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The frontier of indetermina
y in a neo-Keynesian model with staggeredpri
es and wages∗∗Alexis Blasselle∗ Aurélien Poissonnier†This version De
ember 2013, First version July 2011
Abstra
tWe 
onsider a neo-Keynesian model with staggered pri
es and wages. When both 
ontra
ts exhibit sluggishadjustment to market 
onditions, the poli
y maker fa
es a trade-o� between stabilizing three welfare relevant vari-ables: output, pri
e in�ation and wage in�ation. We 
onsider a monetary poli
y rule designed a

ordingly: theCentral Banker 
an rea
t to both in�ations and the output gap. We generalize the Taylor prin
iple in this 
ase:it embeds the frontier of determina
y derived with staggered pri
es only, it is also symmetri
 in pri
e and wagein�ations. It follows that when staggered labour 
ontra
ts are 
onsidered, wage in�ation is also an illegible ande�
ient target for the Central Banker.

Keywords: Dynami
 Sto
hasti
 General Equilibrium model, Monetary Poli
y Rule, Sun Spot Equilibria, TaylorPrin
ipleJEL : C62, C68, E12, E58, E61

∗when this paper was written, Laboratoire Ja
ques-Louis Lions, Université Pierre et Marie Curie, Paris
†Crest-LMA - aurelien.poissonnier�ensae.fr

∗∗We are grateful to Jordi Galí for raising this problem during the 2009 Bar
elona Ma
roe
onomi
 Summer S
hool; to Yvon Maday(LJLL) and other mathemati
ians at LJLL for proofreading and 
omments; to Olivier Loisel for suggestions.1



Introdu
tionIn (Taylor, 1993), John Taylor advo
ates the use of monetary poli
y rules where the Central Banker rea
ts to bothpri
e in�ation and output as a ben
hmark to be used judgementally. His design of Wi
ksellian rule has been extensivelystudied sin
e then in the 
ontext of neo-Keynesian models. In su
h models, two normative questions arise:1� What kind of poli
y rule 
an a
hieve a so
ial welfare optimum?� How 
an one rule out sun-spot �u
tuations (as des
ribed by (Woodford, 1987))?In both respe
ts, it has been shown that the Taylor rule has appealing properties (Woodford, 2001): in the sim-plest neo-Keynesian model, the Taylor rule 
an be proved optimal in terms of welfare under some assumptions(Rotemberg and Woodford, 1999). It is also key in enfor
ing solution determina
y: the Taylor prin
iple states thatthe Central Banker's rea
tion to in�ation must be large enough to ensure the uniqueness of the solution under rationalexpe
tations.2 These results hold under staggered pri
es and �exible wages. When 
onsidering both staggered pri
esand wages, some of the appealing properties of the standard neo-Keynesian model are weakened. (Blan
hard and Gali,2007) show that allowing for both rigidities generates a trade-o� between stabilizing in�ation and output even in theabsen
e of 
ost-push sho
ks:3 the so
ial optimum 
ould be a
hieved when only staggered pri
es were 
onsidered, it isno longer the 
ase with both staggered 
ontra
ts. (Er
eg et al., 2000) study the welfare impli
ations of the additionof staggered wages. They show that is not possible for the monetary poli
y to fully stabilize more than one of thethree obje
tives: pri
e in�ation, wage in�ation or output, but the varian
e of ea
h is detrimental to welfare. Usingnumeri
al simulations, they also show that sole pri
e or wage in�ation targeting is suboptimal in this 
ontext, but apoli
y rule su
h as suggested by Taylor or with rea
tions to both pri
e and wage in�ations performs nearly as well asthe optimal rule.In this paper, we 
onsider the same model as (Galí, 2008, 
hapter 6) or (Er
eg et al., 2000) but are mainly 
on
ernedwith the problem of sun spot �u
tuations instead of welfare optimization. We 
onsider a monetary poli
y rule in linewith Er
eg et al.'s results: the Central Banker 
an rea
t to both in�ations and the output gap. With straightforwardnotations, the monetary poli
y rule takes the following form:
it = Φpπ

p
t +Φwπ

w
t +ΦyytWe �nd that the ne
essary and su�
ient 
ondition to rule out sun-spot equilibria is symmetri
 in in�ations:

Φp +Φw +
1− β

κ̃
Φy > 1with β households' dis
ount fa
tor and κ̃ a 
oe�
ient depending symmetri
ally on both slopes of the pri
es and wagesPhillips 
urves.The frontier of the Taylor prin
iple with staggered pri
es only is Φp+

