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A wide literature is available on the asymptotic behavior of the Durbin-Watson statistic for autoregressive models. However, it is impossible to find results on the Durbin-Watson statistic for autoregressive models with adaptive control. Our purpose is to fill the gap by establishing the asymptotic behavior of the Durbin Watson statistic for ARX models in adaptive tracking. On the one hand, we show the almost sure convergence as well as the asymptotic normality of the least squares estimators of the unknown parameters of the ARX models. On the other hand, we establish the almost sure convergence of the Durbin-Watson statistic and its asymptotic normality. Finally, we propose a bilateral statistical test for residual autocorrelation in adaptive tracking.

Introduction and Motivation

The Durbin-Watson statistic was introduced in the pioneer works of Durbin and Watson [START_REF] Durbin | Testing for serial correlation in Least Squares regression I[END_REF], [START_REF] Durbin | Testing for serial correlation in Least Squares regression II[END_REF], [START_REF] Durbin | Testing for serial correlation in Least Squares regression III[END_REF], in order to detect the presence of a first-order autocorrelated driven noise in linear regression models. A wide literature is available on the asymptotic behavior of the Durbin-Watson statistic for linear regression models and it is well-known that the statistical test based on the Durbin-Watson statistic performs pretty well when the regressors are independent random variables. However, as soon as the regressors are lagged dependent variables, which is of course the most attractive case, its widespread use in inappropriate situations may lead to bad conclusions. More precisely, it was observed by Malinvaud [START_REF] Malinvaud | Estimation et prévision dans les modéles économiques autorégressifs[END_REF] and Nerlove and Wallis [START_REF] Nerlove | Use of the Durbin Watson statistic in inappropriate situations[END_REF] that the Durbin-Watson statistic may be asymptotically biased if the model itself and the driven noise are governed by first-order autoregressive processes. In order to prevent this misuse, Durbin [START_REF] Durbin | Testing for Serial Correlation in Least-Squares Regression When Some of the Regressors are Lagged Dependent Variables[END_REF] proposed a redesigned alternative test in the particular case of the first-order autoregressive process previously investigated in [START_REF] Malinvaud | Estimation et prévision dans les modéles économiques autorégressifs[END_REF], [START_REF] Nerlove | Use of the Durbin Watson statistic in inappropriate situations[END_REF]. More recently, Stocker [START_REF] Stocker | On the asymptotic bias of OLS in dynamic regression models with autocorrelated errors[END_REF] provided substantial improvements in the study of the asymptotic behavior of the Durbin-Watson statistic resulting from the presence of a first-order autocorrelated noise. We also refer the reader to Bercu and Proïa [START_REF] Bercu | A sharp analysis on the asymptotic behavior of the Durbin-Watson for the first-order autoregressive process[END_REF] for a recent sharp analysis on the asymptotic behavior of the Durbin-Watson statistic via a martingale approach, see also Proïa [START_REF] Proïa | Further results on the h-test of Durbin for stable autoregressive processes[END_REF] for an extension to the multivariate case.

As far as the authors know, there are no results available on the Durbin-Watson statistic for autoregressive models with exogenous control such as ARX(p, q) processes. One can observe that these models are widely used in many areas related to applied mathematics such as financial mathematics [START_REF] Huang | A hybrid model for stock market forecasting and portfolio selection based on ARX, grey system and RS theories[END_REF], robotics [START_REF] Kamaldar | Robust speed control of a spherical robot using ARX uncertain modeling[END_REF], engineering [START_REF] Kon | Practical application of model identification based on ARX models with transfer functions[END_REF], medical physics [START_REF] Jeon | Estimation of an Aortic Pressure Waveform from Radial Pulse using ARX Model[END_REF], neuroscience [START_REF] Liu | Dynamic cerebral auto regulation assessment using an ARX model: comparative study using step response and phase shift analysis[END_REF], etc. However, for these models, we do not yet have a tool for analyzing the non-correlation of the residuals which is a crucial step in model validation. This is the reason why we have chosen to investigate the asymptotic behavior of the Durbin-Watson statistic for ARX processes in order to decide whether or not the residuals are autocorrelated. We shall focus our attention on the ARX(p, 1) process, given for all n ≥ 0, by (1.1)

X n+1 = p k=1 θ k X n-k+1 + U n + ε n+1
where the driven noise (ε n ) is given by the first-order autoregressive process (1.2)

ε n+1 = ρε n + V n+1 .
We assume that the serial autocorrelation parameter satisfies |ρ| < 1 and the initial values X 0 , ε 0 and U 0 may be arbitrarily chosen. In all the sequel, we also assume that (V n ) is a martingale difference sequence adapted to the filtration F = (F n ) where F n stands for the σ-algebra of the events occurring up to time n. Moreover, we suppose that, for all n ≥ 0, E V 2 n+1 |F n = σ 2 a.s. with σ 2 > 0. Denote by θ the unknown parameter of equation (1.1)

θ t = (θ 1 , θ 2 , . . . , θ p ).
Our goal is to deal simultaneously with three objectives. The first one is to propose an efficient procedure in order to estimate the unknown parameters θ and ρ of the ARX(p, 1) process given by (1.1) and (1.2). The second one is to regulate the dynamic of the process (X n ) by forcing X n to track step by step a predictable reference trajectory (x n ). This second objective can be achieved by use of an appropriate version of the adaptive tracking control proposed by Aström and Wittenmark [START_REF] Aström | Adaptive Control[END_REF]. Finally, our last objective is to establish the aymptotic properties of the Durbin-Watson statistic in order to propose a bilateral test on the serial parameter ρ.

