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The frontier of indeterminay in a neo-Keynesian model with staggeredpries and wages∗∗Alexis Blasselle∗ Aurélien Poissonnier†This version Deember 2013, First version July 2011
AbstratWe onsider a neo-Keynesian model with staggered pries and wages. When both ontrats exhibit sluggishadjustment to market onditions, the poliy maker faes a trade-o� between stabilizing three welfare relevant vari-ables: output, prie in�ation and wage in�ation. We onsider a monetary poliy rule designed aordingly: theCentral Banker an reat to both in�ations and the output gap. We generalize the Taylor priniple in this ase:it embeds the frontier of determinay derived with staggered pries only, it is also symmetri in prie and wagein�ations. It follows that when staggered labour ontrats are onsidered, wage in�ation is also an illegible ande�ient target for the Central Banker.
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IntrodutionIn (Taylor, 1993), John Taylor advoates the use of monetary poliy rules where the Central Banker reats to bothprie in�ation and output as a benhmark to be used judgementally. His design of Wiksellian rule has been extensivelystudied sine then in the ontext of neo-Keynesian models. In suh models, two normative questions arise:1� What kind of poliy rule an ahieve a soial welfare optimum?� How an one rule out sun-spot �utuations (as desribed by (Woodford, 1987))?In both respets, it has been shown that the Taylor rule has appealing properties (Woodford, 2001): in the sim-plest neo-Keynesian model, the Taylor rule an be proved optimal in terms of welfare under some assumptions(Rotemberg and Woodford, 1999). It is also key in enforing solution determinay: the Taylor priniple states thatthe Central Banker's reation to in�ation must be large enough to ensure the uniqueness of the solution under rationalexpetations.2 These results hold under staggered pries and �exible wages. When onsidering both staggered priesand wages, some of the appealing properties of the standard neo-Keynesian model are weakened. (Blanhard and Gali,2007) show that allowing for both rigidities generates a trade-o� between stabilizing in�ation and output even in theabsene of ost-push shoks:3 the soial optimum ould be ahieved when only staggered pries were onsidered, it isno longer the ase with both staggered ontrats. (Ereg et al., 2000) study the welfare impliations of the additionof staggered wages. They show that is not possible for the monetary poliy to fully stabilize more than one of thethree objetives: prie in�ation, wage in�ation or output, but the variane of eah is detrimental to welfare. Usingnumerial simulations, they also show that sole prie or wage in�ation targeting is suboptimal in this ontext, but apoliy rule suh as suggested by Taylor or with reations to both prie and wage in�ations performs nearly as well asthe optimal rule.In this paper, we onsider the same model as (Galí, 2008, hapter 6) or (Ereg et al., 2000) but are mainly onernedwith the problem of sun spot �utuations instead of welfare optimization. We onsider a monetary poliy rule in linewith Ereg et al.'s results: the Central Banker an reat to both in�ations and the output gap. With straightforwardnotations, the monetary poliy rule takes the following form:
it = Φpπ

p
t +Φwπ

w
t +ΦyytWe �nd that the neessary and su�ient ondition to rule out sun-spot equilibria is symmetri in in�ations:

Φp +Φw +
1− β

κ̃
Φy > 1with β households' disount fator and κ̃ a oe�ient depending symmetrially on both slopes of the pries and wagesPhillips urves.The frontier of the Taylor priniple with staggered pries only is Φp+

1−β
κ

Φy > 1 with κ the slope of the Phillips urveon pries (Woodford, 2001). Our results thus generalizes the frontier derived is this simpler ase. Though the model'ssymmetry may not appear straightforward, similar symmetry arises when studying the optimal monetary poliy (seethe funtional form of the welfare riterion derived both by Galí and Ereg et al.). The intuition for this symmetry isgiven by Blanhard and Gali's omment on (Ereg et al., 2000). In the simple model with staggered pries only, thePhillips urve implies that stabilizing prie in�ation is equivalent to stabilizing the output gap, a result they presentas a divine oinidene beause it allows the Central Banker to enfore the soial optimum. But, as aforementioned,they show that with the addition of staggered wages, this result no longer holds. In Ereg et al.'s model, they note aweaker form of this oinidene: ombining the two Phillips urves yields that stabilizing the output gap is equivalentto stabilizing a weighted average of prie and wage in�ation (with the weight on eah in�ation being the slope of theothers Phillips urve).In the remainder of this paper, the �rst setion realls the model. We expose some general mathematial propertiesof this model in setion 2 when the Central Banker an only reat to pries and wages in�ation (Φy = 0). We then1These questions are independent of one another: optimal rules do not neessarily avoid sun-spot �utuations (Clarida et al., 1999)2(Bullard and Mitra, 2002) shows that the properties of this priniple are also key in a model with adaptive learning3In presene of ost-push shoks there is a short run trade-o� between the two objetives (Clarida et al., 1999)2



study the uniqueness of its solution in this ase (Φy = 0) (setions 3, 4 and 5). We �rst onsider the limit subase
Φp + Φw = 1 (setion 3). In setion 4, we study the deviations from this subase (Φp + Φw ≷ 1). In setion 5 wederive the frontier of the Taylor priniple when Φy = 0. Finally we expand this result to the ase where the CentralBanker an also reat to the output gap (Φy 6= 0) in setion 6. Readers not familiar with this literature an �nd inappendix some general elements on neo-Keynesian models for monetary poliy solved under rational expetations inwhih we expose the general set-up of this problem.1 A monetary model with stiky wages and priesWe study the model exposed in (Galí, 2008, hap 6) and (Ereg et al., 2000). This model extends the standard neo-Keynesian model for monetary poliy analysis whih onsist of an IS urve relating the output gap to the expetedreal interest rate, a Phillips urve relating in�ation, expeted in�ation and output gap and a monetary poliy ruledesribing how the interest rate is set by the Central Banker. The present extension of the model onsiders wagerigidities under the form of Calvo ontrats. It follows from this rigidity that real wages may deviate from their�exible equivalent due to exogenous disturbanes.The model takes the following linear form:4

π
p
t = βE(πp

t+1|t) + κpyt + λpωt (1)
πw
t = βE(πw

t+1|t) + κwyt − λwωt (2)
ωt−1 = ωt − πw

t + π
p
t +∆ωn

t (3)
yt = E(yt+1|t)−

1

σ
(it − E(πp

t+1|t)− rnt ) (4)
it = Φpπ

p
t +Φwπ

w
t +Φyyt + vt (5)In this system, at eah date t, a set of variables (πp, πw, ω, y, i) are determined by their urrent and past value andtheir expeted value at the following date (E(.|t), is the rational expetations operator at date t, i.e. the expetationonditional on the values of every variables up to date t and the model itself). Equations (1) and (2) are the Phillipsurves on prie in�ation (πp) and wage in�ation (πw). They desribe the progressive adjustment of pries and wages tomarket onditions. Pries may inrease with expeted in�ation or the marginal ost of prodution. This ost dependspositively on the output gap (yt, de�ned as the deviation of output from its fully �exible equivalent) and the real wagegap (ωt, de�ned as the deviation of real wage from its fully �exible equivalent). Wages may inrease with expetedwage in�ation or derease with the wage mark-up (taken in deviation from the �exible ontrats ase). This mark-updepends positively on the real wage gap and negatively on the output gap. Equation (3) desribes the fat that beauseof nominal rigidities, real wages depart from their fully �exible ounterpart. Exogenous shoks to the eonomy a�etingthe real wage (∆ωn) are not instantaneously transmitted to the atual real wage but only to its �exible ounterpart,hene driving a wedge between in�ations and the dynami of the real wage gap. Equation (4) desribes the evolutionof the output gap (y) as a funtion of interest rate (i) and expeted in�ation. The impliit assumption here is thatoutput is driven, in the short run, by private demand. rnt is the natural rate of interest, that is the real interestrate whih would prevail under fully �exible ontrats. Equation (5) desribes the interest rate deision of the CentralBanker. It is a Taylor rule modi�ed to aount for the fat that the Central Banker may reat to wages in�ation as wellas pries in�ation. The higher in�ations or output are, the higher the Central Banker will set the interest rate in or-der to temper the eonomi growth. Moreover, the Central Banker may depart from this rule for exogenous reasons (v).The parameters of this model are:� 0 < β < 1, is the disount fator of households.� σ ≥ 0, is the inverse intertemporal elastiity of substitution of onsumption.� Φp > 0, is the Central Banker's reation to prie in�ation.(Taylor, 1993) onsiders Φp = 1.54The omplete derivation of the model is exposed in full details in (Galí, 2008, hap 6) with the same notations3