1−β
κ

Φy > 1 with κ the slope of the Phillips 
urveon pri
es (Woodford, 2001). Our results thus generalizes the frontier derived is this simpler 
ase. Though the model'ssymmetry may not appear straightforward, similar symmetry arises when studying the optimal monetary poli
y (seethe fun
tional form of the welfare 
riterion derived both by Galí and Er
eg et al.). The intuition for this symmetry isgiven by Blan
hard and Gali's 
omment on (Er
eg et al., 2000). In the simple model with staggered pri
es only, thePhillips 
urve implies that stabilizing pri
e in�ation is equivalent to stabilizing the output gap, a result they presentas a divine 
oin
iden
e be
ause it allows the Central Banker to enfor
e the so
ial optimum. But, as aforementioned,they show that with the addition of staggered wages, this result no longer holds. In Er
eg et al.'s model, they note aweaker form of this 
oin
iden
e: 
ombining the two Phillips 
urves yields that stabilizing the output gap is equivalentto stabilizing a weighted average of pri
e and wage in�ation (with the weight on ea
h in�ation being the slope of theothers Phillips 
urve).In the remainder of this paper, the �rst se
tion re
alls the model. We expose some general mathemati
al propertiesof this model in se
tion 2 when the Central Banker 
an only rea
t to pri
es and wages in�ation (Φy = 0). We then1These questions are independent of one another: optimal rules do not ne
essarily avoid sun-spot �u
tuations (Clarida et al., 1999)2(Bullard and Mitra, 2002) shows that the properties of this prin
iple are also key in a model with adaptive learning3In presen
e of 
ost-push sho
ks there is a short run trade-o� between the two obje
tives (Clarida et al., 1999)2



study the uniqueness of its solution in this 
ase (Φy = 0) (se
tions 3, 4 and 5). We �rst 
onsider the limit sub
ase
Φp + Φw = 1 (se
tion 3). In se
tion 4, we study the deviations from this sub
ase (Φp + Φw ≷ 1). In se
tion 5 wederive the frontier of the Taylor prin
iple when Φy = 0. Finally we expand this result to the 
ase where the CentralBanker 
an also rea
t to the output gap (Φy 6= 0) in se
tion 6. Readers not familiar with this literature 
an �nd inappendix some general elements on neo-Keynesian models for monetary poli
y solved under rational expe
tations inwhi
h we expose the general set-up of this problem.1 A monetary model with sti
ky wages and pri
esWe study the model exposed in (Galí, 2008, 
hap 6) and (Er
eg et al., 2000). This model extends the standard neo-Keynesian model for monetary poli
y analysis whi
h 
onsist of an IS 
urve relating the output gap to the expe
tedreal interest rate, a Phillips 
urve relating in�ation, expe
ted in�ation and output gap and a monetary poli
y ruledes
ribing how the interest rate is set by the Central Banker. The present extension of the model 
onsiders wagerigidities under the form of Calvo 
ontra
ts. It follows from this rigidity that real wages may deviate from their�exible equivalent due to exogenous disturban
es.The model takes the following linear form:4

π
p
t = βE(πp

t+1|t) + κpyt + λpωt (1)
πw
t = βE(πw

t+1|t) + κwyt − λwωt (2)
ωt−1 = ωt − πw

t + π
p
t +∆ωn

t (3)
yt = E(yt+1|t)−

1

σ
(it − E(πp

t+1|t)− rnt ) (4)
it = Φpπ

p
t +Φwπ

w
t +Φyyt + vt (5)In this system, at ea
h date t, a set of variables (πp, πw, ω, y, i) are determined by their 
urrent and past value andtheir expe
ted value at the following date (E(.|t), is the rational expe
tations operator at date t, i.e. the expe
tation
onditional on the values of every variables up to date t and the model itself). Equations (1) and (2) are the Phillips
urves on pri
e in�ation (πp) and wage in�ation (πw). They des
ribe the progressive adjustment of pri
es and wages tomarket 
onditions. Pri
es may in
rease with expe
ted in�ation or the marginal 
ost of produ
tion. This 
ost dependspositively on the output gap (yt, de�ned as the deviation of output from its fully �exible equivalent) and the real wagegap (ωt, de�ned as the deviation of real wage from its fully �exible equivalent). Wages may in
rease with expe
tedwage in�ation or de
rease with the wage mark-up (taken in deviation from the �exible 
ontra
ts 
ase). This mark-updepends positively on the real wage gap and negatively on the output gap. Equation (3) des
ribes the fa
t that be
auseof nominal rigidities, real wages depart from their fully �exible 
ounterpart. Exogenous sho
ks to the e
onomy a�e
tingthe real wage (∆ωn) are not instantaneously transmitted to the a
tual real wage but only to its �exible 
ounterpart,hen
e driving a wedge between in�ations and the dynami
 of the real wage gap. Equation (4) des
ribes the evolutionof the output gap (y) as a fun
tion of interest rate (i) and expe
ted in�ation. The impli
it assumption here is thatoutput is driven, in the short run, by private demand. rnt is the natural rate of interest, that is the real interestrate whi
h would prevail under fully �exible 
ontra
ts. Equation (5) des
ribes the interest rate de
ision of the CentralBanker. It is a Taylor rule modi�ed to a

ount for the fa
t that the Central Banker may rea
t to wages in�ation as wellas pri
es in�ation. The higher in�ations or output are, the higher the Central Banker will set the interest rate in or-der to temper the e
onomi
 growth. Moreover, the Central Banker may depart from this rule for exogenous reasons (v).The parameters of this model are:� 0 < β < 1, is the dis
ount fa
tor of households.� σ ≥ 0, is the inverse intertemporal elasti
ity of substitution of 
onsumption.� Φp > 0, is the Central Banker's rea
tion to pri
e in�ation.(Taylor, 1993) 
onsiders Φp = 1.54The 
omplete derivation of the model is exposed in full details in (Galí, 2008, 
hap 6) with the same notations3