The paper is organized as follows. Section 2 is devoted to the parameter estimation procedure and the suitable choice of stochastic adaptive control. In Section 3, we establish the almost sure convergence of the least squares estimators of θ and ρ. The asymptotic normality of our estimates are given in Section 4. We shall be able in Section 5 to prove the almost sure convergence of the Durbin-Watson statistic as well as its asymptotic normality, which will lead us to propose a bilateral statistical test for residual autocorrelation. Some numerical simulations are provided in Section 6. Finally, all technical proofs are postponed in the Appendices.

Estimation and Adative Control

Relation (1.1) can be rewritten as (2.1)

X n+1 = θ t ϕ n + U n + ε n+1
where the regression vector ϕ t n = (X n , . . . , X n-p+1 ). A naive strategy to regulate the dynamic of the process (X n ) is to make use of the Aström-Wittenmark [START_REF] Aström | Adaptive Control[END_REF] adaptive tracking control

U n = x n+1 -θ t
n ϕ n where θ n stands for the least squares estimator of θ. However, it is known that this strategy leads to biased estimation of θ and ρ. This is due to the fact that (ε n ) is not a white noise but the first-order autoregressive process given by (1.2). Consequently, it is necessary to adopt a more appropriate strategy which means a more suitable choice for the adaptive control U n in (2.1).

The construction of our control law is as follows. Starting from (1.1) together with (1.2), we can remark that the process (X n ) satisfies the ARX(p + 1, 2) equation given, for all n ≥ 1, by

X n+1 = (θ 1 + ρ)X n + (θ 2 -ρθ 1 )X n-1 + • • • + (θ p -ρθ p-1 )X n-p+1 -ρθ p X n-p + U n -ρU n-1 + V n+1 (2.2)
which can be rewritten as

(2.3) X n+1 = ϑ t Φ n + U n + V n+1
where the new parameter ϑ ∈ R p+2 is defined as

(2.4) ϑ =   θ 0 0   -ρ   -1 θ 1  
and the new regression vector Φ t n = (X n , . . . , X n-p , U n-1 ). The original idea of this paper is to control the model (1.1) using the adaptive control associated with the model (2.3) in order to a posteriori estimate the parameters θ ρ via the estimator of the parameter ϑ. We shall now focus our attention on the estimation of the unknown parameter ϑ. We propose to make use of the least squares estimator which satisfies, for all n ≥ 0, (2.5)

ϑ n+1 = ϑ n + S -1 n Φ n X n+1 -U n -ϑ t n Φ n
where the initial value ϑ 0 may be arbitrarily chosen and

S n = n k=0 Φ k Φ t k + I p+2
where the identity matrix I p+2 is added in order to avoid useless invertibility assumption. On the other hand, we are concern with the crucial choice of the adaptive control U n . The role played by U n is to regulate the dynamic of the process (X n ) by forcing X n to track step by step a bounded reference trajectory (x n ). We assume that (x n ) is predictable which means that for all n ≥ 1, x n is F n-1 -measurable. In order to control the dynamic of (X n ) given by (1.1), we propose to make use of the Aström-Wittenmark adaptive tracking control associated with (2.3) and given, for all n ≥ 0, by (2.6)

U n = x n+1 -ϑ t n Φ n .
This suitable choice of U n will allow us to control the dynamic of the process (1.1) while maintaining the optimality of the tracking and then estimate without bias the parameters θ and ρ. In all the sequel, we assume that the reference trajectory (x n ) satisfies

(2.7) n k=1 x 2 k = o(n) a.s.

Almost sure convergence

All our asymptotic analysis relies on the following keystone lemma. First of all, let L be the identity matrix of order p + 1 and denote by H the positive real number

(3.1) H = p k=1 (θ k + ρ k ) 2 + ρ 2(p+1) 1 -ρ 2 .
In addition, for 1

≤ k ≤ p, let K k = -(θ k + ρ k
) and denote by K the line vector

(3.2) K = 0, K 1 , K 2 , . . . , K p .
Moreover, let Λ be the symmetric square matrix of order p + 2,

(3.3) Λ = L K t K H .
Lemma 3.1. Assume that (V n ) has a finite conditional moment of order > 2. Then, we have

(3.4) lim n→∞ 1 n S n = σ 2 Λ a.s.
where the limiting matrix Λ is given by (3.3). In addition, as soon as the correlation parameter ρ = 0, the matrix Λ is invertible and

(3.5) Λ -1 = 1 -ρ 2 ρ 2(p+1) SL + K t K -K t -K 1 where S = H -||K|| 2 is the Schur complement of L in Λ, (3.6) S = ρ 2(p+1) 1 -ρ 2 .
Proof. The proof is given in Appendix A.