� Φw ≥ 0 is the Central Banker's reation to wage in�ation. In the standard ases the Central Banker only reatto prie in�ation (Φw = 0)� Φy ≥ 0 is the Central Banker's reation to the output gap. (Taylor, 1993) onsiders Φy = 0.5.� λp =
(1−θp)(1−βθp)

θp

1−α
1−α+αεp

, where� 0 < θp < 1, is the Calvo parameter on pries, in other words the stikiness of pries (if 0, pries are fully�exible)� 0 < α < 1, with 1− α the elastiity of output with respet to labour� 0 < εp ≤ 1, is the elastiity of substitution among goods
⇒ 0 < λp� λw = (1−θw)(1−βθw)

θw(1+ϕεw) , where� 0 < θw < 1, is the Calvo parameter on wages, in other words the stikiness of wages (if 0, wages are fully�exible)� 0 < ϕ, is the Frish elastiity, in other words the onvexity of the ost of labour in terms of welfare.� 0 < εw ≤ 1, is the elastiity of substitution among labour types
⇒ 0 < λw� κp =

αλp

1−α
, we will also denote later λpnp = κp with np > 0� κw = λw(σ+

ϕ
1−α

) whih implies κw ≥ λwσ. We will also denote later λwnw = κw with nw > 0 or κw = λw(σ+ν)with ν > 0.Denoting xt = [yt, π
p
t , πw

t , ωt−1]
T , the endogenous variables, and zt = [rnt − vt, ∆ωn

t ]
T , the exogenous variables, theequations (1) to (5) an be written in the form:

xt = A−1 ( E(xt+1|t) +B zt) (6)In the equation (6), the matrix of interest A is:
A =























1 +
κp

σβ
+

Φy

σ

βΦp − 1− λp

σβ

βΦw + λp

σβ

λp

σβ
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β
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β
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−λw
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β
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(7)
There are three forward looking variables in this models: ([yt, π

p
t , πw

t ]).Lemma 1 Aording to (Blanhard and Kahn, 1980), the system (6) has a unique solution if and only if the matrixA de�ned by (7) has 3 eigenvalues stritly larger than one in modulus and one eigenvalue stritly smaller than one inmodulus.In this ase, there is numerial evidene that the sum Φp + Φw should be larger than 1 when Φy = 0 to meet thisondition. When Φy 6= 0, the ondition on Φp + Φw is dereasing with Φy (Galí, 2008). Nevertheless, a formal proofto these properties has not been given yet, it is the main objetive of this paper.
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Main results In the remainder of this paper we show that any monetary poliy rule satisfying
Φp +Φw +Φy

(1− β)

(nw + np)

(

1

λp

+
1

λw

)

> 1 (8)rules out sunspot equilibria.The admissibility of a poliy rule symmetrially depends on wage in�ation and pries in�ation: when the entral bankdoes not respond to hanges in output, the ondition for monetary poliy omes down to Φp + Φw > 1 in line withGalí's numerial investigations.Also in line with Galí's numerial investigations, when the entral bank reats to hanges in output, doing so relaxesthe onstraint above, proportionally to Φy with a fator (1−β)
(nw+np)

(

1
λp

+ 1
λw

). This oe�ient ruially and symmetri-ally depends on the Phillips urves of pries and wages: more impatient agents (smaller β) or �atter Phillips urves(smaller λ or n), failitate the task of the Central Banker to prevent sun spot �utuations.In this model, a permanent shift in prie in�ation (π̃) implies an idential permanent shift in wage in�ation (equa-tion (3)). The Phillips urves (equations (1) and (2)) imply a proportional shift in output gap ỹ = (1−β)
(nw+np)

(

1
λp

+ 1
λw

)

π̃.In turn, the Taylor rule (5) implies that the reation of the Central Banker is to raise the nominal interest rate by
ĩ =

[

Φp +Φw +Φy
(1−β)

(nw+np)

(

1
λp

+ 1
λw

)]

π̃. Thus, as in the standard neo-Keynesian model without wage rigidities(Woodford, 2011, hapter 4), our frontier of indeterminay an also be interpreted in terms of the Taylor priniple:the Central Banker reating more than one for one to permanent hanges in in�ation.Using Dynare (Adjemian et al., 2011), it is possible to verify numerially frontier (8).5 (Galí, 2008, hapter 6) and(Ereg et al., 2000) show that wage in�ation targeting ompares with prie in�ation targeting in terms of welfare.Using Dynare it is possible to on�rm their result of symmetry by omputing the optimal oe�ients for the monetarypoliy rule onsidered here.6 When onsidering a Central Banker reating to both in�ations and the output gap, we�nd Φp = 47.1, Φw = 67.8, Φy = 231.9. This optimal rule implies a very sensitive interest rate whih is standardwhen the bene�ts of a smoothed monetary poliy are not onsidered. More interestingly, the reations of the optimalinterest rate to both in�ations are omparable.Wage in�ation and prie in�ation play similar roles for the design of the optimal monetary poliy, we show that theyalso play symmetri roles for eliminating sun-spot �utuations. This extended onlusion remains "at odds with thepratie of most entral banks, whih seem to attah little weight to wage in�ation as a target variable"(Galí, 2008).Outline of the proof De�ning the frontier of indeterminay is based on the study of the roots of the harateristipolynomial of matrix A, a fourth degree polynomial. Though it is not omplex mathematis, it is rather umbersome.We are partiularly grateful to Yvon Maday and other mathematiians at Laboratoire Jaques-Louis Lions for proof-reading and omments.In setions 2 to 5 we develop the proof in the ase Φy = 0. In setion 2 we study the general properties of thispolynomial and its oe�ients. We use the intuition that in this ase the frontier of determinay is Φp + Φw = 1and deompose the polynomial as a fourth degree polynomial orresponding to this ase plus deviations from thisase in both diretions (Φp, Φw). In setion 3 we study the polynomial in the ase Φp + Φw = 1 to show that:
1 is a root of this polynomial; its real roots are non-negative; its omplex roots have a modulus stritly greaterthan one; and at most one real root is in ]0, 1[. In setion 4 we study the deviations from Φp + Φw = 1; we showthat these deviations are seond degree polynomials with positive real roots, one stritly greater than one the otherstritly smaller than one. In setion 5 we study how the deviations from Φp + Φw = 1 modi�es the roots of theharateristi polynomial. The omplex roots annot enter the unit irle. The real roots stritly greater or lower5Code available upon request6The welfare riterion to be optimized is derived in Galí, we use his benhmark alibration and in line with his methodology onsidertehnology shoks only. 5



than one are kept away from 1. The root 1 moves in the diretion ensuring the uniqueness of the model's solution(depending on the existene of another root smaller than one) if and only if the deviation from Φp+Φw = 1 is positive.In setion 6 we show that the ase Φy 6= 0 an be treated identially to the ase Φy = 0. We onsider the frontier ofindeterminay under the form Φp+Φw = 1−θ and show that setting θ = Φy
(1−β)