� Φw ≥ 0 is the Central Banker's rea
tion to wage in�ation. In the standard 
ases the Central Banker only rea
tto pri
e in�ation (Φw = 0)� Φy ≥ 0 is the Central Banker's rea
tion to the output gap. (Taylor, 1993) 
onsiders Φy = 0.5.� λp =
(1−θp)(1−βθp)

θp

1−α
1−α+αεp

, where� 0 < θp < 1, is the Calvo parameter on pri
es, in other words the sti
kiness of pri
es (if 0, pri
es are fully�exible)� 0 < α < 1, with 1− α the elasti
ity of output with respe
t to labour� 0 < εp ≤ 1, is the elasti
ity of substitution among goods
⇒ 0 < λp� λw = (1−θw)(1−βθw)

θw(1+ϕεw) , where� 0 < θw < 1, is the Calvo parameter on wages, in other words the sti
kiness of wages (if 0, wages are fully�exible)� 0 < ϕ, is the Fris
h elasti
ity, in other words the 
onvexity of the 
ost of labour in terms of welfare.� 0 < εw ≤ 1, is the elasti
ity of substitution among labour types
⇒ 0 < λw� κp =

αλp

1−α
, we will also denote later λpnp = κp with np > 0� κw = λw(σ+

ϕ
1−α

) whi
h implies κw ≥ λwσ. We will also denote later λwnw = κw with nw > 0 or κw = λw(σ+ν)with ν > 0.Denoting xt = [yt, π
p
t , πw

t , ωt−1]
T , the endogenous variables, and zt = [rnt − vt, ∆ωn

t ]
T , the exogenous variables, theequations (1) to (5) 
an be written in the form:

xt = A−1 ( E(xt+1|t) +B zt) (6)In the equation (6), the matrix of interest A is:
A =























1 +
κp

σβ
+

Φy

σ

βΦp − 1− λp

σβ

βΦw + λp

σβ

λp

σβ

−κp

β

1 + λp

β

−λp

β

−λp

β

−κw

β

−λw

β

1 + λw

β

λw

β

0 −1 1 1























(7)
There are three forward looking variables in this models: ([yt, π

p
t , πw

t ]).Lemma 1 A

ording to (Blan
hard and Kahn, 1980), the system (6) has a unique solution if and only if the matrixA de�ned by (7) has 3 eigenvalues stri
tly larger than one in modulus and one eigenvalue stri
tly smaller than one inmodulus.In this 
ase, there is numeri
al eviden
e that the sum Φp + Φw should be larger than 1 when Φy = 0 to meet this
ondition. When Φy 6= 0, the 
ondition on Φp + Φw is de
reasing with Φy (Galí, 2008). Nevertheless, a formal proofto these properties has not been given yet, it is the main obje
tive of this paper.
4



Main results In the remainder of this paper we show that any monetary poli
y rule satisfying
Φp +Φw +Φy

(1− β)

(nw + np)

(

1

λp

+
1

λw

)

> 1 (8)rules out sunspot equilibria.The admissibility of a poli
y rule symmetri
ally depends on wage in�ation and pri
es in�ation: when the 
entral bankdoes not respond to 
hanges in output, the 
ondition for monetary poli
y 
omes down to Φp + Φw > 1 in line withGalí's numeri
al investigations.Also in line with Galí's numeri
al investigations, when the 
entral bank rea
ts to 
hanges in output, doing so relaxesthe 
onstraint above, proportionally to Φy with a fa
tor (1−β)
(nw+np)

(

1
λp

+ 1
λw

). This 
oe�
ient 
ru
ially and symmetri-
ally depends on the Phillips 
urves of pri
es and wages: more impatient agents (smaller β) or �atter Phillips 
urves(smaller λ or n), fa
ilitate the task of the Central Banker to prevent sun spot �u
tuations.In this model, a permanent shift in pri
e in�ation (π̃) implies an identi
al permanent shift in wage in�ation (equa-tion (3)). The Phillips 
urves (equations (1) and (2)) imply a proportional shift in output gap ỹ = (1−β)
(nw+np)

(

1
λp

+ 1
λw

)

π̃.In turn, the Taylor rule (5) implies that the rea
tion of the Central Banker is to raise the nominal interest rate by
ĩ =

[

Φp +Φw +Φy
(1−β)

(nw+np)

(

1
λp

+ 1
λw

)]