Remark 3.1. As L is the identity matrix of order p + 1, we clearly have

det(Λ) = ρ 2(p+1) 1 -ρ 2 .
Consequently, as long as ρ = 0, det(Λ) = 0 which of course implies that the matrix Λ is invertible. The identity (3.5) comes from the block matrix inversion formula given e.g. by Horn and Johnson [START_REF] Horn | Matrix Analysis[END_REF], page 18.

We start with the almost sure properties of the least squares estimator ϑ n of ϑ which are well-known as the process (X n ) is controllable. Theorem 3.1. Assume that the serial correlation parameter ρ = 0 and that (V n ) has a finite conditional moment of order > 2. Then, ϑ n converges almost surely to ϑ,

(3.7) ϑ n -ϑ 2 = O log n n a.s.
Proof. The proof is given in Appendix A.

We shall now explicit the estimators of θ and ρ and their convergence results. It follows from (2.4) that

(3.8) θ ρ = ∆ϑ
where ∆ is the rectangular matrix of size (p + 1)×(p + 2) given by

(3.9) ∆ =        1 0 • • • • • • • • • 0 1 ρ 1 0 • • • • • • 0 ρ ρ 2 ρ 1 0 • • • 0 ρ 2 • • • • • • • • • • • • • • • • • • • • • ρ p-1 ρ p-2 • • • ρ 1 0 ρ p-1 0 0 • • • • • • • • • 0 -1        .
Consequently, a natural choice to estimate the initial parameters θ and ρ is to make use of (3.10)

θ n ρ n = ∆ n ϑ n
where ρ n is simply the opposite of the last coordinate of ϑ n and

(3.11) ∆ n =        1 0 • • • • • • • • • 0 1 ρ n 1 0 • • • • • • 0 ρ n ρ 2 n ρ n 1 0 • • • 0 ρ 2 n • • • • • • • • • • • • • • • • • • • • • ρ p-1 n ρ p-2 n • • • ρ n 1 0 ρ p-1 n 0 0 • • • • • • • • • 0 -1        . Corollary 3.1.
Assume that the serial correlation parameter ρ = 0 and that (V n ) has a finite conditional moment of order > 2. Then, θ n and ρ n both converge almost surely to θ and ρ,

(3.12) θ n -θ 2 = O log n n a.s. (3.13) ( ρ n -ρ) 2 = O log n n a.s.
Proof. One can immediately see from (3.8) that the last component of the vector ϑ is -ρ. The same is true for the estimator ρ n of ρ. Consequently, we deduce from (3.7) that ρ n converges a.s. to ρ with the almost sure rate of convergence given by (3.13). Therefore, we obtain from (3.9) and (3.11) that

∆ n -∆ 2 = O log n n a.s.
which ensures via (3.7) and (3.10) that θ n converges a.s. to θ with the almost sure rate of convergence given by (3.12).

Asymptotic Normality

This Section is devoted to the asymptotic normality of the couple ( θ n , ρ n ) which is obtained from the one of the estimator ϑ n of ϑ.

Theorem 4.1. Assume that the serial correlation parameter ρ = 0 and that (V n ) has a finite conditional moment of order > 2. Then, we have

(4.1) √ n( ϑ n -ϑ) L -→ N (0, Λ -1 )
where the matrix Λ -1 is given by (3.5).

In order to provide the joint asymptotic normality of the estimators of θ and ρ, denote, for all 1 ≤ k ≤ p -1,

ξ k = k i=1 ρ k-i θ i
and let ∇ be the rectangular matrix of size (p + 1)×(p + 2) given by

(4.2) ∇ =        1 0 • • • • • • • • • 0 1 ρ 1 0 • • • • • • 0 ρ -ξ 1 ρ 2 ρ 1 0 • • • 0 ρ 2 -ξ 2 • • • • • • • • • • • • • • • • • • • • • ρ p-1 ρ p-2 • • • ρ 1 0 ρ p-1 -ξ p-1 0 0 • • • • • • • • • 0 -1        . Corollary 4.1.
Assume that the serial correlation parameter ρ = 0 and that (V n ) has a finite conditional moment of order > 2. Then, we have

(4.3) √ n θ n -θ ρ n -ρ L -→ N (0, Σ)
where Σ = ∇Λ -1 ∇ t . In particular,

(4.4) √ n( ρ n -ρ) L -→ N 0, 1 -ρ 2 ρ 2(p+1) .
Proof. The proof is given in Appendix B.

