollary 3.9 (Wasserstein contraction). For any processes (ηt)t>0 and (η′t)t>0 generated by (13),
and for any t ≥ 0, we have

Wd1(L(ηt),L(η′t)) ≤ e−tWd1(L(η0),L(η′0)).
In particular, when (η′0) follows the invariant distribution νN associated to (13), we get for every
t ≥ 0

Wd1(L(ηt), νN ) ≤ e−tWd1(L(η0), νN ).

In particular, if λ1 is the smallest positive eigenvalue of −L, defined at (13), then we have

1 = ρ ≤ λ1.

Indeed, on the one hand, let us recall that, as the invariant measure is reversible, λ1 is the largest
constant such that

lim
t→+∞

e2λt‖Rtf − νN (f)‖2L2(νN ) = 0, (15)

for every λ < λ1 and f ∈ L2(νN ), where (Rt)t≥0 is the semi-group generated by L. See for
instance [2, 23]. On the other hand, if λ < 1 then, by Theorem 1.1, we have

e2λt‖Rtf − νN (f)‖2L2(νN ) = e2λt
∫

E
((δηRt)f − (νNRt)f)

2 νN (dη)

≤ 2e2λt‖f‖2∞
∫

E
Wd1(δηRt, νNRt)

2νN (dη)

≤ 2e2(λ−1)t‖f‖2∞
∫

E
Wd1(δη, νN )2νN (dη),

and then (15) holds. Now, the constant functions are trivially eigenvectors of L associated with
the eigenvalue 0, and if, for k ∈ {1, . . . ,K}, l ≥ 1 we set ϕ(l)

k : η 7→ η(k)l then the function ϕ(1)
k

verifies
Lϕ(1)

k = N/K − ϕ
(1)
k .

In particular ϕ(1)
k − N/K is an eigenvector and 1 is an eigenvalue of −L. This gives λ1 ≤ 1

and finally λ1 = 1 is the smallest eigenvalue of −L. By the reversibility, we have a Poincaré (or
spectral gap) inequality

∀t ≥ 0, ‖Rtf − νN (f)‖2L2(νN ) ≤ e−2t‖f − νN (f)‖2L2(νN ).

Remark 3.10 (Complete graph random walk). If (ai)1≤i≤K is a sequence such that
∑K

i=1 ai = 0

then the function
∑K

i=1 ϕ
(1)
i is an eigenvector of L. However, if L is the generator of the classical

complete graph random walk, La = −a and then a is also an eigenvector of L with the same
eigenvalue.
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Let us finally give the following result on the spectrum of L:

Lemma 3.11 (Spectrum of −L). The spectrum of −L is included in
{

K∑

i=1

λli | l1, . . . , lK ∈ {0, . . . , N}
}
,

where

∀l ∈ {0, . . . , N}, λl = l +
l(l − 1)

K(N − 1)
.

Proof. For every k ∈ {1, . . . ,K} and l ∈ {0, . . . , N}, we have

Lϕ(l)
k (η) = −λlϕ(l)

k (η) +Ql−1(η),

where Ql−1 is a polynomial whose degree is less than l − 1. A straightforward recurrence shows

that whether there exists or not a polynomial function ψ(l)
k , whose degree is l, verifying Lψ(l)

k =

−λlψ(l)
k (namely ψ(l)

k is an eigenvector of L). Indeed, it is possible to have ψ(l)
k = 0 since the

polynomial functions are not linearly independent (F is finite). More generally, for all l1, . . . , lK ∈
{1, . . . , N}, there exists a polynomial Q with K variables, whose degree with respect to the ith

variable is strictly less than li, such that the function φ : η 7→∏K
i=1 η(ki)

li +Q(η) satisfies

Lφ = −λφ where λ =

K∑

i=1

λli .

Again, provided that φ 6= 0, φ is an eigenvector and λ an eigenvalue of −L. Finally, as the
state space is finite, using multivariate Lagrange polynomial, we can prove that every function is
polynomial and thus we capture all the eigenvalues. �

Remark 3.12 (Cardinal of E). As card(F ∗) = K, we have

card(E) =

(
N +K − 1

K − 1

)
=

(N +K − 1)!

N !(K − 1)!
.

In particular, the number of eigenvalues is finite and less than card(E).

Remark 3.13 (Marginals). For each k, the random process (ηt(k))t≥0, which is a marginal of a
process generated by (13), is a Markov process on NN = {0, . . . , N} generated by

Gf(x) = (N − x)

K

(
1 +

x

N − 1

)
(f(x+ 1)− f(x))

+
x

K

(
K − 1 +

N − x

N − 1

)
(f(x− 1)− f(x)),

for every function f on NN and x ∈ NN. We can express the spectrum of this generator. Indeed,
let ϕl : x 7→ xl, for every l ≥ 0. The family (ϕl)0≤l≤N is linearly independent as can be checked
with a Vandermonde determinant. This family generates the L2−space associated to the invariant
measure since this space has a dimension equal to N + 1. Now, similarly to the proof of the
previous lemma, we can prove the existence of N + 1 polynomials, which are eigenvectors and
linearly independent, whose eigenvalues are λ0, λ1, . . . , λN .

