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ON THE ASYMPTOTIC BEHAVIOR OF THE DURBIN-WATSON

STATISTIC FOR ARX PROCESSES IN ADAPTIVE TRACKING

BERNARD BERCU, BRUNO PORTIER, AND VICTOR VAZQUEZ

Abstract. A wide literature is available on the asymptotic behavior of the
Durbin-Watson statistic for autoregressive models. However, it is impossible to
find results on the Durbin-Watson statistic for autoregressive models with adap-
tive control. Our purpose is to fill the gap by establishing the asymptotic behavior
of the Durbin Watson statistic for ARX models in adaptive tracking. On the one
hand, we show the almost sure convergence as well as the asymptotic normality of
the least squares estimators of the unknown parameters of the ARX models. On
the other hand, we establish the almost sure convergence of the Durbin-Watson
statistic and its asymptotic normality. Finally, we propose a bilateral statistical
test for residual autocorrelation in adaptive tracking.

1. Introduction and Motivation

The Durbin-Watson statistic was introduced in the pioneer works of Durbin and
Watson [6], [7], [8], in order to detect the presence of a first-order autocorrelated
driven noise in linear regression models. A wide literature is available on the asymp-
totic behavior of the Durbin-Watson statistic for linear regression models and it is
well-known that the statistical test based on the Durbin-Watson statistic performs
pretty well when the regressors are independent random variables. However, as soon
as the regressors are lagged dependent variables, which is of course the most attrac-
tive case, its widespread use in inappropriate situations may lead to bad conclusions.
More precisely, it was observed by Malinvaud [20] and Nerlove and Wallis [21] that
the Durbin-Watson statistic may be asymptotically biased if the model itself and
the driven noise are governed by first-order autoregressive processes. In order to
prevent this misuse, Durbin [5] proposed a redesigned alternative test in the partic-
ular case of the first-order autoregressive process previously investigated in [20], [21].
More recently, Stocker [26] provided substantial improvements in the study of the
asymptotic behavior of the Durbin-Watson statistic resulting from the presence of a
first-order autocorrelated noise. We also refer the reader to Bercu and Pröıa [2] for
a recent sharp analysis on the asymptotic behavior of the Durbin-Watson statistic
via a martingale approach, see also Pröıa [23] for an extension to the multivariate
case.
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As far as the authors know, there are no results available on the Durbin-Watson
statistic for autoregressive models with exogenous control such as ARX(p, q) pro-
cesses. One can observe that these models are widely used in many areas related to
applied mathematics such as financial mathematics [14], robotics [16], engineering
[17], medical physics [15], neuroscience [19], etc. However, for these models, we do
not yet have a tool for analyzing the non-correlation of the residuals which is a
crucial step in model validation. This is the reason why we have chosen to investi-
gate the asymptotic behavior of the Durbin-Watson statistic for ARX processes in
order to decide whether or not the residuals are autocorrelated. We shall focus our
attention on the ARX(p, 1) process, given for all n ≥ 0, by

(1.1) Xn+1 =

p∑

k=1

θkXn−k+1 + Un + εn+1

where the driven noise (εn) is given by the first-order autoregressive process

(1.2) εn+1 = ρεn + Vn+1.

We assume that the serial autocorrelation parameter satisfies |ρ| < 1 and the initial
values X0, ε0 and U0 may be arbitrarily chosen. In all the sequel, we also assume
that (Vn) is a martingale difference sequence adapted to the filtration F = (Fn)
where Fn stands for the σ-algebra of the events occurring up to time n. Moreover,
we suppose that, for all n ≥ 0, E

[
V 2
n+1|Fn

]
= σ2 a.s. with σ2 > 0. Denote by θ the

unknown parameter of equation (1.1)

θt = (θ1, θ2, . . . , θp).

Our goal is to deal simultaneously with three objectives. The first one is to pro-
pose an efficient procedure in order to estimate the unknown parameters θ and ρ of
the ARX(p, 1) process given by (1.1) and (1.2). The second one is to regulate the
dynamic of the process (Xn) by forcing Xn to track step by step a predictable refer-
ence trajectory (xn). This second objective can be achieved by use of an appropriate
version of the adaptive tracking control proposed by Aström and Wittenmark [1].
Finally, our last objective is to establish the aymptotic properties of the Durbin-
Watson statistic in order to propose a bilateral test on the serial parameter ρ.

The paper is organized as follows. Section 2 is devoted to the parameter estimation
procedure and the suitable choice of stochastic adaptive control. In Section 3, we
establish the almost sure convergence of the least squares estimators of θ and ρ.
The asymptotic normality of our estimates are given in Section 4. We shall be able
in Section 5 to prove the almost sure convergence of the Durbin-Watson statistic
as well as its asymptotic normality, which will lead us to propose a bilateral statis-
tical test for residual autocorrelation. Some numerical simulations are provided in
Section 6. Finally, all technical proofs are postponed in the Appendices.
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2. Estimation and Adative Control

Relation (1.1) can be rewritten as

(2.1) Xn+1 = θtϕn + Un + εn+1

where the regression vector

ϕt
n = (Xn, . . . , Xn−p+1).

A naive strategy to regulate the dynamic of the process (Xn) is to make use of the
Aström-Wittenmark [1] adaptive tracking control

Un = xn+1 − θ̂ t
nϕn

where θ̂n stands for the least squares estimator of θ. However, it is known that this
strategy leads to biased estimation of θ and ρ. This is due to the fact that (εn) is not
a white noise but the first-order autoregressive process given by (1.2). Consequently,
it is necessary to adopt a more appropriate strategy which means a more suitable
choice for the adaptive control Un in (2.1).