π̃. Thus, as in the standard neo-Keynesian model without wage rigidities(Woodford, 2011, 
hapter 4), our frontier of indetermina
y 
an also be interpreted in terms of the Taylor prin
iple:the Central Banker rea
ting more than one for one to permanent 
hanges in in�ation.Using Dynare (Adjemian et al., 2011), it is possible to verify numeri
ally frontier (8).5 (Galí, 2008, 
hapter 6) and(Er
eg et al., 2000) show that wage in�ation targeting 
ompares with pri
e in�ation targeting in terms of welfare.Using Dynare it is possible to 
on�rm their result of symmetry by 
omputing the optimal 
oe�
ients for the monetarypoli
y rule 
onsidered here.6 When 
onsidering a Central Banker rea
ting to both in�ations and the output gap, we�nd Φp = 47.1, Φw = 67.8, Φy = 231.9. This optimal rule implies a very sensitive interest rate whi
h is standardwhen the bene�ts of a smoothed monetary poli
y are not 
onsidered. More interestingly, the rea
tions of the optimalinterest rate to both in�ations are 
omparable.Wage in�ation and pri
e in�ation play similar roles for the design of the optimal monetary poli
y, we show that theyalso play symmetri
 roles for eliminating sun-spot �u
tuations. This extended 
on
lusion remains "at odds with thepra
ti
e of most 
entral banks, whi
h seem to atta
h little weight to wage in�ation as a target variable"(Galí, 2008).Outline of the proof De�ning the frontier of indetermina
y is based on the study of the roots of the 
hara
teristi
polynomial of matrix A, a fourth degree polynomial. Though it is not 
omplex mathemati
s, it is rather 
umbersome.We are parti
ularly grateful to Yvon Maday and other mathemati
ians at Laboratoire Ja
ques-Louis Lions for proof-reading and 
omments.In se
tions 2 to 5 we develop the proof in the 
ase Φy = 0. In se
tion 2 we study the general properties of thispolynomial and its 
oe�
ients. We use the intuition that in this 
ase the frontier of determina
y is Φp + Φw = 1and de
ompose the polynomial as a fourth degree polynomial 
orresponding to this 
ase plus deviations from this
ase in both dire
tions (Φp, Φw). In se
tion 3 we study the polynomial in the 
ase Φp + Φw = 1 to show that:
1 is a root of this polynomial; its real roots are non-negative; its 
omplex roots have a modulus stri
tly greaterthan one; and at most one real root is in ]0, 1[. In se
tion 4 we study the deviations from Φp + Φw = 1; we showthat these deviations are se
ond degree polynomials with positive real roots, one stri
tly greater than one the otherstri
tly smaller than one. In se
tion 5 we study how the deviations from Φp + Φw = 1 modi�es the roots of the
hara
teristi
 polynomial. The 
omplex roots 
annot enter the unit 
ir
le. The real roots stri
tly greater or lower5Code available upon request6The welfare 
riterion to be optimized is derived in Galí, we use his ben
hmark 
alibration and in line with his methodology 
onsiderte
hnology sho
ks only. 5



than one are kept away from 1. The root 1 moves in the dire
tion ensuring the uniqueness of the model's solution(depending on the existen
e of another root smaller than one) if and only if the deviation from Φp+Φw = 1 is positive.In se
tion 6 we show that the 
ase Φy 6= 0 
an be treated identi
ally to the 
ase Φy = 0. We 
onsider the frontier ofindetermina
y under the form Φp+Φw = 1−θ and show that setting θ = Φy
(1−β)

(nw+np)

(

1
λp

+ 1
λw

) allows a de
ompositionof the 
hara
teristi
 polynomial whi
h has the same properties as in the 
ase Φy = 0. We 
an 
on
lude that equation(8) generalizes the frontier of indetermina
y.

6



2 Preliminary properties of the model's 
hara
teristi
 polynomialA

ording to what has been explained above, the uniqueness result probably holds if and only if Φw + Φp > 1 when
Φy = 0. We begin with the study of this limit 
ase Φw +Φp = 1. For that purpose, we introdu
e a new parameter φpand use the following parametrization:

Φp = φp + ξ Φw = 1− φp + γ (9)
0 < φp < 1 ξ s.t Φp > 0 γ s.t. Φw > 0 (10)Su
h values of γ and ξ are 
alled admissible throughout the paper. The domain of interest, Dp,w, is 
oloured in blueon Figure 1. This parametrization of Dp,w is not inje
tive, as three parameters (φp, ξ, γ) des
ribe a two dimensionaldomain, but this 
hoi
e makes the study easier.