4. THE TWO POINT SPACE

We consider a Markov chain defined on the states {0, 1, 2} where 0 is the absorbing state. Its
infinitesimal generator G is defined by

G =




0 0 0
p0(1) −a− p0(1) a
p0(2) b −b− p0(b),
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where a, b > 0, p0(1), p0(2) ≥ 0 and p0(1) + p0(2) > 0. The generator of the Fleming-Viot
process with N particles applied to bounded functions f : E → R reads

Lf(η) = η(1)

(
a+ p0(1)

η(2)

N − 1

)
(f(T1→2η)− f(η))

+ η(2)

(
b+ p0(2)

η(1)

N − 1

)
(f(T2→1η)− f(η)). (16)

4.1. The associated killed process. The long time behavior of the conditionned process is related
to the eigenvalues and eigenvectors of the matrix:

M =

[
−a− p0(1) a

b −b− p0(2)

]
.

Indeed see [21, section 3.1]. Its eigenvalues are given by

λ+ =
−(a+ b+ p0(1) + p0(2)) +

√
(a− b+ p0(1)− p0(2))2 + 4ab

2
,

λ− =
−(a+ b+ p0(1) + p0(2))−

√
(a− b+ p0(1)− p0(2))2 + 4ab

2
,

and the corresponding eigenvectors are respectively given by

v+ =

(
a

−A+
√
A2 + 4ab

)
and v− =

(
a

−A−
√
A2 + 4ab

)
,

where A = a− b+ p0(1)− p0(2). From these properties, we deduce that

Lemma 4.1 (Convergence to the QSD). There exists a constant C > 0 such that for every initial
distribution µ, we have

∀t ≥ 0, dTV(µTt, v+) ≤ Ce−(λ+−λ−)t.

Proof. See [21, Theorem 7] and [21, Remark 3]. �

Note that

λ+−λ− =
√

(a+ b)2 + 2(a− b)(p0(1)− p0(2)) + (p0(1)− p0(2))2 > a+b−(max(p0)−min(p0))

when max(p0) > min(p0).

4.2. Explicit formula of the invariant distribution. Firstly note that each marginal is a Markov
process:

Lemma 4.2 (Markovian marginals). The random process (ηt(1))t≥0, which is a marginal of a
process generated by (16), is a Markov process generated by G defined by

Gf(n) = bn(f(n+ 1)− f(n)) + dn(f(n− 1)− f(n)), (17)

for any function f and n ∈ NN = {0, . . . , N}, where

bn = (N − n)

(
b+ p0(2)

n

N − 1

)
and dn = n

(
a+ p0(1)

N − n

N − 1

)
.

Proof. For every η ∈ E, we have η = (η(1), N−η(1)) thus the Markov property and the generator
are easily deducible from the properties of (ηt)t≥0. �

From this result and the already known results on birth and death processes [6, 7], we deduce that
(ηt(1))t≥0 admits an invariant and reversible distribution π given by

π(n) = u0

n∏

k=1

bk−1

dk
and u−1

0 = 1 +

N∑

k=1

b(0) · · · b(k − 1)

d(1) · · · d(k) ,
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for every n ∈ NN. This gives

π(n) = u0

(
N

n

) n∏

k=1

b(N − 1) + (k − 1)p0(2)

a(N − 1) + (N − k)p0(1)
,

and

u−1
0 = 1 +

N∏

k=1

b(N − 1) + kp0(2)

a(N − 1) + kp0(1)
.

Similarly, the process (ηt(2))t≥0 is also a Markov process whose invariant distribution is also
easily calculable. The invariant law of (ηt)t≥0, is then given by

νN ((r1, r2)) = π ({r1}) , ∀(r1, r2) ∈ E.

Note that if p0 is not constant then we can not find a basis of orthogonal polynomials in the L2

space associated to νN . It is then very difficult to express the spectral gap or the decay rate of the
correlations without using our main results.

4.3. Rate of convergence. Applying Theorem 1.1, in this special case, we find:

Corollary 4.3 (Wasserstein contraction). For any processes (ηt)t>0 and (η′t)t>0 generated by (16),
and for any t ≥ 0, we have

Wd1(L(ηt),L(η′t)) ≤ e−ρtWd1(L(η0),L(η′0)),

where ρ = a+b−(max(p0)−min(p0)). In particular, when (η′0) follows the invariant distribution
νN of (16), we get for every t > 0

Wd1(L(ηt), νN ) ≤ e−ρtWd1(L(η0), νN ).