On the Durbin Watson statistic

We now investigate the asymptotic behavior of the Durbin-Watson statistic [START_REF] Durbin | Testing for serial correlation in Least Squares regression I[END_REF], [START_REF] Durbin | Testing for serial correlation in Least Squares regression II[END_REF], [START_REF] Durbin | Testing for serial correlation in Least Squares regression III[END_REF] given, for all n ≥ 1, by (5.1)

D n = n k=1 ( ε k -ε k-1 ) 2 n k=0 ε 2 k
where the residuals ε k are defined, for all 1 ≤ k ≤ n, by (5.2) (3.10). The initial value ε 0 may be arbitrarily chosen and we take ε 0 = X 0 . One can observe that it is also possible to estimate the serial correlation parameter ρ by the least squares estimator (5.3)

ε k = X k -U k-1 -θ t n ϕ k-1 with θ n given by
ρ n = n k=1 ε k ε k-1 n k=1 ε 2 k-1
which is the natural estimator of ρ in the autoregressive framework without control. The Durbin-Watson statistic D n is related to ρ n by the linear relation

(5.4) D n = 2(1 -ρ n ) + ζ n
where the remainder term ζ n plays a negligeable role. The almost sure properties of D n and ρ n are as follows.

Theorem 5.1. Assume that the serial correlation parameter ρ = 0 and that (V n ) has a finite conditional moment of order > 2. Then, ρ n converges almost surely to ρ,

(5.5) (ρ n -ρ) 2 = O log n n a.s.
In addition, D n converges almost surely to D = 2(1ρ). Moreover, if (V n ) has a finite conditional moment of order > 4, we also have

(5.6) D n -D 2 = O log n n a.s.
Our next result deals with the asymptotic normality of the Durbin-Watson statistic. For that purpose, it is necessary to introduce some notations. Denote

(5.7) α =        1 -θ 1 . . . -θ p -1        and β =        1 ρ . . . ρ p-1 0        .
In addition, let

(5.8) γ = Λα + (1 -ρ 2 )∇ t β.
Theorem 5.2. Assume that the serial correlation parameter ρ = 0 and that (V n ) has a finite conditional moment of order > 2. Then, we have

(5.9) √ n(ρ n -ρ) L -→ N 0, τ 2
where the asymptotic variance

τ 2 = (1 -ρ 2 ) 2 γ t Λ -1 γ. Moreover, if (V n
) has a finite conditional moment of order > 4, we also have

(5.10) √ n( D n -D) L -→ N 0, 4τ 2 
Proof. The proofs are given in Appendix C.

Remark 5.1. It follows from (3.5) together with tedious but straighforward calculations that for all p ≥ 1,

τ 2 = (1 -ρ 2 ) ρ 2(p+1) ρ 2(p+1) 4 -(4p + 3)ρ 2p + 4pρ 2(p+1) -ρ 2(2p+1) + 1 -(p + 1)ρ 2p + (p -1)ρ 2(p+1) 2 . (5.11)
For example, in the particular case p = 1, we obtain that (5.12)

τ 2 = (1 -ρ 2 ) ρ 4 1 -4ρ 2 + 8ρ 4 -7ρ 6 + 4ρ 8 -ρ 10 .
Moreover, it is not hard to see by a convexity argument that we always have for all p ≥ 1, p+1) . In other words, the least squares estimator ρ n performs better than ρ n for the estimation of ρ. It means that a statistical test procedure built on the Durbin-Watson statistic should be really powerful.

τ 2 ≤ 1 -ρ 2 ρ 2(
We are now in the position to propose our new bilateral statistical test built on the Durbin-Watson statistic D n . First of all, we shall not investigate the case ρ = 0 since our approach is only of interest for ARX processes where the driven noise is given by a first-order autoregressive process. For a given value ρ 0 such that |ρ 0 | < 1 and ρ 0 = 0, we wish to test whether or not the serial correlation parameter is equal to ρ 0 . It means that we wish to test

H 0 : "ρ = ρ 0 " against H 1 : "ρ = ρ 0 ".
According to Theorem 5.1, we have under the null hypothesis H 0

lim n→∞ D n = D 0 a.s.
where D 0 = 2(1ρ 0 ). In addition, we clearly have from (5.10) that under H 0

(5.13) n 4τ 2 D n -D 0 2 L -→ χ 2
where χ 2 stands for a Chi-square distribution with one degree of freedom. Via (5.11), an efficient strategy to estimate the asymptotic variance τ 2 is to make use of

τ 2 n = (1 -ρ 2 n ) ρ 2(p+1) n ρ 2(p+1) n 4 -(4p + 3)ρ 2p n + 4pρ 2(p+1) n -ρ 2(2p+1) n + 1 -(p + 1)ρ 2p n + (p -1)ρ 2(p+1) n 2 . (5.14)
Therefore, our new bilateral statistical test relies on the following result.

Theorem 5.3. Assume that the serial correlation parameter ρ = 0 and that (V n ) has a finite conditional moment of order > 4. Then, under the null hypothesis

H 0 : "ρ = ρ 0 ", (5.15) n 4 τ 2 n D n -D 0 2 L -→ χ 2
where χ 2 stands for a Chi-square distribution with one degree of freedom. In addition, under the alternative hypothesis H 1 : "ρ = ρ 0 ", (5.16) lim

n→∞ n 4 τ 2 n D n -D 0 2 = +∞ a.s.
Proof. The proof is given in Appendix C.