(nw+np)

(

1
λp

+ 1
λw

) allows a deompositionof the harateristi polynomial whih has the same properties as in the ase Φy = 0. We an onlude that equation(8) generalizes the frontier of indeterminay.
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2 Preliminary properties of the model's harateristi polynomialAording to what has been explained above, the uniqueness result probably holds if and only if Φw + Φp > 1 when
Φy = 0. We begin with the study of this limit ase Φw +Φp = 1. For that purpose, we introdue a new parameter φpand use the following parametrization:

Φp = φp + ξ Φw = 1− φp + γ (9)
0 < φp < 1 ξ s.t Φp > 0 γ s.t. Φw > 0 (10)Suh values of γ and ξ are alled admissible throughout the paper. The domain of interest, Dp,w, is oloured in blueon Figure 1. This parametrization of Dp,w is not injetive, as three parameters (φp, ξ, γ) desribe a two dimensionaldomain, but this hoie makes the study easier.

Φp

Φw

1

1

Φ
p +

Φ
w
=
1

P0,0

•

Pγ1,ξ1 •
ξ1

γ1

P ′
0,0 •

Pγ2,ξ2

ξ2

γ2

Dp,w

Figure 1: Domain of interest (in blue) and parametrizationLet X denote the vetor of the new parameters:
X = [β, φp, κp, λp, λw, σ, ν] ∈ ]0, 1[× ]0, 1[× (R∗

+)
5 = DX . (11)it exludes γ and ξ, treated as speial parameters.Remark 1 Please note that we use indistintly the following notations: κp = λpnp and κw = λwnw = λw(σ + ν).The harateristi polynomial of the matrix de�ned in (7) above an be expressed as follows, with impliit dependenyon X :

Pγ,ξ(t) = at4 − bt3 + cγ,ξt
2 − dγ,ξt+ eγ,ξ. (12)
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with the oe�ients:
a = σβ2

b = β[κp + σ(2 + 2β + λp + λw)]

cγ,ξ = κp[1 + λw + β(1 + φp + ξ)] + λwν[λp + β(1 − φp) + βγ]

+ σ[1 + 4β + β2 + λp(1 + β) + λw(1 + λp + (2 − φp)β + βγ)]

dγ,ξ = κp[1 + λw + φp(1 + β) + λwγ + (1 + β + λw)ξ] + λwν[λp + (1− φp)(1 + β) + (1 + β + λp)γ + λpξ]

+ σ[2β + 2 + λp + λw(1 + λp + (1 + β)(1− φp) + (1 + β + λp)γ + λpξ)]

eγ,ξ = σ + κpφp + κpξ + λw(σ + ν)(1− φp) + λw(σ + ν)γ.We denote omplex numbers z = ρ(cos θ + i sin θ) and
D = {z ∈ C s.t. |z| ≤ 1}. (13)

z is stritly in (resp. out of) D if |z| < 1 (resp. |z| > 1).We adopt three onventions: a fourth degree polynomial P is said to satisfy the property(i) if P has one root stritly in D and three roots stritly out of D,(ii) if P has two real roots and two omplex roots,(iii) if P has four real roots.Aording to the explanation above, the uniqueness of the solution is equivalent to the fat that Pγ,ξ satis�es (i).The polynomial Pγ,ξ satis�es the following propertiesProperty 1 For every vetor of parameters X ∈ DX , (a, b) ∈ (R∗
+)

2 and ∀ γ ≥ 0, ∀ ξ ≥ 0, (cγ,ξ, dγ,ξ, eγ,ξ) ∈ (R∗
+)

3.This implies that ∀ t ≤ 0, Pγ,ξ(t) > 0.Proof : The sign of the oe�ients derives from their de�nition and the de�nition (11) of DX . The sign of thepolynomial Pγ,ξ(t) derives from (12). �Property 2 For every vetor of parameters X ∈ DX , for every γ > 0 and for every ξ > 0, Pγ,ξ has a root λ1 ∈ ]0, 1[and a root λ∞ ∈ ]1,+∞[Proof :
Pγ,ξ(1) = −λwλp(γ + ξ)(np + nw) and lim

+∞
Pγ,ξ = +∞and as Pγ,ξ(0) > 0, the property is proved. �Property 3 The following inequalities hold:

∀X ∈ DX ∀ γ ≥ 0 ∀ ξ ≥ 0 b > 4a cγ,ξ > 2a+ b > 6a eγ,ξ > aProperty 4 The disriminant of the seond order derivative P ′′
γ is ∆(P ′′

γ,ξ) = 12 [3b2 − 8acγ,ξ]. Moreover, ∀ γ ≥ 0,
∀ ξ ≥ 0 if 3b2 < 8acγ,ξ then Pγ,ξ has two onjugate omplex rootsProof: If the disriminant of P ′′

γ,ξ is negative, this polynomial is positive for every t. In this ase, P ′

γ,ξ is stritlyinreasing and has only one real root, and Pγ,ξ is stritly dereasing and then stritly inreasing. As we already knowthat it has two real roots, the two others are omplex. �8



From now on, we use the simplifying notations P0 = P0,0, c = c0,0, d = d0,0 and e = e0,0 and the followingdeomposition:
Pγ,ξ(t) = P0(t) + γ λw Q(t) + ξ λp S(t) where (14)
Q(t) = βnw t2 − [κp + nw(1 + β + λp)]t+ nw (15)
S(t) = βnp t

2 − [κw + np(1 + β + λw)]t+ np (16)Property 5 For all X ∈ DX , P ′
0(1) = 4a− 3b+ 2c− d and 6a− 3b+ c annot be both negative.Proof: We proeed by ontraditionAssumption 1 Exists X ∈ DX suh that P ′

0(1) = 4a− 3b+ 2c− d < 0 and 6a− 3b+ c < 0.The �rst inequality rewrites:
4a− 3b+ 2c− d = κp[λw + (1− β)(1 − φp)] + λwν[λp − (1− β)(1 − φp)]

+ σ[(1 − β)(λp + λwφp) + λwλp] < 0.The only way to do so is:
λp < (1− β)(1 − φp) (17)Reintroduing this into the last inequality, we obtain:

λwν >
κp[λw + (1− β)(1 − φp)] + σ[(1 − β)(λp + λwφp) + λwλp]

(1− β)(1 − φp)− λp

= m. (18)The seond inequality an be expressed as:
6a− 3b+ c = κp[λw + 1− β − β(1 − φp)] + λwν[λp + β(1 − φp)]

+ σ[(1 − β)2 + λp(1− β) + λw(1 + λp)− λpβ − λwβ(1 + φp)] < 0and this implies another bound for λwν:
λwν <

−κp[λw + 1− β − β(1 − φp)]− σ[(1 − β)2 + λp(1 − β) + λw(1 + λp)− λpβ − λwβ(1 + φp)]

λp + β(1− φp)
= M. (19)Now let us denote by Dm and DM the denominators of m and M respetively, and ompute: ∆ ≡ (m−M)DmDM

∆ = κp[λw + (1− β)(1 − φp)][λp + β(1 − φp)] + σ[(1 − β)(λp + λwφp) + λwλp][λp + β(1 − φp)]