The construction of our control law is as follows. Starting from (1.1) together with
(1.2), we can remark that the process (Xn) satisfies the ARX(p + 1, 2) equation
given, for all n ≥ 1, by

Xn+1 = (θ1 + ρ)Xn + (θ2 − ρθ1)Xn−1 + · · ·+ (θp − ρθp−1)Xn−p+1

−ρθpXn−p + Un − ρUn−1 + Vn+1(2.2)

which can be rewritten as

(2.3) Xn+1 = ϑtΦn + Un + Vn+1

where the new parameter ϑ ∈ R
p+2 is defined as

(2.4) ϑ =




θ
0
0


− ρ



−1
θ
1




and the new regression vector

Φt
n = (Xn, . . . , Xn−p, Un−1).

The original idea of this paper is to control the model (1.1) using the adaptive control
associated with the model (2.3) in order to a posteriori estimate the parameters θ
ρ via the estimator of the parameter ϑ. We shall now focus our attention on the
estimation of the unknown parameter ϑ. We propose to make use of the least squares
estimator which satisfies, for all n ≥ 0,

(2.5) ϑ̂n+1 = ϑ̂n + S−1
n Φn

(
Xn+1 − Un − ϑ̂ t

nΦn

)

where the initial value ϑ̂0 may be arbitrarily chosen and

Sn =
n∑

k=0

ΦkΦ
t
k + Ip+2
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where the identity matrix Ip+2 is added in order to avoid useless invertibility as-
sumption. On the other hand, we are concern with the crucial choice of the adaptive
control Un. The role played by Un is to regulate the dynamic of the process (Xn) by
forcing Xn to track step by step a bounded reference trajectory (xn). We assume
that (xn) is predictable which means that for all n ≥ 1, xn is Fn−1-measurable. In
order to control the dynamic of (Xn) given by (1.1), we propose to make use of the
Aström-Wittenmark adaptive tracking control associated with (2.3) and given, for
all n ≥ 0, by

(2.6) Un = xn+1 − ϑ̂ t
n Φn.

This suitable choice of Un will allow us to control the dynamic of the process (1.1)
while maintaining the optimality of the tracking and then estimate without bias the
parameters θ and ρ. In all the sequel, we assume that the reference trajectory (xn)
satisfies

(2.7)
n∑

k=1

x2
k = o(n) a.s.

3. Almost sure convergence

All our asymptotic analysis relies on the following keystone lemma. First of all,
let L be the identity matrix of order p+1 and denote by H the positive real number

(3.1) H =

p∑

k=1

(θk + ρk)2 +
ρ2(p+1)

1− ρ2
.

In addition, for 1 ≤ k ≤ p, let Kk = −(θk + ρk) and denote by K the line vector

(3.2) K =
(
0, K1, K2, . . . , Kp

)
.

Moreover, let Λ be the symmetric square matrix of order p+ 2,

(3.3) Λ =

(
L Kt

K H

)
.

Lemma 3.1. Assume that (Vn) has a finite conditional moment of order > 2. Then,
we have

(3.4) lim
n→∞

1

n
Sn = σ2Λ a.s.

where the limiting matrix Λ is given by (3.3). In addition, as soon as the correlation

parameter ρ 6= 0, the matrix Λ is invertible and

(3.5) Λ−1 =
1− ρ2

ρ2(p+1)

(
SL+KtK −Kt

−K 1

)

where S = H − ||K||2 is the Schur complement of L in Λ,

(3.6) S =
ρ2(p+1)

1− ρ2
.
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Proof. The proof is given in AppendixA.

Remark 3.1. As L is the identity matrix of order p+ 1, we clearly have

det(Λ) =
ρ2(p+1)

1− ρ2
.

Consequently, as long as ρ 6= 0, det(Λ) 6= 0 which of course implies that the matrix

Λ is invertible. The identity (3.5) comes from the block matrix inversion formula

given e.g. by Horn and Johnson [13], page 18.

We start with the almost sure properties of the least squares estimator ϑ̂n of ϑ
which are well-known as the process (Xn) is controllable.

Theorem 3.1. Assume that the serial correlation parameter ρ 6= 0 and that (Vn)

has a finite conditional moment of order > 2. Then, ϑ̂n converges almost surely to

ϑ,

(3.7) ‖ ϑ̂n − ϑ ‖2= O
(
log n

n

)
a.s.

Proof. The proof is given in AppendixA.

We shall now explicit the estimators of θ and ρ and their convergence results. It
follows from (2.4) that

(3.8)

(
θ
ρ

)
= ∆ϑ

where ∆ is the rectangular matrix of size (p+ 1)×(p+ 2) given by

(3.9) ∆ =




1 0 · · · · · · · · · 0 1
ρ 1 0 · · · · · · 0 ρ
ρ2 ρ 1 0 · · · 0 ρ2

· · · · · · · · · · · · · · · · · · · · ·
ρp−1 ρp−2 · · · ρ 1 0 ρp−1

0 0 · · · · · · · · · 0 −1




.

Consequently, a natural choice to estimate the initial parameters θ and ρ is to make
use of

(3.10)

(
θ̂n
ρ̂n

)
= ∆̂nϑ̂n

where ρ̂n is simply the opposite of the last coordinate of ϑ̂n and

(3.11) ∆̂n =




1 0 · · · · · · · · · 0 1
ρ̂n 1 0 · · · · · · 0 ρ̂n
ρ̂ 2
n ρ̂n 1 0 · · · 0 ρ̂ 2

n

· · · · · · · · · · · · · · · · · · · · ·
ρ̂ p−1
n ρ̂ p−2

n · · · ρ̂n 1 0 ρ̂ p−1
n

0 0 · · · · · · · · · 0 −1




.
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Corollary 3.1. Assume that the serial correlation parameter ρ 6= 0 and that (Vn)

has a finite conditional moment of order > 2. Then, θ̂n and ρ̂n both converge almost

surely to θ and ρ,

(3.12) ‖ θ̂n − θ ‖2= O
(
log n

n

)
a.s.