From a practical point of view, for a significance level α where 0 < α < 1, the acceptance and rejection regions are given by A = [0, a α ] and R =]a α , +∞[ where a α stands for the (1α)-quantile of the Chi-square distribution with one degree of freedom. The null hypothesis H 0 will be accepted if

n 4 τ 2 n D n -D 0 2 ≤ a α ,
and will be rejected otherwise.

Numerical Experiments

The purpose of this section is to provide some numerical experiments in order to illustrate our main theoretical results. In order to keep this section brief, we shall only consider the ARX(p, 1) process (X n ) given by (1.1) in the particular cases p = 1 and p = 2, where the driven noise (ε n ) satisfies (1.2). Moreover, for the sake of simplicity, the reference trajectory (x n ) is chosen to be identically zero and (V n ) is a Gaussian white noise with N (0, 1) distribution. Finally our numerical simulations are based on 500 realizations of sample size N = 1000. First of all, consider the ARX(1, 1) process given, for all n ≥ 1, by (6.1)

X n+1 = θX n + U n + ε n+1 and ε n+1 = ρε n + V n+1
where we have chosen θ = 8/5 and ρ = -4/5 which implies that D = 18/5 and the Schur complement S = 16 2 /15 2 . This choice has been made in order to obtain simple expressions for the matrices Λ and Σ. One can easily see from ( We shall now focus our attention to the asymptotic normality. We compare the empirical distributions of the LS estimates

√ nS √ 1 + S θ n -θ and √ nS ρ n -ρ
with the standard N (0, 1) distribution. We proceed in the same way for the Durbin-Watson statistics

√ n τ ρ n -ρ and √ n 2τ D n -D
where τ 2 is given by (5.12). We use the natural estimates of S and τ 2 by replacing ρ by ρ n and ρ n , respectively. One can see in Figure 2 that the approximation by a standard N (0, 1) distribution performs pretty well. These results are very promising in order to built a statistical test based on these statistics. Next, we are interested in the ARX(2, 1) process given, for all n ≥ 1, by (6.2)

X n+1 = θ 1 X n + θ 2 X n-1 + U n + ε n+1 and ε n+1 = ρε n + V n+1
where we have chosen θ In addition, the diagonal entries of the covariance matrix Σ = ∇Λ -1 ∇ t are respectively given by

1 + 1 S = 721441 531441 , 1 + ρ 2 + 4ρ 2 S = 1947541 656100 , 1 S = 190000 531441 .
Figure 3 shows the almost sure convergence of θ n,1 , θ n,2 , ρ n , ρ n and D n while Figure 4 illustrates their asymptotic normality. As in the case p = 1, one can observe that the approximation by a standard N (0, 1) distribution works pretty well. We shall achieve this section by illustrating the behavior of the Durbin-Watson statistical test. We wish to test H 0 : "ρ = ρ 0 " against H 1 : "ρ = ρ 0 " at 5% level of significance for the ARX processes given by (6.1) and (6.2). More precisely, we compute the frequency for which H 0 is rejected for different values of ρ 0 , P rejecting H 0 | H 1 is true via 500 realizations of different sample sizes N = 50, 100 and 1000. In Tables 1 and2, one can appreciate the empirical power of the statistical test which means that the Durbin-Watson statistic performs very well.

DW

Values of ρ 0 -0.9 -0. 1.00 (0.49) (0.97) (0.75) (0.34) (0.03) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) N=1000

1.00 0.05 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 (0.00) (0.95) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) Table 1. Durbin-Watson test in the particular case p = 1 and ρ = -0.8.

DW

Values of ρ 0 -0.9 -0. 1.00 (0.95) (0.62) (0.18) (0.05) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) N=1000 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 (0.95) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) Table 2. Durbin-Watson test in the particular case p = 2 and ρ = -0.9.

where ρ = -ϑ p+2 and s p (ϑ) = ρ. In addition, let

(B.1) g(ϑ) = ∆ϑ =     s 0 (ϑ) s 1 (ϑ) . . . s p (ϑ)     .
One can easily check that the gradient of the function g is given by

(B.2) ∇g(ϑ) =        1 0 • • • • • • • • • 0 ξ 0 (θ) ρ 1 0 • • • • • • 0 ρ -ξ 1 (θ) ρ 2 ρ 1 0 • • • 0 ρ 2 -ξ 2 (θ) • • • • • • • • • • • • • • • • • • • • • ρ p-1 ρ p-2 • • • ρ 1 0 ρ p-1 -ξ p-1 (θ) 0 0 • • • • • • • • • 0 ξ p (θ)        where ξ 0 (θ) = 1, ξ p (θ) = -1 and, for all 1 ≤ k ≤ p -1, ξ k (θ) = k i=1 ρ k-i θ i .
The gradient of g coincides with the matrix ∇ given by (4.2). On the one hand, it follows from (3.8) and (B.1) that

(B.3) g(ϑ) = θ ρ .
On the other hand, we already saw from (

√ n( ϑ n -ϑ) L -→ N (0, Λ 4.1) that (B.4) 
Consequently, we deduce from (B.3) and (B.4) together with the well-known delta method that

√ n θ n -θ ρ n -ρ L -→ N (0, Σ)
where Σ = ∇Λ -1 ∇ t , which completes the proof of Corollary 4.1.