+ κp[λw + 1− β − β(1− φp)][(1 − β)(1 − φp)− λp]

+ σ[(1 − β)2 + λp(1− β) + λw(1 + λp)− λpβ − λwβ(1 + φp)][(1− β)(1 − φp)− λp]

= σ∆σ + κp∆κpwhere, after simpli�ation:
∆σ = (1− β)(λp + 1− β)[(1 − β)(1 − φp)− λp] + λw(1− β)2(1− φp) + λpλwβ + λ2

p

∆κp
= (1− β)[(1 − β)(1 − φp)− λp] + (λp + λw)(1 − φp).It is not di�ult to hek that the two ofators ∆σ and ∆κp

are stritly positive. Hene, we obtain that m−M > 0and this is not possible, onsidering (18) and (19). �3 The eigenvalues in the limit ase Φp + Φw = 1: P0 study
P0 satis�es the property 1, but not the property 2 as explained below.9



Property 6 P0(1) = 0 and we an write P0(t) = (t− 1)R0(t) with
R0(t) = at3 − (b − a)t2 + (a− b+ c)t+ a− b + c− d.Moreover, P0 has at least one root stritly greater than one.We are going to prove that R0 has at most one root in the unit disk D. We �rst note that a− b+ c− d = −e, and theproperty 3 enables us to tell that the produt of the roots of R0 is greater than one.3.1 The real rootsLet us study the ase in whih P0 satis�es (iii), namely has four real roots. Thanks to property 4, we know that thisimplies 3b2 > 8ac.Lemma 2 If P0 has four real roots, at most one belongs to ]0, 1[.Proof: Property 4, implies 3b2 > 8ac, and P ′′

0 has two real roots, denoted t− and t+. As P ′′
0 (t) = 12at2 − 6bt+ 2c,we easily obtain that:

t± =
b

4a
±
(

(

b

4a

)2

− c

6a

)
1

2

.Moreover
t− + t+ =

b

2a
> 2 t−t+ =

c

6a
> 1.We rule out the ase in whih the three roots of R0 are smaller than one, beause the produt of these roots must belarger than one, and proeed by ontradition:Assumption 2 P0 has two roots (λi, λj) ∈ ]0, 1[× ]0, 1[.Figure 2 shows how P0 ould look like under this assumption.

Figure 2: Example of a polynomial satisfying the assumption 2A straightforward study of the variations of P0 and P ′
0 show that our assumption implies that P ′

0(1) < 0 and t− < 1.This last inequality gives:
b

4a
− 1 <

(

(

b

4a

)2

− c

6a

)
1

2

⇐⇒

1− b

2a
< − c

6a
⇐⇒ 6a− 3b+ c < 0.10



Combining this with P ′
0(1) < 0, we obtain that neessarily:

4a− 3b+ 2c− d < 0 6a− 3b+ c < 0 (20)and this is in ontradition with property 5. �3.2 The omplex rootsNow, we are interested in the possible omplex roots of P0.Lemma 3 If P0 has two omplex roots z and z̄, they are onjugate and outside the unit disk: |z| > 1.Proof: We proeed by ontradition.Assumption 3 R0 has two omplex roots z = ρ(cos θ + i sin θ) and z̄ suh that δ = 1− ρ2 ≥ 0.We have
R0(z) = aρ3(cos3 θ − 3 cos θ sin2 θ) + (a− b)ρ2(cos2 θ − sin2 θ) + (a− b+ c)ρ cos θ+

a− b+ c− d+ i[aρ3(3 sin θ cos2 θ − sin3 θ) + 2(a− b)ρ2 sin θ cos θ + ρ(a− b + c) sin θ]If R0(z) = 0, both its real and imaginary parts are equal to zero. Let us study the imaginary part, in whih ρ sin θan be put in fator. Hene, we fous on ℑ∗(R0(z)) in whih ℑ(R0(z)) = ρ sin θℑ∗(R0(z)) and
ℑ∗(R0(z)) = 4a(ρ cos θ)2 − 2(b− a)ρ cos θ + a(1− ρ2)− b+ c = F (ρ cos θ)

F (t) = 4a

(

t2 − 2(b− a)

4a
t+

δa− b+ c

4a

)

. (21)Let us denote by r−F and r+F the two roots of F . It easily follows that
r±F =

b− a

4a
±
(

b − c− δa

4a
+

(

b− a

4a

)2
)

1

2

.Thanks to the assumption 3, we know that ρ ≤ 1, and as ℑ∗(R0(z)) = F (ρ cos θ), F has at least one real root in
]−1; 1[. The produt of the roots is greater than 3

2 , the sum is greater than 1
4 (due to property 3). Let us express aneessary ondition to ensure that r−F < 1:

b − a

4a
−
(

b− c− δa

4a
+

(

b − a

4a

)2
)

1

2

< 1 ⇐⇒

1− 2
(b− a)

4a
<

b− c− δa

4a
⇐⇒ 4a− 2(b− a) < b− c− δa

⇐⇒ 6a− 3b+ c < −δa < 0. (22)Next, let us remark that the produt of the four roots of P0 being greater than one and P0 vanishing in 1, theassumption 3 ensures that the other real root is stritly greater than one. This implies that P ′
0(1) < 0, and property 5gives us the ontradition with (22). �Property 7 For all θ ∈ ]0, π[, denoting by z = cos θ + i sin θ, we proved that

ℑ(R0(z)) = sin θ
[

4a(cos θ)2 − 2(b− a) cos θ − b+ c
]

> 0.Proof: Obviously, ∀ θ ∈ ]0, π[, sin θ > 0. We showed in the last proof that the roots of the polynomial F de�ned by(21) are stritly outside [0, 1], for all δ ∈ [0, 1]. For δ = 0, we obtain that
F (t) = 4at2 − 2(b− a)t− b+ cEvaluating in t = 0, it follows that F (0) = c− b > 0 due to property 3. �11



Conlusion to P0 study We have showed that(I) 1 is a root of P0,(II) P0 has no negative root,(III) if P0 has omplex roots, their modulus is stritly larger than one,(IV) P0 has at most one root in ]0, 1[.Figure 3 illustrates the four on�gurations of roots for P0:
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Figure 3: The four possible on�gurations of P0 roots: ases 1 to 4
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4 Deviations from the limit ase : Q and S studyIn this setion, we study the polynomials Q and S de�ned, respetively, by (15) and (16). We give the expression oftheir real roots, and study them for omplex values, to ease the proof of the �nal theorem.4.1 On the real axisLet r−Q and r+Q denote the roots of Q.
Q(t) = βnwt

2 − [κp + nw(1 + β + λp)]t+ nw. (23)The sum and the produt of the roots are non-negative, and we easily obtain that
∆Q

4
= − 1

β
+

1

4

(

1 +
1 + λp

β
+

κp

βnw

)2

>
1

4

(

1− 1

β
+

λp

β
+

κp

βnw

)2

.Property 8 Q has two positive roots
r±Q =

1

2

(

1 +
1 + λp

β
+

κp

βnw

)

± 1

2

(

− 4

β
+

(

1 +
1 + λp

β
+

κp

βnw

)2
)

1

2

r−Q ∈ ]0, 1[ and r+Q ∈
]

1
β
,+∞

[.Proof:
Q(0) = nw > 0 Q(1) = −λp(np + nw) < 0We denote

B = 1 +
1 + λp

β
+

κp

βnw

∆ = B2 − 4

βLet us assume that r+Q = 1
2 (B +

√
∆) ≤ 1

β
, then

√
∆ ≤ 2

β
−B ⇒ − 1

β
≤ 1

β2
− B

β
⇒ B ≤ 1 +

1

βThe last inequality does not hold. Hene, r+Q > 1
β
. �Let r±S denote the two roots of S.