Φp

Φw

1

1

Φ
p +

Φ
w
=
1

P0,0

•

Pγ1,ξ1 •
ξ1

γ1

P ′
0,0 •

Pγ2,ξ2

ξ2

γ2

Dp,w

Figure 1: Domain of interest (in blue) and parametrizationLet X denote the ve
tor of the new parameters:
X = [β, φp, κp, λp, λw, σ, ν] ∈ ]0, 1[× ]0, 1[× (R∗

+)
5 = DX . (11)it ex
ludes γ and ξ, treated as spe
ial parameters.Remark 1 Please note that we use indistin
tly the following notations: κp = λpnp and κw = λwnw = λw(σ + ν).The 
hara
teristi
 polynomial of the matrix de�ned in (7) above 
an be expressed as follows, with impli
it dependen
yon X :

Pγ,ξ(t) = at4 − bt3 + cγ,ξt
2 − dγ,ξt+ eγ,ξ. (12)

7



with the 
oe�
ients:
a = σβ2

b = β[κp + σ(2 + 2β + λp + λw)]

cγ,ξ = κp[1 + λw + β(1 + φp + ξ)] + λwν[λp + β(1 − φp) + βγ]

+ σ[1 + 4β + β2 + λp(1 + β) + λw(1 + λp + (2 − φp)β + βγ)]

dγ,ξ = κp[1 + λw + φp(1 + β) + λwγ + (1 + β + λw)ξ] + λwν[λp + (1− φp)(1 + β) + (1 + β + λp)γ + λpξ]

+ σ[2β + 2 + λp + λw(1 + λp + (1 + β)(1− φp) + (1 + β + λp)γ + λpξ)]

eγ,ξ = σ + κpφp + κpξ + λw(σ + ν)(1− φp) + λw(σ + ν)γ.We denote 
omplex numbers z = ρ(cos θ + i sin θ) and
D = {z ∈ C s.t. |z| ≤ 1}. (13)

z is stri
tly in (resp. out of) D if |z| < 1 (resp. |z| > 1).We adopt three 
onventions: a fourth degree polynomial P is said to satisfy the property(i) if P has one root stri
tly in D and three roots stri
tly out of D,(ii) if P has two real roots and two 
omplex roots,(iii) if P has four real roots.A

ording to the explanation above, the uniqueness of the solution is equivalent to the fa
t that Pγ,ξ satis�es (i).The polynomial Pγ,ξ satis�es the following propertiesProperty 1 For every ve
tor of parameters X ∈ DX , (a, b) ∈ (R∗
+)

2 and ∀ γ ≥ 0, ∀ ξ ≥ 0, (cγ,ξ, dγ,ξ, eγ,ξ) ∈ (R∗
+)

3.This implies that ∀ t ≤ 0, Pγ,ξ(t) > 0.Proof : The sign of the 
oe�
ients derives from their de�nition and the de�nition (11) of DX . The sign of thepolynomial Pγ,ξ(t) derives from (12). �Property 2 For every ve
tor of parameters X ∈ DX , for every γ > 0 and for every ξ > 0, Pγ,ξ has a root λ1 ∈ ]0, 1[and a root λ∞ ∈ ]1,+∞[Proof :
Pγ,ξ(1) = −λwλp(γ + ξ)(np + nw) and lim

+∞
Pγ,ξ = +∞and as Pγ,ξ(0) > 0, the property is proved. �Property 3 The following inequalities hold:

∀X ∈ DX ∀ γ ≥ 0 ∀ ξ ≥ 0 b > 4a cγ,ξ > 2a+ b > 6a eγ,ξ > aProperty 4 The dis
riminant of the se
ond order derivative P ′′
γ is ∆(P ′′

γ,ξ) = 12 [3b2 − 8acγ,ξ]. Moreover, ∀ γ ≥ 0,
∀ ξ ≥ 0 if 3b2 < 8acγ,ξ then Pγ,ξ has two 
onjugate 
omplex rootsProof: If the dis
riminant of P ′′

γ,ξ is negative, this polynomial is positive for every t. In this 
ase, P ′

γ,ξ is stri
tlyin
reasing and has only one real root, and Pγ,ξ is stri
tly de
reasing and then stri
tly in
reasing. As we already knowthat it has two real roots, the two others are 
omplex. �8



From now on, we use the simplifying notations P0 = P0,0, c = c0,0, d = d0,0 and e = e0,0 and the followingde
omposition:
Pγ,ξ(t) = P0(t) + γ λw Q(t) + ξ λp S(t) where (14)
Q(t) = βnw t2 − [κp + nw(1 + β + λp)]t+ nw (15)
S(t) = βnp t

2 − [κw + np(1 + β + λw)]t+ np (16)Property 5 For all X ∈ DX , P ′
0(1) = 4a− 3b+ 2c− d and 6a− 3b+ c 
annot be both negative.Proof: We pro
eed by 
ontradi
tionAssumption 1 Exists X ∈ DX su
h that P ′

0(1) = 4a− 3b+ 2c− d < 0 and 6a− 3b+ c < 0.The �rst inequality rewrites:
4a− 3b+ 2c− d = κp[λw + (1− β)(1 − φp)] + λwν[λp − (1− β)(1 − φp)]

+ σ[(1 − β)(λp + λwφp) + λwλp] < 0.The only way to do so is:
λp < (1− β)(1 − φp) (17)Reintrodu
ing this into the last inequality, we obtain:

λwν >
κp[λw + (1− β)(1 − φp)] + σ[(1 − β)(λp + λwφp) + λwλp]

(1− β)(1 − φp)− λp

= m. (18)The se
ond inequality 
an be expressed as:
6a− 3b+ c = κp[λw + 1− β − β(1 − φp)] + λwν[λp + β(1 − φp)]