Appendix C

PROOFS OF THE DURBIN-WATSON STATISTIC RESULTS

Proof of Theorem 5.1. We are now in position to investigate the asymptotic behavior of the Durbin-Watson statistic. First of all, we start with the proof of Theorem 5.1. Recall from (2.1) together with (5.2) that the residuals are given, for all 1 ≤ k ≤ n, by

(C.1) ε k = X k -U k-1 -θ t n ϕ k-1 = ε k -θ t n ϕ k-1 where θ n = θ n -θ. For all n ≥ 1, denote I n = n k=1 ε k ε k-1 and J n = n k=0 ε 2 k .
It is not hard to see that

I n = ε 0 ε 1 + P I n -θ t n Q I n + θ t n S I n-1 θ n , (C.2) J n = ε 2 0 + P J n -2 θ t n Q J n + θ t n S J n-1 θ n (C.3)
where

P I n = n k=2 ε k ε k-1 , Q I n = n k=2 (ϕ k-2 ε k + ϕ k-1 ε k-1 ), S I n = n k=1 ϕ k ϕ t k-1 ,
and

P J n = n k=1 ε 2 k , Q J n = n k=1 ϕ k-1 ε k , S J n = n k=0 ϕ k ϕ t k .
We deduce from (1.2) that

(C.4) (1 -ρ 2 )P J n = ρ 2 (ε 2 0 -ε 2 n ) + 2ρN n + L n where N n = n k=1 ε k-1 V k and L n = n k=1 V 2 k .
Moreover, we assume that (V n ) has a finite conditional moment of order a > 2.

Then, it follows from Proposition 1.3 23 page 25 of [START_REF] Duflo | Random Iterative Models[END_REF] that

(C.5) lim n→∞ 1 n n k=1 V 2 k = σ 2 a.s.
In addition, we also have from Corollary 1.3 21 page 23 of [START_REF] Duflo | Random Iterative Models[END_REF] that for all 2 ≤ b < a,

(C.6) n k=1 |V k | b = O(n) a.s. and (C.7) sup 1≤k≤n |V k | = o(n 1/b ) a.s.
However, we clearly obtain from (1.2) that

(C.8) sup 1≤k≤n |ε k | ≤ 1 1 -|ρ| |ε 0 | + sup 1≤k≤n |V k | and (C.9) n k=1 |ε k | b ≤ 1 -|ρ| -b |ε 0 | b + n k=1 |V k | b which of course implies that (C.10) sup 1≤k≤n |ε k | = o(n 1/b ) a.s. and (C.11) n k=1 |ε k | b = O(n) a.s.
In the particular case b = 2, we find that (C.12) sup

1≤k≤n ε 2 k = o(n) and n k=1 ε 2 k = O(n) a.s.
Hereafter, (N n ) is a locally square-integrable real martingale with predictable quadratic variation given, for all n ≥ 1, by

N n = σ 2 n-1 k=0 ε 2 k .
Therefore, we deduce from (C.12) and the strong law of large numbers for martingales given e.g. by Theorem We also obtain from the Cauchy-Schwarz inequality, (C.12) and (C.15), that

Q J n = O(n) a.s.
Consequently, we find from the conjunction of (3.12), (C. 

I n J n-1 = ρ a.s.
In order to establish the almost sure rate of convergence given by (5.5), it is necessary to make some sharp calculations. We infer from (C.2), (C.3) and (C.17) that (C.21)

I n -ρJ n-1 = N n -Q n + R n where Q n = (Q I n -2ρQ J n-1 ) t θ n and R n = ε 0 ε 1 -ε 0 ε 1 + ρε 2 0 -ρ ε 2 0 + θ t n (S I n-1 -ρS J n-2 ) θ n .
On the one hand, it follows from convergence (3.4) together with (3.12) and the Cauchy-Schwarz inequality, that

|Q n | = O( n log n) and |R n | = O(log n) a.s.
On the other hand, as 

N n = O(n) a.
(J n-1 + ε 2 n ) D n = 2 J n-1 -I n + ε 2 n -ε 2 0 .
Dividing both sides of (C.23) by J n-1 , we obtain that (C.24)

D n = 2(1 -f n ) 1 -ρ n + g n where f n = ε 2 n J n and g n = ε 2 n -ε 2 0 J n .
However, convergence (C.16) ensures that f n and g n both tend to zero a.s. Consequently, (C.20) immediately implies that

(C.25) lim n→∞ D n = 2(1 -ρ) a.s.
The almost sure rate of convergence given by (5.6) requires some additional assumption on (V n ). Hereafter, assume that the noise (V n ) has a finite conditional moment of order > 4. We clearly obtain from (3.4) 

J n-1 (ρ n -ρ) = N n -Q n + R n
where the remainder R n plays a negligible role. This is of course not the case for Q n = (Q I n -2ρQ J n-1 ) t θ n . We know from (3.8) and (3.10) that