S(t) = βnpt
2 − [κw + np(1 + β + λw)]t+ npthe disriminant of S satis�es:

∆S

4
= − 1

β
+

1

4

(

1 +
1 + λw

β
+

κw

βnp

)2

>
1

4

(

1− 1

β
+

λw

β
+

κw

βnp

)2

.Property 9 S has two positive roots
r±S =

1

2

(

1 +
1 + λw

β
+

κw

βnp

)

± 1

2

(

− 4

β
+

(

1 +
1 + λw

β
+

κw

βnp

)2
)

1

2

r−S ∈ ]0, 1[ and r+S ∈
]

1
β
,+∞

[.Proof: The proof is symmetri to that of property 8. �Property 10 Exists two real , t1 and t2 suh that t2 > 1
β
, t1 < 1 and ∀ t ∈ [t1, t2],

Q(t) < 0 and S(t) < 0.13



4.2 In the omplex plane CWe onsider here z = ρ(cos θ + i sin θ) and as we know that P0(1) = 0, we fous on
ℑ
(

Q(z)

z − 1

)

=
1

|z − 1|2ℑ(Q(z)(z̄ − 1)) and 1

|z − 1|2ℑ(S(z)(z̄ − 1))and we have
Q(z) = 2βnwρ

2 cos2 θ − [κp + nw(1 + β + λp)]ρ cos θ + (1 − β)nw

+ iρ sin θ[2βnwρ cos θ − κp − nw(1 + β + λp)]

S(z) = 2βnpρ
2 cos2 θ − [κw + np(1 + β + λw)]ρ cos θ + (1− β)np

+ iρ sin θ[2βnpρ cos θ − κw − np(1 + β + λw)].All simpli�ations being made:
ℑ(Q(z)(z̄ − 1)) = ρ sin θ [βnw(ρ− cos θ)2 + κp + nw(1 + β (1− cos θ)]

ℑ(S(z)(z̄ − 1)) = ρ sin θ [βnp(ρ− cos θ)2 + κw + np(1 + β (1 − cos θ)]from whih we dedue the following property:Property 11 For every θ ∈ ]0, π[, denoting z = ρ(cos θ + i sin θ) we have that:
ℑ(Q(z)(z̄ − 1)) > 0 and ℑ(S(z)(z̄ − 1)) > 0.

5 The rank ondition when Φy = 05.1 Preliminary propertyLemma 4 Let P be a polynomial (and more generally, a C1 funtion), and λ a simple root of this polynomial: P (λ) = 0but P ′(λ) 6= 0. If we add a real quantity q su�iently small to the polynomial, it translates the root λ in the diretionde�ned by the sign of:
−P ′(λ) q+ de�ning a translation to the right, - to the left.Proof Let us hoose δ > 0, arbitrarily small. P ′ being smooth, there exists w suh that ∀h ∈ [−w,w] |P ′(λ+h)| > δ.This ensures that P is a bijetion from I = [λ− w, λ+ w] on P (I). Now, we denote by

q0 = min{|P (λ− w)|, |P (λ + w)|}.Assume that P ′(λ) > 0. We de�ne, for every real q suh that |q| < q0

Pq : [−w,w] → [P (λ− w) + q, P (λ+ w) + q]

t 7→ P (λ+ t) + q

Pq is a bijetion, and sine Pq(0) = P (λ) + q = q > 0 and (P (λ− w) + q)(P (λ + w) + q) < 0 by hoie of q, if q > 0(resp. < 0), the root is shifted to the left (resp. to the right). The result is the same when P ′(λ) < 0. �

14
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Figure 4: Case 15.2 General values of γ, ξ = 0For the sake of larity, we begin with the study of Pγ,0, that we denote by Pγ in this setion. Before giving the maintheorem of this part and its proof, let us loate the roots of P0 with respet to the ones of Q, denoted by r±Q. Thereare exatly 14 possible on�gurations: 4 on�gurations just for the roots of P0, eah of this on�guration leading toseveral possibilities, depending on the loation of r±Q.Theorem 1 For every vetor X ∈ DX and for every γ > 0, Pγ satis�es property (i): three of its roots are stritlyout of D and the other one is stritly in D.ProofReal roots of Pγ The �gures (4), (5) and (6) show all the possible on�gurations for P0. Remembering that
Pγ = P0 + γλwQ, we onsider the four following fats: 15
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� with γ inreasing, a root of Pγ an never ross a root of Q: otherwise it stays on the root of Q (we add a nullquantity with γ inreasing),� Q is stritly negative between its two roots, namely on ]r−Q; r+Q[, positive outside its roots,� the roots of P0, and more generally of Pγ are moving aording to lemma (4),� starting from the ases 1 or 2, and inreasing γ, X being kept onstant, two of the real roots melt and disappearto reate two omplex roots for a given value of γ.With those observations, one an hek easily that, starting from P0:� in the ases 1 and 3, the root smaller than one is trapped in ]0, 1[, while the root 1 moves toward the right tobeome one of the root outside D,� in the ase 2 and 4, the root 1 moves toward the left to beome the root in D,� all the real roots of P0 stritly greater than one annot enter the interval ]0, 1[.Those observations remain true when inreasing γ without any limit.Complex roots of Pγ The omplex roots of P0 lie outside the unit disk D (see Lemma 3). With γ > 0 we showthat the omplex roots of Pγ an not ross the unit irle. We proeed by ontradition and assume that for a given
γ, the root z is on the unit disk.Assumption 4 There exist γ > 0 and z ∈ D suh that Pγ(z) = 0.Under this assumption, let us study:

Pγ(z)

z − 1
= R0(z) + γλw

Q(z)

z − 1
= R0(z) + γλw

Q(z)(z̄ − 1)

|z − 1|2

=
1

|z − 1|2
[

R0(z)|z − 1|2 + γλwQ(z)(z̄ − 1)
]

ℑ
(

Pγ(z)

z − 1

)

=
1

|z − 1|2
[

ℑ(R0(z))|z − 1|2 + γλwℑ(Q(z)(z̄ − 1))
]Taking z belonging to the unit irle z = cos θ + i sin θ, we obtain:

ℑ(R0(z))|z − 1|2 + γλwℑ(Q(z)(z̄ − 1)) = 2(1− cos θ)ℑ(R0(z)) + γλwℑ(Q(z)(z̄ − 1)). (24)Thanks to properties 7 and 11, we know that the two quantities on the right-hand side are stritly positive on the unitdisk and that their sum annot be equal to zero. Hene, assumption 4 is false. �5.3 General values of ξ, γ = 0We study in this setion P0,ξ denoted in this setion Pξ.
Pξ(t) = P0(t) + ξ λp S(t)The following result holdsTheorem 2 For all given X ∈ DX , ∀ ξ > 0, Pξ satis�es property (i): three of its roots are stritly out of the unitdisk D and the other one is stritly inside.Proof The proof is symmetri to that of theorem 1. �17



5.4 Rank onditionLemma 5 ∀ γ ≥ 0, ∀ ξ ≥ 0, if γ 6= 0 or ξ 6= 0 then Pγ,ξ satis�es property (i).ProofComplex roots If P0 satis�es (ii), the omplex roots of Pγ,ξ stay outside D. To prove it, we an use the exat sameproof as for lemma 3, by adding the ontribution of S to the equation (24). We obtain that on the disk:
ℑ(R0(z))|z − 1|2 + γ λw ℑ(Q(z)(z̄ − 1)) + ξ λp ℑ(S(z)(z̄ − 1)) =