This result is not optimal. Nevertheless, the error does not come from our coupling choice but it
comes from how we estimate the distance. Indeed, this coupling induce a coupling between two
processes generated by G defined by (17). More precisely, let L = LQ + Lp be the generator of
our coupling introduced in the proof of Theorem 1.1 in this special case. We set G = GQ + Gp,
where for any n, n′ ∈ NN and f on E × E,

LQf((n,N − n), (n′, N − n′)) = GQϕf (n, n
′),

Lpf((n,N − n), (n′, N − n′)) = Gpϕf (n, n
′),

and ϕf (n, n
′) = f((n,N − n), (n′, N − n′)). It verifies, for any function f on NN and n′ > n

two elements of NN,

GQf(n, n
′) = na

(
f(n− 1, n′ − 1)− f(n, n′)

)

+ (N − n′)b
(
f(n+ 1, n′ + 1)− f(n, n′)

)

+ (n′ − n)b
(
f(n+ 1, n′)− f(n, n′)

)

+ (n′ − n)a
(
f(n, n′ − 1)− f(n, n′)

)
,
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and

Gpf(n, n
′) = p0(1)

n(N − n′)

N − 1

(
f(n− 1, n′ − 1)− f(n, n′)

)

+ p0(2)
n(N − n′)

N − 1

(
f(n+ 1, n′ + 1)− f(n, n′)

)

+ p0(1)
n(n′ − n)

N − 1

(
f(n− 1, n′)− f(n, n′)

)

+ p0(2)
(N − n′)(n′ − n)

N − 1

(
f(n, n′ + 1)− f(n, n′)

)

+ p0(2)
n(n′ − n)

N − 1

(
f(n+ 1, n′)− f(n, n′)

)

+ p0(1)
(N − n′)(n′ − n)

N − 1

(
f(n, n′ − 1)− f(n, n′)

)
.

Now, for any sequence of positive numbers (uk)k∈{0,...,N−1}, we introduce the distance δu defined
by

δu(n, n
′) =

n′−1∑

k=n

uk,

for every n, n′ ∈ NN such that n′ > n. For all n ∈ NN\{N}, we have Gδu(n, n + 1) ≤
−λuδu(n, n+ 1) where

λu = min
k∈{0,...,N−1}

[
d(k + 1)− d(k)

uk−1

uk
+ b(k)− b(k + 1)

uk+1

uk

]
,

and thus, by linearity, Gδu(n, n′) ≤ −λuδu(n, n′), for every n, n′ ∈ NN. This implies that for
any processes (Xt)t≥0 and (X ′

t)t≥0 generated by G , and for any t ≥ 0,

Wδu(L(Xt),L(X ′
t)) ≤ e−λutWδu(L(X0),L(X ′

0)).

Note that, for every n, n′ ∈ NN, we have

min(u)d1((n,N − n), (n′, N − n′)) ≤ δu(n, n
′) ≤ max(u)d1((n,N − n), (n′, N − n′)),

and then for any processes (ηt)t≥0 and (η′t)t≥0 generated by (16), and for any t ≥ 0, we have

Wd1(L(ηt),L(η′t)) ≤
max(u)

min(u)
e−λutWd1(L(η0),L(η′0)).

Finally, using [7, Theorem 9.25], there exists a positive sequence v such that λv = maxu λu > 0
is the spectral gap of the birth and death process (ηt(1))t≥0. These parameters depend on N and
so we should write the previous inequality as

Wd1(L(ηt),L(η′t)) ≤ C(N)e−λN tWd1(L(η0),L(η′0)), (18)

where C(N) and λN are two constants depending on N . In conclusion, the coupling introduced
in Theorem 1.1 gives the optimal rate of convergence but we are not able to express this rate and
its dependence on N .

4.4. Correlations. Using Theorem 2.5, we have

Corollary 4.4 (Correlations). If (ηt)t≥0 is a process generated by (16) then we have for all t ≥ 0,

Cov(ηt(k)/N, ηt(l)/N) ≤ 2

N2

1− e−2ρt

ρ

(
N(a ∨ b) + max(p0)

N2

N − 1

)
.
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If ρ ≤ 0, the right-hand side of the two previous inequalities explodes as t tends to infinity whereas
these correlations are bounded by 1. Nevertheless, using Theorem 2.5, Remark 2.6 and Inequality
(18), we can prove that there exists two constants C ′(N), depending on N , and K, which does
not depend on N , such that

sup
t≥0

Cov(ηt(k)/N, ηt(l)/N) ≤ C ′(N) =
KC(N)

NλN
,

where C(N) is defined in (18). Unfortunately, C(N) is not (completely) explicit and we do not
know if the right-hand side of the previous expression tends to 0 as N tends to infinity. This
example shows the difficulty of finding explicit and optimal rates of the convergence towards
equilibrium and the decay of correlations; it also illustrates that our main results are extremely
useful when max(p0) 6= min(p0).
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