(C.31) θ n -θ ρ n -ρ = ∆ n ϑ n -∆ϑ = ∆ n ϑ n -ϑ + ∆ n -∆ ϑ.
One can observe that in the particular case p = 1, the right-hand side of (C.31)reduces to the vector ∆ ϑ nϑ since

∆ n = ∆ = 1 0 1 0 0 -1 . For all 1 ≤ k ≤ p -1, denote s n (k) = k i=0 ρ i n ρ k-i .
It is easily check that ∆ n -∆ can be rewritten as ∆ n -∆ = ( ρ nρ)A n where A n is the rectangular matrix of size (p + 1)×(p + 2) given by

A n =        0 0 • • • • • • • • • 0 0 0 1 0 0 • • • • • • 0 0 1 s n (1) 1 0 0 • • • 0 0 s n (1) • • • • • • • • • • • • • • • • • • • • • • • • s n (p -2) s n (p -3) • • • s n (1) 1 0 0 s n (p -2) 0 0 • • • • • • • • • 0 0 0        .
It was already proven that ρ n converges almost surely to ρ which implies that for all

1 ≤ k ≤ p -1, lim n→∞ s n (k) = (k + 1)ρ k a.s.
It immediately leads to the almost sure convergence of A n to the matrix A given by

(C.32) A =        0 0 • • • • • • • • • 0 0 0 1 0 0 • • • • • • 0 0 1 2ρ 1 0 0 • • • 0 0 2ρ • • • • • • • • • • • • • • • • • • • • • • • • (p -1)ρ p-2 (p -2)ρ p-3 • • • 2ρ 1 0 0 (p -1)ρ p-2 0 0 • • • • • • • • • 0 0 0        .
Denote by e p+2 the last vector of the canonical basis of R p+2 . We clearly have from (C.31) that

ρ n -ρ = -e t p+2 ϑ n -ϑ which implies that (C.33) ∆ n ϑ n -∆ϑ = B n ϑ n -ϑ where B n = ∆ n -A n ϑe t p+2
. By the same token, let 0 p be the null vector of R p and denote by J p the rectangular matrix of size p×(p + 1) given by J p = I p 0 p .

We deduce from (C.31) and (C.33) that (C.34)

θ n = θ n -θ = J p θ n -θ ρ n -ρ = J p ∆ n ϑ n -∆ϑ = J p B n ϑ n -ϑ .
We also have from (2.5) that

(C.35) ϑ n -ϑ = S -1 n-1 M n where M n = n k=1 Φ k-1 V k .
Consequently, it follows from (C.30), (C.34) and (C.35) that

J n-1 (ρ n -ρ) = N n -C t n M n + R n where C n = S -1 n-1 B t n J t p T n with T n = Q I n -2ρQ J n-1
, which leads to the main decomposition

(C.36) √ n ϑ n -ϑ ρ n -ρ = 1 √ n A n Z n + B n
where

Z n = M n N n , A n = n S -1 n-1 0 p+2 J -1 n-1 C t n J -1 n-1 and B n = √ n 0 p+2 J -1 n-1
R n where 0 p+2 stands for the null vector of R p+2 . The random sequence (Z n ) is a locally square-integrable (p + 3)-dimensional martingale with predictable quadratic variation given, for all n ≥ 1, by

Z n = σ 2 n-1 k=0 Φ k Φ t k Φ k ε k Φ t k ε k ε 2 k .
We where T is the vector of R p given by T t = (1, ρ, . . . , ρ p-1 ). Consequently, as the vector C n = S -1 n-1 B t n J t p T n , we obtain from (3.4) that lim where

A = σ -2 Λ -1 0 p+2 (1 -ρ 2 )C t (1 -ρ 2
) .

In where the asymptotic variance τ 2 is given by

τ 2 = (1 -ρ 2 ) 2 C t ΛC + 2C t ζ + η .
However, one can easily see from (5.7) and (5.8) that

τ 2 = (1 -ρ 2 ) 2 Λ 1/2 α + (1 -ρ 2 )Λ -1/2 ∇ t β 2 , = (1 -ρ 2 ) 2 Λ -1/2 (Λα + (1 -ρ 2 )∇ t β) 2 , = (1 -ρ 2 ) 2 Λ -1/2 γ 2 , = (1 -ρ 2 ) 2 γ t Λ -1 γ,
which completes the proof of (5.9). Finally, (5.10) immediately follows from (5.9) together with (C.27) and (C.28), which achieves the proof of Theorem 5.2.