+ σ[(1 − β)2 + λp(1− β) + λw(1 + λp)− λpβ − λwβ(1 + φp)] < 0and this implies another bound for λwν:
λwν <

−κp[λw + 1− β − β(1 − φp)]− σ[(1 − β)2 + λp(1 − β) + λw(1 + λp)− λpβ − λwβ(1 + φp)]

λp + β(1− φp)
= M. (19)Now let us denote by Dm and DM the denominators of m and M respe
tively, and 
ompute: ∆ ≡ (m−M)DmDM

∆ = κp[λw + (1− β)(1 − φp)][λp + β(1 − φp)] + σ[(1 − β)(λp + λwφp) + λwλp][λp + β(1 − φp)]

+ κp[λw + 1− β − β(1− φp)][(1 − β)(1 − φp)− λp]

+ σ[(1 − β)2 + λp(1− β) + λw(1 + λp)− λpβ − λwβ(1 + φp)][(1− β)(1 − φp)− λp]

= σ∆σ + κp∆κpwhere, after simpli�
ation:
∆σ = (1− β)(λp + 1− β)[(1 − β)(1 − φp)− λp] + λw(1− β)2(1− φp) + λpλwβ + λ2

p

∆κp
= (1− β)[(1 − β)(1 − φp)− λp] + (λp + λw)(1 − φp).It is not di�
ult to 
he
k that the two 
ofa
tors ∆σ and ∆κp

are stri
tly positive. Hen
e, we obtain that m−M > 0and this is not possible, 
onsidering (18) and (19). �3 The eigenvalues in the limit 
ase Φp + Φw = 1: P0 study
P0 satis�es the property 1, but not the property 2 as explained below.9



Property 6 P0(1) = 0 and we 
an write P0(t) = (t− 1)R0(t) with
R0(t) = at3 − (b − a)t2 + (a− b+ c)t+ a− b + c− d.Moreover, P0 has at least one root stri
tly greater than one.We are going to prove that R0 has at most one root in the unit disk D. We �rst note that a− b+ c− d = −e, and theproperty 3 enables us to tell that the produ
t of the roots of R0 is greater than one.3.1 The real rootsLet us study the 
ase in whi
h P0 satis�es (iii), namely has four real roots. Thanks to property 4, we know that thisimplies 3b2 > 8ac.Lemma 2 If P0 has four real roots, at most one belongs to ]0, 1[.Proof: Property 4, implies 3b2 > 8ac, and P ′′

0 has two real roots, denoted t− and t+. As P ′′
0 (t) = 12at2 − 6bt+ 2c,we easily obtain that:

t± =
b

4a
±
(

(

b

4a

)2

− c

6a

)
1

2

.Moreover
t− + t+ =

b

2a
> 2 t−t+ =

c

6a
> 1.We rule out the 
ase in whi
h the three roots of R0 are smaller than one, be
ause the produ
t of these roots must belarger than one, and pro
eed by 
ontradi
tion:Assumption 2 P0 has two roots (λi, λj) ∈ ]0, 1[× ]0, 1[.Figure 2 shows how P0 
ould look like under this assumption.

Figure 2: Example of a polynomial satisfying the assumption 2A straightforward study of the variations of P0 and P ′
0 show that our assumption implies that P ′

0(1) < 0 and t− < 1.This last inequality gives:
b

4a
− 1 <

(

(

b

4a

)2

− c

6a

)
1

2

⇐⇒

1− b

2a
< − c

6a
⇐⇒ 6a− 3b+ c < 0.10



Combining this with P ′
0(1) < 0, we obtain that ne
essarily:

4a− 3b+ 2c− d < 0 6a− 3b+ c < 0 (20)and this is in 
ontradi
tion with property 5. �3.2 The 
omplex rootsNow, we are interested in the possible 
omplex roots of P0.Lemma 3 If P0 has two 
omplex roots z and z̄, they are 
onjugate and outside the unit disk: |z| > 1.Proof: We pro
eed by 
ontradi
tion.Assumption 3 R0 has two 
omplex roots z = ρ(cos θ + i sin θ) and z̄ su
h that δ = 1− ρ2 ≥ 0.We have
R0(z) = aρ3(cos3 θ − 3 cos θ sin2 θ) + (a− b)ρ2(cos2 θ − sin2 θ) + (a− b+ c)ρ cos θ+

a− b+ c− d+ i[aρ3(3 sin θ cos2 θ − sin3 θ) + 2(a− b)ρ2 sin θ cos θ + ρ(a− b + c) sin θ]If R0(z) = 0, both its real and imaginary parts are equal to zero. Let us study the imaginary part, in whi
h ρ sin θ
an be put in fa
tor. Hen
e, we fo
us on ℑ∗(R0(z)) in whi
h ℑ(R0(z)) = ρ sin θℑ∗(R0(z)) and
ℑ∗(R0(z)) = 4a(ρ cos θ)2 − 2(b− a)ρ cos θ + a(1− ρ2)− b+ c = F (ρ cos θ)