(3.13) (ρ̂n − ρ)2 = O
(
log n

n

)
a.s.

Proof. One can immediately see from (3.8) that the last component of the vector ϑ
is −ρ. The same is true for the estimator ρ̂n of ρ. Consequently, we deduce from
(3.7) that ρ̂n converges a.s. to ρ with the almost sure rate of convergence given by
(3.13). Therefore, we obtain from (3.9) and (3.11) that

‖ ∆̂n −∆ ‖2= O
(
log n

n

)
a.s.

which ensures via (3.7) and (3.10) that θ̂n converges a.s. to θ with the almost sure
rate of convergence given by (3.12). �

4. Asymptotic Normality

This Section is devoted to the asymptotic normality of the couple (θ̂n, ρ̂n) which

is obtained from the one of the estimator ϑ̂n of ϑ.

Theorem 4.1. Assume that the serial correlation parameter ρ 6= 0 and that (Vn)
has a finite conditional moment of order > 2. Then, we have

(4.1)
√
n(ϑ̂n − ϑ)

L−→ N (0,Λ−1)

where the matrix Λ−1 is given by (3.5).

In order to provide the joint asymptotic normality of the estimators of θ and ρ,
denote, for all 1 ≤ k ≤ p− 1,

ξk =
k∑

i=1

ρk−iθi

and let ∇ be the rectangular matrix of size (p+ 1)×(p+ 2) given by

(4.2) ∇ =




1 0 · · · · · · · · · 0 1
ρ 1 0 · · · · · · 0 ρ− ξ1
ρ2 ρ 1 0 · · · 0 ρ2 − ξ2
· · · · · · · · · · · · · · · · · · · · ·
ρp−1 ρp−2 · · · ρ 1 0 ρp−1 − ξp−1

0 0 · · · · · · · · · 0 −1




.
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Corollary 4.1. Assume that the serial correlation parameter ρ 6= 0 and that (Vn)
has a finite conditional moment of order > 2. Then, we have

(4.3)
√
n

(
θ̂n − θ
ρ̂n − ρ

)
L−→ N (0,Σ)

where Σ = ∇Λ−1∇t. In particular,

(4.4)
√
n(ρ̂n − ρ)

L−→ N
(
0,

1− ρ2

ρ2(p+1)

)
.

Proof. The proof is given in AppendixB.

5. On the Durbin Watson statistic

We now investigate the asymptotic behavior of the Durbin-Watson statistic [6],
[7], [8] given, for all n ≥ 1, by

(5.1) D̂n =

∑n
k=1 (ε̂k − ε̂k−1)

2

∑n
k=0 ε̂

2
k

where the residuals ε̂k are defined, for all 1 ≤ k ≤ n, by

(5.2) ε̂k = Xk − Uk−1 − θ̂ t
nϕk−1

with θ̂n given by (3.10). The initial value ε̂0 may be arbitrarily chosen and we take
ε̂0 = X0. One can observe that it is also possible to estimate the serial correlation
parameter ρ by the least squares estimator

(5.3) ρn =

∑n
k=1 ε̂kε̂k−1∑n
k=1 ε̂

2
k−1

which is the natural estimator of ρ in the autoregressive framework without control.

The Durbin-Watson statistic D̂n is related to ρn by the linear relation

(5.4) D̂n = 2(1− ρn) + ζn

where the remainder term ζn plays a negligeable role. The almost sure properties of

D̂n and ρn are as follows.

Theorem 5.1. Assume that the serial correlation parameter ρ 6=0 and that (Vn) has
a finite conditional moment of order > 2. Then, ρn converges almost surely to ρ,

(5.5) (ρn − ρ)2 = O
(
log n

n

)
a.s.

In addition, D̂n converges almost surely to D = 2(1 − ρ). Moreover, if (Vn) has a

finite conditional moment of order > 4, we also have

(5.6)
(
D̂n −D

)2
= O

(
log n

n

)
a.s.
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Our next result deals with the asymptotic normality of the Durbin-Watson statis-
tic. For that purpose, it is necessary to introduce some notations. Denote

(5.7) α =




1
−θ1
...

−θp
−1




and β =




1
ρ
...

ρp−1

0




.

In addition, let

(5.8) γ = Λα + (1− ρ2)∇tβ.

Theorem 5.2. Assume that the serial correlation parameter ρ 6=0 and that (Vn) has
a finite conditional moment of order > 2. Then, we have

(5.9)
√
n(ρn − ρ)

L−→ N
(
0, τ 2

)

where the asymptotic variance τ 2 = (1− ρ2)2γtΛ−1γ. Moreover, if (Vn) has a finite

conditional moment of order > 4, we also have

(5.10)
√
n(D̂n −D)

L−→ N
(
0, 4τ 2

)

Proof. The proofs are given in AppendixC.

Remark 5.1. It follows from (3.5) together with tedious but straighforward calcu-

lations that for all p ≥ 1,

τ 2 =
(1− ρ2)

ρ2(p+1)

[
ρ2(p+1)

(
4− (4p+ 3)ρ2p + 4pρ2(p+1) − ρ2(2p+1)

)

+
(
1− (p+ 1)ρ2p + (p− 1)ρ2(p+1)

)2]
.(5.11)

For example, in the particular case p = 1, we obtain that

(5.12) τ 2 =
(1− ρ2)

ρ4

(
1− 4ρ2 + 8ρ4 − 7ρ6 + 4ρ8 − ρ10

)
.

Moreover, it is not hard to see by a convexity argument that we always have for all

p ≥ 1,

τ 2 ≤ 1− ρ2

ρ2(p+1)
.

In other words, the least squares estimator ρn performs better than ρ̂n for the esti-

mation of ρ. It means that a statistical test procedure built on the Durbin-Watson

statistic should be really powerful.