Proof of Theorem 5. where the asymptotic variance τ 2 is given by (5.11). In addition, it follows from (5. 
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	where D = 2(1 -ρ). Consequently, we obtain by (C.22) and (C.27) that (C.29) D n -D 2 = O (ρ n -ρ) 2 + O f 2 n = O log n n a.s.
	which achieves the proof of Theorem 5.1.		
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	(C.30)							
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	which leads by (C.16) to				
	(C.27)	f n = o	1 √ n		and	g n = o	1 √ n	a.s.
	In addition, it follows from (C.24) that		
	(C.28)		D n -D = -2(1 -f n ) ρ n -ρ + 2(ρ -1)f n + g n

  deduce from (C.37), (C.38) and (C.39) that One can observe that Z is not positive-definite as det(Z) = 0. Nevertheless, it is not hard to see that (Z n ) satisfies the Lindeberg condition. Therefore, we can conclude from the central limit theorem for multidimensional martingales given e.g.One can easily check from (3.9) and (C.32) that ∆ -Aϑe t p+2 = ∇ where the matrix ∇ is given by (4.2). Moreover, it follows from the previous calcu-

	(C.40)	lim n→∞	1 n	Z n = Z	a.s.
	where Z is the positive-semidefinite symmetric matrix given by
	(C.41)			Z = σ 4 Λ ζ ζ t η	.
	by Corollary 2.1.10 of [4] that			
	(C.42)		1 √ n	Z n	L -→ N 0, Z .
	Furthermore, we already saw from (C.32) that
			lim n→∞	A n = A	a.s.
	which implies that				
		lim			
	lation that	lim n→∞	1 n	T	

n→∞ B n = ∆ -Aϑe t p+2 a.s. n = σ 2 (1ρ 2 )T a.s.

  addition, we clearly have from (C.16) that

	Finally, we deduce from the conjunction of (C.36), (C.42), (C.43), (C.44), together
	with Slutsky's lemma that				
	which leads to	√	n	√	ϑ n -ϑ ρ n -ρ n(ρ n -ρ)	L -→ N 0, AZA ′ L -→ N 0, τ 2
	(C.44)	lim n→∞	B n =	0 p+2 0	a.s.

  (5.15). It remains to show that under the alternative hypothesis H 1 , our test statistic goes almost surely to infinity. Under H 1 , we already saw from Theorem 5.1 that D n -D 0 = -2 ρ nρ 0 + e n

	14) that				
	(C.46)		lim n→∞	τ 2 n = τ 2	a.s.
	Hence, we deduce from (C.45), (C.46) and Slutsky's lemma that under the null
	hypothesis H 0 ,	√ n 2 τ n	D n -D 0	L -→ N (0, 1)
	which obviously implies lim n→∞	ρ n -ρ 0 = ρ -ρ 0	a.s.
	and this limit is different from zero. Consequently,
	(C.47)	lim n→∞	n ρ n -ρ 0	2 = +∞	a.s.
	However, we clearly find from (C.28) that
	(C.48)				

Appendix A

PROOFS OF THE ALMOST SURE CONVERGENCE RESULTS

Denote by A and B the polynomials given, for all z ∈ C, by (A.1)

where a 1 = θ 1 +ρ, a p+1 = -ρθ p and, for 2 ≤ k ≤ p, a k = θ k -ρθ k-1 . The ARX(p+1, 2) equation given by (2.2) may be rewritten as

where R stands for the shift-back operator RX n = X n-1 . On the one hand, B(z) = 0 if and only if z = 1/ρ with ρ = 0. Consequently, as |ρ| < 1, B is clearly causal and for all z ∈ C such that |ρz| < 1,

On the other hand, let P be the polynomial given, for all z ∈ C, by

Consequently, as soon as ρ = 0, we deduce from [START_REF] Bercu | A new concept of strong controllability via the Schur complement in adapative tracking[END_REF] that the process (X n ) given by (A.2) is strongly controllable. One can observe that in our situation, the usual notion of controllability is the same as the concept of strong controllability. To be more precise, the assumption that ρ = 0 implies that the polynomials A -1 and B, given by (A.1), are coprime. It is exactly the so-called controllability condition. We refer the reader to [START_REF] Bercu | A new concept of strong controllability via the Schur complement in adapative tracking[END_REF] for more details on the links between the notions of controllability and strong controllability. Finally, we clearly obtain Lemma 3.1 and Theorem 3.1 from (2.3) together with Theorem 5 of [START_REF] Bercu | A new concept of strong controllability via the Schur complement in adapative tracking[END_REF].

PROOFS OF THE ASYMPTOTIC NORMALITY RESULTS

Theorem 4.1 immediately follows from Theorem 8 of [START_REF] Bercu | A new concept of strong controllability via the Schur complement in adapative tracking[END_REF]. We shall now proceed to the proof of Corollary 4.1. First of all, denote for 0 ≤ k ≤ p -1,

We already saw from (3.4) that

In addition, it follows from (C.14) that

Furthermore, it is not hard to see that

Moreover, we obtain from (1.2) that for all n ≥ p and for all 1 ≤ ℓ ≤ p,

which implies that for all 1 ≤ ℓ ≤ p,

On the other hand, we infer from (1.1) that

Hence, we find that

Consequently, we obtain that

where ζ is the vector of R p+2 such that ζ t = (1, ρ, . . . , ρ p , ̺ p ) with

where e n = -2f n (1ρ n ) + g n . Finally, (C.47) and (C.48) clearly lead to (5.16), completing the proof of Theorem 5.3.