2(1− cos θ)ℑ(R0(z)) + γλw ℑ(Q(z)(z̄ − 1)) + ξ λp ℑ(S(z)(z̄ − 1)) (25)and due to property 11 we know that the quantity we added is stritly positive and the same onlusion holds.Real roots To get the polynomial Pγ,ξ, one starts from P0, goes to Pγ , and �nally obtains Pγ,ξ. We already provedthat Pγ satis�es the required property. Now, adding ξλwS to this polynomial, we study the evolution of the roots. Asthe roots of S an not be rossed, the situation is the exat same as previously: denoting by r±γ the two real roots of
Pγ , we an see that the four following situations:� r−γ < r−S < 1 < r+S < r+γ� r−γ < r−S < 1 < r+γ < r+S� r−S < r−γ < 1 < r+S < r+γ� r−S < r−γ < 1 < r+γ < r+Slead to a stable on�guration, namely one root in ]0, 1[, three out of D. �Theorem 3 For every X ∈ DX , for all admissible values of γ and ξ (namely suh that φp+ξ > 0 and 1−φp+γ > 0),
γ + ξ > 0 if and only if Pγ,ξ satis�es property (i).Proof Any point of the domain Dp,w an be reahed starting from a point on the axis φp + φw = 1 and addingpositive values of ξ and γ (Figure 1). Hene, the ending point of any path using a negative value of ξ or γ, but suhthat γ + ξ > 0 an be reahed with a path suh that both γ and ξ remain positive. In whih ase Lemma 5 appliesand φp + φw > 1 is a su�ient ondition to ensure that Pγ,ξ satis�es the required property for the uniqueness of theequilibrium.By similar reasoning, it is a neessary one: any polynomial Pγ,ξ satisfying property (i) has been reahed starting froma polynomial P0. If we ome bak to the study of the dynamis of its roots, the ruial point is the movement of theroot 1 of P0. Aording to Lemma ?? and independently from the fat that it is the �rst or seond real root of P0,root 1 moves in the proper diretion if and only if:

ξλpS(1) + γλwQ(1) < 0and omputing S(1) and Q(1), we �nd that it requires that
(ξ + γ)λpλw(nw + np) > 0 (26)namely that ξ + γ > 0. � 18



6 The rank ondition in the ase Φy 6= 0Even when the mandate of the Central Banker is just to ontrol the in�ation, as the European entral bank does,in pratie, one an �nd that the reation of this Central Banker to the output gap Φy is stritly positive. In suhountries, this reation is nevertheless smaller than the one of the Federal Reserve bank for instane, whose mandateis to reat also to the output gap. Thus, in order for our uniqueness result to be useful as a benhmark for monetarypoliy, it should be a real improvement of the standard Taylor rule, i.e. being studied in the ase Φy > 0.We are going to see that this ase is just a simple generalization of the ase Φy = 0.A priori the frontier of indeterminay an be written φp + φw = 1 − θ, with θ positive and to be determined (Galí,2008). The harateristi polynomial P of A is still de�ned by (12):
Pγ,ξ(t) = at4 − bt3 + cγ,ξ,θt

2 − dγ,ξ,θt+ eγ,ξ,θ.with new oe�ients:
a = σβ2

b = β[κp +Φyβ + σ(2 + 2β + λp + λw)]

cγ,ξ,θ = κp[1 + λw + β(1 + φp + ξ)] + λwν[λp + β(1− θ − φp) + βγ] + Φyβ[λp + λw + 2 + β]

+ σ[1 + 4β + β2 + λp(1 + β) + λw(1 + λp + (2− φp − θ)β + βγ)]

dγ,ξ,θ = κp[1 + λw(1− θ) + φp(1 + β) + λwγ + (1 + β + λw)ξ] +

λwν[λp(1− θ) + (1− θ − φp)(1 + β) + (1 + β + λp)γ + λpξ] + Φy[1 + λw + λp + 2β]

+ σ[2β + 2 + λp + λw(1 + λp(1 − θ) + (1 + β)(1 − θ − φp) + (1 + β + λp)γ + λpξ)]

eγ,ξ,θ = σ[1 + λw(1− θ − φp)] + κpφp + κpξ + λwν(1 − θ − φp) + λw(σ + ν)γ +Φy.There is now a third dimension (Φy) to the domain de�ned by Figure 1. We reover the deomposition (14) withstritly idential polynomials Q and S by hoosing the baseline polynomial P0 aordingly. θ is set suh that P0(1) = 0,whih implies that θ is proportional to Φy:
θ = Φy

(1− β)(λp + λw)

λwλp[σ + ν + np]
. (27)Hene the limit ondition φp + φw = 1− θ de�nes a tetrahedron in the spae (φp, φw,Φy):

φp + φw +Φy

(1− β)(λp + λw)

λwλp[σ + ν + np]
= 1 φp ≥ 0, φw ≥ 0, Φy ≥ 0. (28)This tetrahedron is the frontier of indeterminay when Φy 6= 0.We keep the notation θ to ease the reading, though θ is given by (27). In the ase Φy = 0, the ruial ondition toensure the required properties on P0 is property 5. Property 12 generalizes this property when Φy 6= 0.Property 12 For all X ∈ DX , P ′

0(1) = 4a− 3b+ 2c− d and 6a− 3b+ c annot be both negative.Proof We proeed again by ontradition and assume that 4a− 3b + 2c− d and 6a− 3b + c are both negative for agiven set of parameters X . After simpli�ation, we obtain:
p1 = 4a− 3b+ 2c− d = κp[λw(1 + θ) + (1− β)(1 − φp)] + λwν[λp(1 + θ)− (1− β)(1 − θ − φp)]

+ σ[(1− β)(λp + λw(φp + θ)) + λwλp(1 + θ)] + Φy[(2β − 1)(λp + λw)− (1 − β)2] < 0and
p2 = 6a− 3b+ c = κp[λw + 1− β − β(1 − φp)] + λwν[λp + β(1 − θ − φp)]

+ Φyβ[2(1− β) + λp + λw] + σ[λpλw + (1− β)(1 − β + λp + λw)− β(λp + λw(φp + θ))] < 0.19



We denote by ci[r] the ofator of the variable r in the expression pi. Now, let us study the struture of thoseinequalities
p1 = κpc1[κp] + σc1[σ] + λwνc1[λwν] + Φyc1[Φy] < 0 (29)
p2 = κpc2[κp] + σc2[σ] + λwνc2[λwν] + Φyc2[Φy] < 0 (30)where

c1[κp] > 0, c1[σ] > 0, c2[λwν] > 0, c2[Φy] > 0, and
c1[λwν], c1[Φy], c2[κp] and c2[σ] are of unknown sign.At least one of the ofator of unknown sign of (29) and one of the ofator of unknown sign of (30) has to be negativeto ensure the negativity of the whole expression p1 and p2. We begin with a simple propertyProperty 13 If c1[Φy] < 0, then c2[σ] ≥ 0.Indeed, let us assume that c1[Φy] < 0 and c2[σ] < 0. This writes:

(2β − 1)(λp + λw) < (1− β)2

λpλw + (1 − β)2 + (1− β)(λp + λw) < β(λp + λw(φp + θ))Inserting the �rst inequality into the seond one, we obtain that
(2β − 1)(λp + λw) + λpλw + (1− β)(λp + λw) < β(λp + λw(φp + θ)) ⇒