We are now in the position to propose our new bilateral statistical test built on

the Durbin-Watson statistic D̂n. First of all, we shall not investigate the case ρ = 0
since our approach is only of interest for ARX processes where the driven noise is
given by a first-order autoregressive process. For a given value ρ0 such that |ρ0| < 1
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and ρ0 6= 0, we wish to test whether or not the serial correlation parameter is equal
to ρ0. It means that we wish to test

H0 : “ρ = ρ0” against H1 : “ρ 6= ρ0”.

According to Theorem 5.1, we have under the null hypothesis H0

lim
n→∞

D̂n = D0 a.s.

where D0 = 2(1− ρ0). In addition, we clearly have from (5.10) that under H0

(5.13)
n

4τ 2

(
D̂n −D0

)2 L−→ χ2

where χ2 stands for a Chi-square distribution with one degree of freedom. Via (5.11),
an efficient strategy to estimate the asymptotic variance τ 2 is to make use of

τ̂ 2
n =

(1− ρ 2
n)

ρ 2(p+1)
n

[
ρ 2(p+1)
n

(
4− (4p+ 3)ρ 2p

n + 4pρ 2(p+1)
n − ρ 2(2p+1)

n

)

+
(
1− (p+ 1)ρ 2p

n + (p− 1)ρ 2(p+1)
n

)2]
.(5.14)

Therefore, our new bilateral statistical test relies on the following result.

Theorem 5.3. Assume that the serial correlation parameter ρ 6= 0 and that (Vn)
has a finite conditional moment of order > 4. Then, under the null hypothesis

H0 : “ρ = ρ0”,

(5.15)
n

4τ̂ 2
n

(
D̂n −D0

)2 L−→ χ2

where χ2 stands for a Chi-square distribution with one degree of freedom. In addition,

under the alternative hypothesis H1 : “ρ 6= ρ0”,

(5.16) lim
n→∞

n

4τ̂ 2
n

(
D̂n −D0

)2
= +∞ a.s.

Proof. The proof is given in AppendixC.

From a practical point of view, for a significance level α where 0 < α < 1, the
acceptance and rejection regions are given by A = [0, aα] and R =]aα,+∞[ where
aα stands for the (1− α)-quantile of the Chi-square distribution with one degree of
freedom. The null hypothesis H0 will be accepted if

n

4τ̂ 2
n

(
D̂n −D0

)2
≤ aα,

and will be rejected otherwise.
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6. Numerical Experiments

The purpose of this section is to provide some numerical experiments in order
to illustrate our main theoretical results. In order to keep this section brief, we
shall only consider the ARX(p, 1) process (Xn) given by (1.1) in the particular cases
p = 1 and p = 2, where the driven noise (εn) satisfies (1.2). Moreover, for the sake
of simplicity, the reference trajectory (xn) is chosen to be identically zero and (Vn) is
a Gaussian white noise with N (0, 1) distribution. Finally our numerical simulations
are based on 500 realizations of sample size N = 1000. First of all, consider the
ARX(1, 1) process given, for all n ≥ 1, by

(6.1) Xn+1 = θXn + Un + εn+1 and εn+1 = ρεn + Vn+1

where we have chosen θ = 8/5 and ρ = −4/5 which implies that D = 18/5 and
the Schur complement S = 162/152. This choice has been made in order to obtain
simple expressions for the matrices Λ and Σ. One can easily see from (3.2) to (3.5)
that

Λ =
1

45



45 0 0
0 45 −36
0 −36 80




as well as

Σ = ∇Λ−1∇t =

(
1 0
0 0

)
+

(
15

16

)2(
1 −1
−1 1

)
.

Figure 1 illustrates the almost sure convergence of θ̂n, ρ̂n, ρn and D̂n. One can see
that the almost sure convergence is very satisfactory.

0 100 200 300 400 500 600 700 800 900 1000
1

0.5

0

0.5

1

1.5

2

Almost sure convergence of the LS estimates
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Almost sure convergence of the DW statistics

Figure 1. Almost sure convergence in the particular case p = 1.

We shall now focus our attention to the asymptotic normality. We compare the
empirical distributions of the LS estimates

√
nS√

1 + S

(
θ̂n − θ

)
and

√
nS
(
ρ̂n − ρ

)

with the standard N (0, 1) distribution. We proceed in the same way for the Durbin-
Watson statistics √

n

τ

(
ρn − ρ

)
and

√
n

2τ

(
D̂n −D

)

where τ 2 is given by (5.12). We use the natural estimates of S and τ 2 by replacing
ρ by ρ̂n and ρn, respectively. One can see in Figure 2 that the approximation by a
standard N (0, 1) distribution performs pretty well. These results are very promising
in order to built a statistical test based on these statistics.
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Figure 2. Asymptotic normality in the particular case p = 1.
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Next, we are interested in the ARX(2, 1) process given, for all n ≥ 1, by

(6.2) Xn+1 = θ1Xn + θ2Xn−1 + Un + εn+1 and εn+1 = ρεn + Vn+1

where we have chosen θ1 = 1, θ2 = 4/5 and ρ = −9/10 which leads to D = 19/5
and S = 96/(19×106). It follows from (3.2) to (3.5) that

Λ =
1

9500




9500 0 0 0
0 9500 0 −950
0 0 9500 −15295
0 −950 −1529 51292


 .

In addition, the diagonal entries of the covariance matrix Σ = ∇Λ−1∇t are respec-
tively given by

1 +
1

S
=

721441

531441
, 1 + ρ2 +

4ρ2

S
=

1947541

656100
,

1

S
=

190000

531441
.

Figure 3 shows the almost sure convergence of θ̂n,1, θ̂n,2, ρ̂n, ρn and D̂n while Figure
4 illustrates their asymptotic normality. As in the case p = 1, one can observe that
the approximation by a standard N (0, 1) distribution works pretty well.
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Figure 3. Almost sure convergence in the particular case p = 2.
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Figure 4. Asymptotic normality in the particular case p = 2.