F (t) = 4a

(

t2 − 2(b− a)

4a
t+

δa− b+ c

4a

)

. (21)Let us denote by r−F and r+F the two roots of F . It easily follows that
r±F =

b− a

4a
±
(

b − c− δa

4a
+

(

b− a

4a

)2
)

1

2

.Thanks to the assumption 3, we know that ρ ≤ 1, and as ℑ∗(R0(z)) = F (ρ cos θ), F has at least one real root in
]−1; 1[. The produ
t of the roots is greater than 3

2 , the sum is greater than 1
4 (due to property 3). Let us express ane
essary 
ondition to ensure that r−F < 1:

b − a

4a
−
(

b− c− δa

4a
+

(

b − a

4a

)2
)

1

2

< 1 ⇐⇒

1− 2
(b− a)

4a
<

b− c− δa

4a
⇐⇒ 4a− 2(b− a) < b− c− δa

⇐⇒ 6a− 3b+ c < −δa < 0. (22)Next, let us remark that the produ
t of the four roots of P0 being greater than one and P0 vanishing in 1, theassumption 3 ensures that the other real root is stri
tly greater than one. This implies that P ′
0(1) < 0, and property 5gives us the 
ontradi
tion with (22). �Property 7 For all θ ∈ ]0, π[, denoting by z = cos θ + i sin θ, we proved that

ℑ(R0(z)) = sin θ
[

4a(cos θ)2 − 2(b− a) cos θ − b+ c
]

> 0.Proof: Obviously, ∀ θ ∈ ]0, π[, sin θ > 0. We showed in the last proof that the roots of the polynomial F de�ned by(21) are stri
tly outside [0, 1], for all δ ∈ [0, 1]. For δ = 0, we obtain that
F (t) = 4at2 − 2(b− a)t− b+ cEvaluating in t = 0, it follows that F (0) = c− b > 0 due to property 3. �11



Con
lusion to P0 study We have showed that(I) 1 is a root of P0,(II) P0 has no negative root,(III) if P0 has 
omplex roots, their modulus is stri
tly larger than one,(IV) P0 has at most one root in ]0, 1[.Figure 3 illustrates the four 
on�gurations of roots for P0:
0.5 1 2 3

−1

0

1

2

3

4

5

6
 case 1: 4 real roots, one of them < 1

1 2 3 4.5
−5

0

5

10

15

20

25

30
 case 2: 4 real roots, all of them >= 1

0.5 1
−2

0

2

4

6

8

10

12
 case 3: 2 real roots, one < 1, 2 complex roots

1 2.5
−4

−2

0

2

4

6

8

10

12
 case 4: 2 real roots, all > 1, 2 complex roots

Figure 3: The four possible 
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ases 1 to 4
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4 Deviations from the limit 
ase : Q and S studyIn this se
tion, we study the polynomials Q and S de�ned, respe
tively, by (15) and (16). We give the expression oftheir real roots, and study them for 
omplex values, to ease the proof of the �nal theorem.4.1 On the real axisLet r−Q and r+Q denote the roots of Q.
Q(t) = βnwt

2 − [κp + nw(1 + β + λp)]t+ nw. (23)The sum and the produ
t of the roots are non-negative, and we easily obtain that
∆Q

4
= − 1

β
+

1

4

(

1 +
1 + λp

β
+

κp

βnw

)2

>
1

4

(

1− 1

β
+

λp

β
+

κp

βnw

)2

.Property 8 Q has two positive roots
r±Q =

1

2

(

1 +
1 + λp

β
+

κp

βnw

)

± 1

2

(

− 4

β
+

(

1 +
1 + λp

β
+

κp

βnw

)2
)

1

2

r−Q ∈ ]0, 1[ and r+Q ∈
]

1
β
,+∞

[.Proof:
Q(0) = nw > 0 Q(1) = −λp(np + nw) < 0We denote

B = 1 +
1 + λp

β
+

κp

βnw

∆ = B2 − 4

βLet us assume that r+Q = 1
2 (B +

√
∆) ≤ 1

β
, then

√
∆ ≤ 2

β
−B ⇒ − 1

β
≤ 1

β2
− B

β
⇒ B ≤ 1 +

1

βThe last inequality does not hold. Hen
e, r+Q > 1
β
. �Let r±S denote the two roots of S.