λpλw − β(1 − θ − φp)and this is not possible, onsidering that λw and λp are stritly positive. Hene, to ensure that p1 and p2 are stritlynegative, the possibilities are the following:(I) c1[λwν] < 0 and c1[Φy] < 0, so c2[σ] ≥ 0 and c2[κp] < 0.(II) c1[λwν] < 0 so c2[σ] ≥ 0 and c2[κp] < 0. c1[Φy] ≥ 0.(III) c1[λwν] < 0 and c1[Φy] ≥ 0.Let us rule out those ases in the order.Assumption 5 c1[λwν] < 0 and c1[Φy] < 0, so c2[σ] ≥ 0 and c2[κp] < 0.This implies:
[λw(1 + θ) + (1 − β)(1− φp)]κp < Φy[(1− β)2 − (2β − 1)(λp + λw)]+

λwν[(1 − θ − φp)(1− β)− λp(1 + θ)] − σ[(1− β)(λp + λw(φp + θ)) + λwλp(1 + θ)] = Mand
[β(1− φp)− λw − (1− β)]κp > s[λpλw + (1− β)(1 − β + λp + λw)− β(λp + λw(φp + θ))]+

λwν[λp + β(1 − θ − φp)] + Φyβ[2(1 − β) + λp + λw] = mNow, we ompute [λw(1 + θ) + (1 − β)(1 − φp)]m − [β(1 − φp) − λw − (1 − β)]M and prove that it is positive. Forthat purpose, let us study the terms in fator of σ, λwν and Φy. For σ, we an see diretly that it is stritly positive(beause of the negative sign of its ofator in M). For Φy, we obtain:
λw(1 + θ)β(2 + λp) + λ2

w(1− β + βθ) + λw(1− β)(1 − β + λp)+

(1 − β)[(1 − β)2 − (2β − 1)(λp + λw)] + β2(1 − φp)(λp + λw) > 0and �nally, we obtain for λwν

λpλw(1 + θ) + λp(1− β)(1 − φp) + λwβ(1 + θ)(1 − θ − φp) + λw(1− θ − φp)(1− β)+

(1− β)2(1− θ − φp) + λp(1 + θ)[β(1 − φp)− λw − (1− β)] > 0Hene, the assumption 5 annot hold. 20



Assumption 6 c1[σ] < 0 so c2[σ] ≥ 0 and c2[κp] < 0. c1[λwν] ≥ 0Now we use Φy and obtain
[(1− β)2 − (2β − 1)(λp + λw)]Φy > κp[λw(1 + θ) + (1− β)(1 − φp)] + λwν[λp(1 + θ)− (1 − θ − φp)(1 − β)]+

σ[(1 − β)(λp + λw(φp + θ)) + λwλp(1 + θ)] = mand
Φyβ[2(1− β) + λp + λw] < −σ[λpλw + (1 − β)(1− β + λp + λw)− β(λp + λw(φp + θ))]

− λwν[λp + β(1− θ − φp)] + κp[β(1 − φp)− λw − (1− β)] = M.We proeed as previously and ompute β[2(1−β)+λp+λw]m− [(1−β)2− (2β− 1)(λp+λw)]M . It is straightforwardto see that the ofators of σ and λwν are positive. The ofator of κp is
βλw(1 + θ)[2(1− β) + λw + λp] + β(1 − β)2(1− φp) + β2(1− φp)(λp + λw)+

λw(1− β)[(1 − β)2 − (2β − 1)(λp + λw)] > 0beause all the terms involved are positive. As previously, we get a ontradition and assumption 6 annot hold.Assumption 7 c1[λwν] < 0 and c1[Φy] ≥ 0Now, we have to use λwν. We de�ne
[(1− θ − φp)(1− β)− λp(1 + θ)]λwν > κp[λw(1 + θ) + (1− β)(1 − φp)] + Φy[(2β − 1)(λp + λw)− (1 − β)2]+

σ[(1 − β)(λp + λw(φp + θ)) + λwλp(1 + θ)] = mand
[λp + β(1 − θ − φp)]λwν < κp[λw + 1− β − β(1 − φp)]− Φyβ[2(1 − β) + λp + λw]

− σ[λpλw + (1− β)(1 − β + λp + λw)− β(λp + λw(φp + θ))] = MThe ofator of Φy in [λp + β(1− θ− φp)]m− [(1− θ− φp)(1− β)− λp(1 + θ)]M is stritly positive, and we just haveto ompute the ofators of σ and κp. The ofator of σ is:
λp(1− β) + λpλw(1− β)(φp + θ) + λpλwβ(1 + θ)(1 − θ − φp) + λpλw(1− β)(1− θ − φp)+

λ2
pβ(1 + θ) + λpλwβ(1 + θ)(φp + θ) + (1 − β)2(1 − θ − φp)(λp + λw) + (1− β)3(1 − θ − φp)

− λp(1 + θ)(1 − β)2 − λp(1 + θ)(1 − β)(λp + λw).The annoying terms are the one of the last line, beause of their negative sign. But using the fat that c1[λwν] < 0,whih writes
λp(1 + θ) < (1− β)(1− θ − φp)we get that the fourth line is greater than:

−(1− β)3(1− θ − φp)− (1 − β)2(1 − θ − φp)(λp + λw)and those terms exatly anel the one of the third line. Hene the ofator of σ is stritly positive. Now we omputethe ofator of κp. Note that if λw +1−β−β(1−φp) < 0 we immediately know that this ofator is positive. Hene,we an assume that this quantity is positive. Hene, c2[σ] < 0, and that an be written
λw(1− β) + (1− β)2 < β(λp + λw(φp + θ)) − λpλw − λp(1− β)The ofator of κp writes

2λpλw(1 + θ) + λw(1 + θ)β(1 − θ − φp) + λp(1 − β)(1 − φp) + β(1 − β)(1 − φp)(1 − θ − φp)+

(1− β)λp(1 + θ) + β(1 − φp)[(1− θ − φp)(1− β) − λp(1 + θ)]

− λw(1− β)(1 − θ − φp)− (1 − β)2(1− θ − φp)21



using the former inequality, the annoying terms on the third line are greater than
λpλw(1 − θ − φp) + λp(1− β)(1 − θ − φp)− βλp(1− θ − φp)− βλw(φp + θ)(1 − θ − φp)we have diretly that

−βλw(φp + θ)(1 − θ − φp) + βλw(1 + θ)(1 − θ − φp) > 0.Now we use
λp(1 + θ) < (1− θ − φp)(1 − β)to obtain that

−βλp(1− θ − φp) + β(1 − β)(1 − φp)(1− θ − φp) > −β(1 − β)(1− θ − φp)
2 + β(1 − β)(1− φp)(1 − θ − φp) > 0hene, the ofator of κp is also stritly positive. �From property 12, the deomposition of polynomial P , the de�nition of its oe�ients and the de�nition of θ (27), allthe developments derived in the ase Φy = 0 apply and theorem 3 an be generalized.Theorem 4 For every X ∈ DX , for all admissible values of γ and ξ (namely suh that φp+ξ > 0 and 1−θ−φp+γ > 0with θ = Φy

(1−β)(λp+λw)
λwλp[σ+ν+np]

> 0), γ + ξ > 0 if and only if Pγ,ξ,θ satis�es property (i).In other words, the neo-Keneysian model with staggered pries and wages (1) to (5) has a unique solution underrational expetations if and only if Φp +Φw +Φy
(1−β)

(nw+np)

(

1
λp

+ 1
λw

)