We shall achieve this section by illustrating the behavior of the Durbin-Watson
statistical test. We wish to test H0 : “ρ = ρ0” against H1 : “ρ 6= ρ0” at 5% level
of significance for the ARX processes given by (6.1) and (6.2). More precisely, we
compute the frequency for which H0 is rejected for different values of ρ0,

P
(
rejecting H0 | H1 is true

)

via 500 realizations of different sample sizes N = 50, 100 and 1000. In Tables 1 and
2, one can appreciate the empirical power of the statistical test which means that
the Durbin-Watson statistic performs very well.

DW
Values of ρ0

−0.9 −0.8 −0.7 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.7 0.8 0.9

N=50
0.20 0.02 0.12 0.38 0.79 0.95 0.99 0.99 0.99 0.99 1.00 1.00
(0.80) (0.98) (0.88) (0.62) (0.21) (0.05) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

N=100
0.51 0.03 0.25 0.66 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
(0.49) (0.97) (0.75) (0.34) (0.03) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N=1000
1.00 0.05 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.00) (0.95) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 1. Durbin-Watson test in the particular case p = 1 and ρ = −0.8.

DW
Values of ρ0

−0.9 −0.8 −0.7 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.7 0.8 0.9

N=50
0.06 0.17 0.52 0.76 0.92 0.96 0.99 0.99 1.00 1.00 1.00 1.00
(0.94) (0.83) (0.48) (0.24) (0.08) (0.04) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

N=100
0.05 0.38 0.82 0.95 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
(0.95) (0.62) (0.18) (0.05) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N=1000
0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(0.95) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 2. Durbin-Watson test in the particular case p = 2 and ρ = −0.9.
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Appendix A

PROOFS OF THE ALMOST SURE CONVERGENCE RESULTS

Denote by A and B the polynomials given, for all z ∈ C, by

(A.1) A(z) = 1−
p+1∑

k=1

akz
k and B(z) = 1− ρz

where a1 = θ1+ρ, ap+1 = −ρθp and, for 2 ≤ k ≤ p, ak = θk−ρθk−1. The ARX(p+1, 2)
equation given by (2.2) may be rewritten as

(A.2) A(R)Xn = B(R)Un−1 + Vn

where R stands for the shift-back operator RXn = Xn−1. On the one hand, B(z) = 0
if and only if z = 1/ρ with ρ 6= 0. Consequently, as |ρ| < 1, B is clearly causal and
for all z ∈ C such that |ρz| < 1,

B−1(z) =
1

1− ρz
=

∞∑

k=0

ρkzk.

On the other hand, let P be the polynomial given, for all z ∈ C, by

(A.3) P (z) = B−1(z)(A(z)− 1) =
∞∑

k=1

pkz
k.

It is not hard to see from (A.3) that, for 1 ≤ k ≤ p, pk = −(θk + ρk) while, for all
k ≥ p + 1, pk = −ρk. Consequently, as soon as ρ 6= 0, we deduce from [3] that the
process (Xn) given by (A.2) is strongly controllable. One can observe that in our
situation, the usual notion of controllability is the same as the concept of strong
controllability. To be more precise, the assumption that ρ 6= 0 implies that the
polynomials A − 1 and B, given by (A.1), are coprime. It is exactly the so-called
controllability condition. We refer the reader to [3] for more details on the links
between the notions of controllability and strong controllability. Finally, we clearly
obtain Lemma 3.1 and Theorem 3.1 from (2.3) together with Theorem 5 of [3].

Appendix B

PROOFS OF THE ASYMPTOTIC NORMALITY RESULTS

Theorem 4.1 immediately follows from Theorem 8 of [3]. We shall now proceed
to the proof of Corollary 4.1. First of all, denote for 0 ≤ k ≤ p− 1,

sk(ϑ) =
k+1∑

i=1

ρk−i+1ϑi + ρkϑp+2
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where ρ = −ϑp+2 and sp(ϑ) = ρ. In addition, let

(B.1) g(ϑ) = ∆ϑ =




s0(ϑ)
s1(ϑ)
...

sp(ϑ)


 .

One can easily check that the gradient of the function g is given by

(B.2) ∇g(ϑ) =




1 0 · · · · · · · · · 0 ξ0(θ)
ρ 1 0 · · · · · · 0 ρ− ξ1(θ)
ρ2 ρ 1 0 · · · 0 ρ2 − ξ2(θ)
· · · · · · · · · · · · · · · · · · · · ·
ρp−1 ρp−2 · · · ρ 1 0 ρp−1 − ξp−1(θ)
0 0 · · · · · · · · · 0 ξp(θ)




where ξ0(θ) = 1, ξp(θ) = −1 and, for all 1 ≤ k ≤ p− 1,

ξk(θ) =
k∑

i=1

ρk−iθi.

The gradient of g coincides with the matrix ∇ given by (4.2). On the one hand, it
follows from (3.8) and (B.1) that

(B.3) g(ϑ) =

(
θ
ρ

)
.

On the other hand, we already saw from (4.1) that

(B.4)
√
n(ϑ̂n − ϑ)

L−→ N (0,Λ−1).

Consequently, we deduce from (B.3) and (B.4) together with the well-known delta
method that

√
n

(
θ̂n − θ
ρ̂n − ρ

)
L−→ N (0,Σ)

where Σ = ∇Λ−1∇t, which completes the proof of Corollary 4.1.

Appendix C

PROOFS OF THE DURBIN-WATSON STATISTIC RESULTS

Proof of Theorem 5.1. We are now in position to investigate the asymptotic
behavior of the Durbin-Watson statistic. First of all, we start with the proof of
Theorem 5.1. Recall from (2.1) together with (5.2) that the residuals are given, for
all 1 ≤ k ≤ n, by

(C.1) ε̂k = Xk − Uk−1 − θ̂ t
nϕk−1 = εk − θ̃ t

nϕk−1

where θ̃n = θ̂n − θ. For all n ≥ 1, denote

In =
n∑

k=1

ε̂kε̂k−1 and Jn =
n∑

k=0

ε̂ 2
k .
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It is not hard to see that

In = ε̂0ε̂1 + P I
n − θ̃ t

nQ
I
n + θ̃ t

nS
I
n−1θ̃n,(C.2)

Jn = ε̂ 2
0 + P J

n − 2θ̃ t
nQ

J
n + θ̃ t

nS
J
n−1θ̃n(C.3)

where

P I
n =

n∑

k=2

εkεk−1, QI
n =

n∑

k=2

(ϕk−2εk + ϕk−1εk−1), SI
n =

n∑

k=1

ϕkϕ
t
k−1,

and

P J
n =

n∑

k=1

ε2k, QJ
n =

n∑

k=1

ϕk−1εk, SJ
n =

n∑

k=0

ϕkϕ
t
k.

We deduce from (1.2) that

(C.4) (1− ρ2)P J
n = ρ2(ε20 − ε2n) + 2ρNn + Ln

where

Nn =
n∑

k=1

εk−1Vk and Ln =
n∑

k=1

V 2
k .

Moreover, we assume that (Vn) has a finite conditional moment of order a > 2.
Then, it follows from Proposition 1.3 23 page 25 of [4] that

(C.5) lim
n→∞

1

n

n∑

k=1

V 2
k = σ2 a.s.

In addition, we also have from Corollary 1.3 21 page 23 of [4] that for all 2 ≤ b < a,

(C.6)
n∑

k=1

|Vk|b = O(n) a.s.

and

(C.7) sup
1≤k≤n

|Vk| = o(n1/b) a.s.

However, we clearly obtain from (1.2) that

(C.8) sup
1≤k≤n

|εk| ≤
1

1− |ρ|
(
|ε0|+ sup

1≤k≤n
|Vk|
)

and

(C.9)
n∑

k=1

|εk|b ≤
(
1− |ρ|

)−b
(
|ε0|b +

n∑

k=1

|Vk|b
)

which of course implies that

(C.10) sup
1≤k≤n

|εk| = o(n1/b) a.s.
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and

(C.11)
n∑

k=1

|εk|b = O(n) a.s.

In the particular case b = 2, we find that

(C.12) sup
1≤k≤n

ε2k = o(n) and
n∑

k=1

ε2k = O(n) a.s.

Hereafter, (Nn) is a locally square-integrable real martingale with predictable qua-
dratic variation given, for all n ≥ 1, by

〈N〉n = σ2

n−1∑

k=0

ε2k.

Therefore, we deduce from (C.12) and the strong law of large numbers for martin-
gales given e.g. by Theorem 1.3.15 page 20 of [4] that

(C.13) lim
n→∞

Nn

n
= 0 a.s.

Hence, we obtain from (C.4) together with (C.5), (C.12) and (C.13) that

(C.14) lim
n→∞

P J
n

n
=

σ2

1− ρ2
a.s.

Furthermore, convergence (3.4) immediately implies that

(C.15) lim
n→∞

1

n
SJ
n = σ2Ip a.s.

We also obtain from the Cauchy-Schwarz inequality, (C.12) and (C.15), that

‖ QJ
n ‖= O(n) a.s.

Consequently, we find from the conjunction of (3.12), (C.3), (C.13) and (C.15) that

(C.16) lim
n→∞

Jn
n

=
σ2

1− ρ2
a.s.

By the same token, as

(C.17) P I
n = ρP J

n−1 +Nn + ρε20 − ε0ε1,

it follows from (C.13) and (C.14) that

(C.18) lim
n→∞

P I
n

n
=

σ2ρ

1− ρ2
a.s.

which leads via (C.2) to

(C.19) lim
n→∞

In
n

=
σ2ρ

1− ρ2
a.s.

Therefore, we obtain from definition (5.3) together with (C.16) and (C.19) that

(C.20) lim
n→∞

ρn = lim
n→∞

In
Jn−1

= ρ a.s.
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In order to establish the almost sure rate of convergence given by (5.5), it is necessary
to make some sharp calculations. We infer from (C.2), (C.3) and (C.17) that

(C.21) In − ρJn−1 = Nn −Qn +Rn

where Qn = (QI
n − 2ρQJ

n−1)
tθ̃n and

Rn = ε̂0ε̂1 − ε0ε1 + ρε20 − ρε̂ 2
0 + θ̃ t

n(S
I
n−1 − ρSJ

n−2)θ̃n.

On the one hand, it follows from convergence (3.4) together with (3.12) and the
Cauchy-Schwarz inequality, that

|Qn| = O(
√

n log n) and |Rn| = O(log n) a.s.

On the other hand, as 〈N〉n = O(n) a.s., we deduce from Theorem 1.3.24 page
26 of [4] related to the almost sure rate of convergence in the strong law of large
numbers for martingales that |Nn| = O(

√
n log n) a.s. Therefore, we can conclude

from (C.16) and (C.21) that

(C.22) (ρn − ρ)2 = O
(
log n

n

)
a.s.

The proof of the almost sure convergence of D̂n to D = 2(1−ρ) immediately follows
from (C.20). As a matter of fact, it follows from (5.1) that

(C.23) (Jn−1 + ε̂ 2
n )D̂n = 2

(
Jn−1 − In

)
+ ε̂ 2

n − ε̂ 2
0 .

Dividing both sides of (C.23) by Jn−1, we obtain that

(C.24) D̂n = 2(1− fn)
(
1− ρn

)
+ gn

where

fn =
ε̂ 2
n

Jn
and gn =

ε̂ 2
n − ε̂ 2

0

Jn
.