> 1.
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A General elements on neo-Keynesian models for monetary poliy solvedunder rational expetationsThis paper was written as a ollaboration between an eonomist and an applied mathematiian. This appendix providesthe neessary de�nitions to set our problem for someone not familiar with neo-Keynesian models for monetary poliysolved under rational expetations.De�nition 1 (Dynami Stohasti General Equilibrium Models (DSGE)) A DSGE model is a set of equa-tions whih desribes jointly the short term �utuations of key maroeonomi variables (growth, in�ation, interestrate...). The dynami of these variables, referred to as endogenous variables, will depend on their past, present andforeast values, but also on exogenous variables (shoks), whose dynami is not desribed by the model.In this lass of models are neo-Keynesian models, partiularly useful in the ontext of monetary analysis and RealBusiness Cyle models in whih nominal variables (in partiular pries) are supposed �exible.These models borrow from miroeonomists their modelling of di�erent eonomi agents (households, �rms, govern-ments, banks, monetary authority...) on di�erent markets (goods, assets, labour...). They have triggered an extensiveliterature at the frontier between eonomis and applied mathematis.Eonomi deisions, suh as savings, investments, onsumption, wage setting, will then be written as funtions of thepast and present values of various eonomi variables and the expetation formed by the deiding agent over the futurevalues of some of these eonomi variables. These latter variables will be referred to as forward looking variables. Forinstane, a household may inrease its savings and redue today's onsumption if it believes the remuneration of itssavings will inrease tomorrow.To solve suh a model, one must de�ne how agents form their expetations over the future. One way to de�ne thisfuntion is to make the (strong) assumption that every eonomi agent knows the others' funtions of deision andwill form expetations ompatible with them.7 As a onsequene, all agents will form the same expetations.To understand better the onept of expetations in this framework, it is important to point out the stohasti dimen-sion of DSGE models, whih ontains two types of variables8.Endogenous variables are the result of the agents' deisions (onsumption, pries, prodution, savings, investments...).Their dynami is desribed by the model.Exogenous ones are perturbations, or shoks on the endogenous variables whih are not explained in the model (oilshok, hange in the bargaining power of trade unions, �sal hanges, soer team winning the world up, hurrianesdestroying houses or fatories...). These variables will be summarized with random variables (usually iid white noises)impating the eonomy in various ways.Sine the realizations of these random variables are not known in advane, agents must try to guess them. From theseguesses, they an dedue future values of the endogenous variables.De�nition 2 (Rational expetations) The expetations mentioned so far are alled rational expetations.They are the statistial operator expetation (or �rst moment), over the distribution of possible realizations of theexogenous variables, onditional on the values of the endogenous and exogenous variables up to now and the equationsof the model, whih we will denote E(.|t)To sum up, if the endogenous variables, i.e. the variables of interest, are gathered in the vetorX(t), and the exogenousvariables in the vetor z(t) our model an be written as
E(X(t+ 1)|t) = AX(t) +Bz(t) (31)The vetor X an inlude endogenous variables at the urrent and the previous period to allow for the representationof the model above, in whih ase the number of forward looking variables will be stritly lower than the dimension of

X . The omponents of the vetor z(t) are simply the di�erent exogenous variables at the urrent period. The matrix
B desribes the way in whih these shoks (the exogenous variables) impat the endogenous variables.7This idea is attributed to Robert Luas (Luas, 1976) and has been a ornerstone of maroeonomis sine then.8A variable being a funtion of time, a sequene indexed by time or a time series, depending on where you ome from in siene.24



A solution to suh a model is a trajetory of endogenous variables ompatible with the equations of the model (inlud-ing the expetation mehanism) for any realization of the exogenous variables over time. It is not unique a priori.The non-uniqueness of the solution would mean that in suh an eonomy, there an be spontaneous �utuations, asagents beliefs or oordination "jump" from one solution to another. Suh equilibria are alled sunspot equilibria andare problemati as they inrease the volatility of the eonomy (Woodford, 1987).An important harateristi of the model is the number of forward looking variables, i.e. the variables upon whihthe agents must form some expetations. In a seminal paper of 1980, Blanhard and Kahn have shown that there isa unique solution to model (31) if and only if there are as many forward looking variables as eigenvalues of A whihare stritly larger than one in modulus.Theorem 5 (Blanhard, Kahn) We onsider a linearised DSGE model:
E(X(t+ 1)|t) = AX(t) +Bz(t) (32)in whih X gather endogenous variables and z exogenous variables. If solved under rational expetations, this modelhas a unique solution if and only if there are as many forward looking variables in X as there are eigenvalues of Awhih are stritly larger than one in modulus.DSGE models are widely used in entral banks to enlighten the ondut of monetary poliy. Indeed, suh modelsprovide a normative framework to analyse the e�et of the Central Bank on the eonomy and desribe how its behaviouran be optimal, that is maximize a welfare riterion.De�nition 3 (Central Bank and monetary poliy) A entral bank is a politial institution. Historially, theseinstitutions have been reated to print and issue the money needed for eonomi transations. Nowadays, they alsousually serve ontrol and regulation purposes on the private banking system.More important for this paper is the entral bank's role in onduting monetary poliy : by setting the interest rate atwhih it lends money to private banks, the entral banks an ontrol in�ation and ativity. The hoie of this shortterm interest rate is the monetary poliy instrument through whih the entral bank monitors (though imperfetly) theeonomy.For instane, the European entral bank's9 mandate is to maintain prie stability, understood as an average in�ationof onsumption pries lower but lose to 2%.(Taylor, 1993) showed that the Federal Reserve (the USA Central Bank) monetary poliy is to set its interest ratefollowing a funtion of prie in�ation and the level of prodution.De�nition 4 (Taylor rule) The Taylor rule is a funtion whih desribes monetary poliy deisions, i.e. the hoieof the interest rate by the Central Banker, as a linear funtion of in�ation and output:

it = i∗ + φππt + φyytwhere i, i∗, π, y are the interest rate set, the interest rate target of the Central Banker, prie in�ation and output gap10.Many variations of this rule have been studied, using expeted future in�ation, output growth, over four quartersin�ation...(Taylor, 1993) argues that this rule is a good benhmark for monetary poliy ommittees. Indeed later researh haveshown that suh a rule is optimal in the standard neo-Keynesian model for monetary poliy analysis (Woodford, 2001).Another key issue is the uniqueness of the model's solution: the solution is unique if and only if the model satis�esthe ondition of theorem (5) also known as the rank ondition or Blanhard and Kahn ondition. On the standardneo-Keynesian model for monetary poliy analysis, it has been shown that this ondition solely depends on the Cen-tral Banker's poliy rule. Numerially on more omplex models, we generally �nd that ensuring the uniqueness of the9http://www.eb.int/press/govde/html/index.en.html10The output gap is the deviation of output (i.e. prodution) from its potential or optimal value. It aptures the extend to whih theeonomy is overheating. 25



solution relies ruially on the Central Banker. This result is known as the Taylor priniple: the Central Banker'sreation to prie in�ation must be higher than one. More simply, it means that if in�ation inreases by 1 point, theCentral Banker should inrease its interest rate by more than 1 point.In this paper we determine the neessary and su�ient onditions to ensure the uniqueness of the solution to a modelless onstrained than the standard neo-Keynesian model for monetary poliy analysis. This model is borrowed from(Ereg et al., 2000) and (Galí, 2008), it di�ers from the standard framework by inluding wage rigidities in additionto prie rigidities. In this model the Central Banker aims at stabilizing altogether prie and wage in�ation and output,so we onsider a poliy rule reating to these three endogenous variables. We show that the neessary and su�ientondition to ensure the uniqueness of the solution depends only on the reation funtion of the Central Banker, i.e.on how the interest rate is set.
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