However, convergence (C.16) ensures that fn and gn both tend to zero a.s. Conse-
quently, (C.20) immediately implies that

(C.25) lim
n→∞

D̂n = 2(1− ρ) a.s.

The almost sure rate of convergence given by (5.6) requires some additional assump-
tion on (Vn). Hereafter, assume that the noise (Vn) has a finite conditional moment
of order > 4. We clearly obtain from (3.4), (3.12) together with (C.1) and (C.10)
with b = 4 that

(C.26) sup
1≤k≤n

ε̂ 2
k = o(

√
n) + o(log n) = o(

√
n) a.s.

which leads by (C.16) to

(C.27) fn = o

(
1√
n

)
and gn = o

(
1√
n

)
a.s.

In addition, it follows from (C.24) that

(C.28) D̂n −D = −2(1− fn)
(
ρn − ρ

)
+ 2(ρ− 1)fn + gn
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where D = 2(1− ρ). Consequently, we obtain by (C.22) and (C.27) that

(C.29)
(
D̂n −D

)2
= O

(
(ρn − ρ)2

)
+O

(
f 2
n

)
= O

(
log n

n

)
a.s.

which achieves the proof of Theorem 5.1.

Proof of Theorem 5.2. The proof of Theorem 5.2 is much more difficult to handle.
We already saw from (C.21) that

(C.30) Jn−1(ρn − ρ) = Nn −Qn +Rn

where the remainder Rn plays a negligible role. This is of course not the case for

Qn = (QI
n − 2ρQJ

n−1)
tθ̃n. We know from (3.8) and (3.10) that

(C.31)

(
θ̂n − θ
ρ̂n − ρ

)
= ∆̂nϑ̂n −∆ϑ = ∆̂n

(
ϑ̂n − ϑ

)
+
(
∆̂n −∆

)
ϑ.

One can observe that in the particular case p = 1, the right-hand side of (C.31)reduces
to the vector

∆
(
ϑ̂n − ϑ

)

since

∆̂n = ∆ =

(
1 0 1
0 0 −1

)
.

For all 1 ≤ k ≤ p− 1, denote

sn(k) =
k∑

i=0

ρ̂ i
nρ

k−i.

It is easily check that ∆̂n −∆ can be rewritten as ∆̂n −∆ = (ρ̂n − ρ)An where An

is the rectangular matrix of size (p+ 1)×(p+ 2) given by

An =




0 0 · · · · · · · · · 0 0 0
1 0 0 · · · · · · 0 0 1

sn(1) 1 0 0 · · · 0 0 sn(1)
· · · · · · · · · · · · · · · · · · · · · · · ·

sn(p− 2) sn(p− 3) · · · sn(1) 1 0 0 sn(p− 2)
0 0 · · · · · · · · · 0 0 0




.

It was already proven that ρ̂n converges almost surely to ρ which implies that for
all 1 ≤ k ≤ p− 1,

lim
n→∞

sn(k) = (k + 1)ρk a.s.

It immediately leads to the almost sure convergence of An to the matrix A given by

(C.32) A =




0 0 · · · · · · · · · 0 0 0
1 0 0 · · · · · · 0 0 1
2ρ 1 0 0 · · · 0 0 2ρ
· · · · · · · · · · · · · · · · · · · · · · · ·

(p− 1)ρp−2 (p− 2)ρp−3 · · · 2ρ 1 0 0 (p− 1)ρp−2

0 0 · · · · · · · · · 0 0 0




.
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Denote by ep+2 the last vector of the canonical basis of Rp+2. We clearly have from
(C.31) that

ρ̂n − ρ = −etp+2

(
ϑ̂n − ϑ

)

which implies that

(C.33) ∆̂nϑ̂n −∆ϑ = Bn

(
ϑ̂n − ϑ

)

where Bn = ∆̂n − Anϑe
t
p+2. By the same token, let 0p be the null vector of Rp and

denote by Jp the rectangular matrix of size p×(p+ 1) given by

Jp =
(
Ip 0p

)
.

We deduce from (C.31) and (C.33) that

(C.34) θ̃n = θ̂n − θ = Jp

(
θ̂n − θ
ρ̂n − ρ

)
= Jp

(
∆̂nϑ̂n −∆ϑ

)
= JpBn

(
ϑ̂n − ϑ

)
.

We also have from (2.5) that

(C.35) ϑ̂n − ϑ = S−1
n−1Mn

where

Mn =
n∑

k=1

Φk−1Vk.

Consequently, it follows from (C.30), (C.34) and (C.35) that

Jn−1(ρn − ρ) = Nn − Ct
nMn +Rn

where Cn = S−1
n−1B

t
nJ

t
pTn with Tn = QI

n − 2ρQJ
n−1, which leads to the main decom-

position

(C.36)
√
n

(
ϑ̂n − ϑ
ρn − ρ

)
=

1√
n
AnZn + Bn

where

Zn =

(
Mn

Nn

)
,

An = n

(
S−1
n−1 0p+2

J−1
n−1C

t
n J−1

n−1

)
and Bn =

√
n

(
0p+2

J−1
n−1Rn

)

where 0p+2 stands for the null vector of R
p+2. The random sequence (Zn) is a

locally square-integrable (p+ 3)-dimensional martingale with predictable quadratic
variation given, for all n ≥ 1, by

〈Z〉n = σ2

n−1∑

k=0

(
ΦkΦ

t
k Φkεk

Φt
kεk ε2k

)
.
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We already saw from (3.4) that

(C.37) lim
n→∞

1

n

n∑

k=0

ΦkΦ
t
k = σ2Λ a.s.

In addition, it follows from (C.14) that

(C.38) lim
n→∞

1

n

n∑

k=0

ε2k =
σ2

1− ρ2
a.s.

Furthermore, it is not hard to see that

lim
n→∞

1

n

n∑

k=1

XkVk = lim
n→∞

1

n

n∑

k=1

Xkεk = σ2 a.s.

Moreover, we obtain from (1.2) that for all n ≥ p and for all 1 ≤ ℓ ≤ p,

εn = ρℓεn−ℓ +
ℓ−1∑

i=0

ρiVn−i.

Consequently,

n∑

k=1

Xk−ℓεk =
n∑

k=1

Xk−ℓ

(
ρℓεk−ℓ +

ℓ−1∑

i=0

ρiVk−i

)
,

= ρℓ
n∑

k=1

Xk−ℓεk−ℓ +
ℓ−1∑

i=0

ρi
n∑

k=1

Xk−ℓVk−i,

which implies that for all 1 ≤ ℓ ≤ p,

lim
n→∞

1

n

n∑

k=1

Xk−ℓεk = σ2ρℓ a.s.

On the other hand, we infer from (1.1) that
n∑

k=1

Uk−1εk =
n∑

k=1

Xkεk −
n∑

k=1

ε2k −
p∑

i=1

θi

n∑

k=1

Xk−iεk.

Hence, we find that

lim
n→∞

1

n

n∑

k=1

Uk−1εk = −σ2

(
ρ2

1− ρ2
+

p∑

i=1

θiρ
i

)
a.s.

Consequently, we obtain that

(C.39) lim
n→∞

1

n

n∑

k=1

Φkεk = σ2ζ a.s.

where ζ is the vector of Rp+2 such that ζt = (1, ρ, . . . , ρp, ̺p) with

̺p = −ηρ2 −
p∑

i=1

θiρ
i and η =

1

1− ρ2
.
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We deduce from (C.37), (C.38) and (C.39) that

(C.40) lim
n→∞

1

n
〈Z〉n = Z a.s.

where Z is the positive-semidefinite symmetric matrix given by

(C.41) Z = σ4

(
Λ ζ

ζt η

)
.

One can observe that Z is not positive-definite as det(Z) = 0. Nevertheless, it
is not hard to see that (Zn) satisfies the Lindeberg condition. Therefore, we can
conclude from the central limit theorem for multidimensional martingales given e.g.
by Corollary 2.1.10 of [4] that

(C.42)
1√
n
Zn

L−→ N
(
0,Z

)
.

Furthermore, we already saw from (C.32) that

lim
n→∞

An = A a.s.

which implies that

lim
n→∞

Bn = ∆− Aϑetp+2 a.s.

One can easily check from (3.9) and (C.32) that

∆− Aϑetp+2 = ∇
where the matrix ∇ is given by (4.2). Moreover, it follows from the previous calcu-
lation that

lim
n→∞

1

n
Tn = σ2(1− ρ2)T a.s.

where T is the vector of Rp given by T t = (1, ρ, . . . , ρp−1). Consequently, as the
vector Cn = S−1

n−1B
t
nJ

t
pTn, we obtain from (3.4) that

lim
n→∞

Cn = C a.s.

where

C = (1− ρ2)Λ−1∇tJtpT.

Hence, we obtain from (3.4) and (C.16) that

(C.43) lim
n→∞

An = A a.s.

where

A = σ−2

(
Λ−1 0p+2

(1− ρ2)Ct (1− ρ2)

)
.

In addition, we clearly have from (C.16) that

(C.44) lim
n→∞

Bn =

(
0p+2

0

)
a.s.
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Finally, we deduce from the conjunction of (C.36), (C.42), (C.43), (C.44), together
with Slutsky’s lemma that

√
n

(
ϑ̂n − ϑ
ρn − ρ

)
L−→ N

(
0,AZA′

)

which leads to √
n(ρn − ρ)

L−→ N
(
0, τ 2

)

where the asymptotic variance τ 2 is given by

τ 2 = (1− ρ2)2
(
CtΛC + 2Ctζ + η

)
.

However, one can easily see from (5.7) and (5.8) that

τ 2 = (1− ρ2)2 ‖ Λ1/2α + (1− ρ2)Λ−1/2∇tβ ‖2,
= (1− ρ2)2 ‖ Λ−1/2(Λα + (1− ρ2)∇tβ) ‖2,
= (1− ρ2)2 ‖ Λ−1/2γ ‖2,
= (1− ρ2)2γtΛ−1γ,

which completes the proof of (5.9). Finally, (5.10) immediately follows from (5.9)
together with (C.27) and (C.28), which achieves the proof of Theorem 5.2.

Proof of Theorem 5.3. The proof of Theorem 5.3 is straightforward. As a matter
of fact, we already know from (5.10) that under the null hypothesis H0,

(C.45)
√
n(D̂n −D0)

L−→ N
(
0, 4τ 2

)

where the asymptotic variance τ 2 is given by (5.11). In addition, it follows from
(5.14) that

(C.46) lim
n→∞

τ̂ 2
n = τ 2 a.s.

Hence, we deduce from (C.45), (C.46) and Slutsky’s lemma that under the null
hypothesis H0, √

n

2τ̂n

(
D̂n −D0

) L−→ N (0, 1)

which obviously implies (5.15). It remains to show that under the alternative hy-
pothesis H1, our test statistic goes almost surely to infinity. Under H1, we already
saw from Theorem 5.1 that

lim
n→∞

ρn − ρ0 = ρ− ρ0 a.s.

and this limit is different from zero. Consequently,

(C.47) lim
n→∞

n
(
ρn − ρ0

)2
= +∞ a.s.

However, we clearly find from (C.28) that

(C.48) D̂n −D0 = −2
(
ρn − ρ0

)
+ en
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where en = −2fn(1 − ρn) + gn. Finally, (C.47) and (C.48) clearly lead to (5.16),
completing the proof of Theorem 5.3.
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