S(t) = βnpt
2 − [κw + np(1 + β + λw)]t+ npthe dis
riminant of S satis�es:

∆S

4
= − 1

β
+

1

4

(

1 +
1 + λw

β
+

κw

βnp

)2

>
1

4

(

1− 1

β
+

λw

β
+

κw

βnp

)2

.Property 9 S has two positive roots
r±S =

1

2

(

1 +
1 + λw

β
+

κw

βnp

)

± 1

2

(

− 4

β
+

(

1 +
1 + λw

β
+

κw

βnp

)2
)

1

2

r−S ∈ ]0, 1[ and r+S ∈
]

1
β
,+∞

[.Proof: The proof is symmetri
 to that of property 8. �Property 10 Exists two real , t1 and t2 su
h that t2 > 1
β
, t1 < 1 and ∀ t ∈ [t1, t2],

Q(t) < 0 and S(t) < 0.13



4.2 In the 
omplex plane CWe 
onsider here z = ρ(cos θ + i sin θ) and as we know that P0(1) = 0, we fo
us on
ℑ
(

Q(z)

z − 1

)

=
1

|z − 1|2ℑ(Q(z)(z̄ − 1)) and 1

|z − 1|2ℑ(S(z)(z̄ − 1))and we have
Q(z) = 2βnwρ

2 cos2 θ − [κp + nw(1 + β + λp)]ρ cos θ + (1 − β)nw

+ iρ sin θ[2βnwρ cos θ − κp − nw(1 + β + λp)]

S(z) = 2βnpρ
2 cos2 θ − [κw + np(1 + β + λw)]ρ cos θ + (1− β)np

+ iρ sin θ[2βnpρ cos θ − κw − np(1 + β + λw)].All simpli�
ations being made:
ℑ(Q(z)(z̄ − 1)) = ρ sin θ [βnw(ρ− cos θ)2 + κp + nw(1 + β (1− cos θ)]

ℑ(S(z)(z̄ − 1)) = ρ sin θ [βnp(ρ− cos θ)2 + κw + np(1 + β (1 − cos θ)]from whi
h we dedu
e the following property:Property 11 For every θ ∈ ]0, π[, denoting z = ρ(cos θ + i sin θ) we have that:
ℑ(Q(z)(z̄ − 1)) > 0 and ℑ(S(z)(z̄ − 1)) > 0.

5 The rank 
ondition when Φy = 05.1 Preliminary propertyLemma 4 Let P be a polynomial (and more generally, a C1 fun
tion), and λ a simple root of this polynomial: P (λ) = 0but P ′(λ) 6= 0. If we add a real quantity q su�
iently small to the polynomial, it translates the root λ in the dire
tionde�ned by the sign of:
−P ′(λ) q+ de�ning a translation to the right, - to the left.Proof Let us 
hoose δ > 0, arbitrarily small. P ′ being smooth, there exists w su
h that ∀h ∈ [−w,w] |P ′(λ+h)| > δ.This ensures that P is a bije
tion from I = [λ− w, λ+ w] on P (I). Now, we denote by

q0 = min{|P (λ− w)|, |P (λ + w)|}.Assume that P ′(λ) > 0. We de�ne, for every real q su
h that |q| < q0

Pq : [−w,w] → [P (λ− w) + q, P (λ+ w) + q]

t 7→ P (λ+ t) + q

Pq is a bije
tion, and sin
e Pq(0) = P (λ) + q = q > 0 and (P (λ− w) + q)(P (λ + w) + q) < 0 by 
hoi
e of q, if q > 0(resp. < 0), the root is shifted to the left (resp. to the right). The result is the same when P ′(λ) < 0. �

14
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Figure 4: Case 15.2 General values of γ, ξ = 0For the sake of 
larity, we begin with the study of Pγ,0, that we denote by Pγ in this se
tion. Before giving the maintheorem of this part and its proof, let us lo
ate the roots of P0 with respe
t to the ones of Q, denoted by r±Q. Thereare exa
tly 14 possible 
on�gurations: 4 
on�gurations just for the roots of P0, ea
h of this 
on�guration leading toseveral possibilities, depending on the lo
ation of r±Q.Theorem 1 For every ve
tor X ∈ DX and for every γ > 0, Pγ satis�es property (i): three of its roots are stri
tlyout of D and the other one is stri
tly in D.ProofReal roots of Pγ The �gures (4), (5) and (6) show all the possible 
on�gurations for P0. Remembering that
Pγ = P0 + γλwQ, we 
onsider the four following fa
ts: 15
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� with γ in
reasing, a root of Pγ 
an never 
ross a root of Q: otherwise it stays on the root of Q (we add a nullquantity with γ in
reasing),� Q is stri
tly negative between its two roots, namely on ]r−Q; r+Q[, positive outside its roots,� the roots of P0, and more generally of Pγ are moving a

ording to lemma (4),� starting from the 
ases 1 or 2, and in
reasing γ, X being kept 
onstant, two of the real roots melt and disappearto 
reate two 
omplex roots for a given value of γ.With those observations, one 
an 
he
k easily that, starting from P0:� in the 
ases 1 and 3, the root smaller than one is trapped in ]0, 1[, while the root 1 moves toward the right tobe
ome one of the root outside D,� in the 
ase 2 and 4, the root 1 moves toward the left to be
ome the root in D,� all the real roots of P0 stri
tly greater than one 
annot enter the interval ]0, 1[.Those observations remain true when in
reasing γ without any limit.Complex roots of Pγ The 
omplex roots of P0 lie outside the unit disk D (see Lemma 3). With γ > 0 we showthat the 
omplex roots of Pγ 
an not 
ross the unit 
ir
le. We pro
eed by 
ontradi
tion and assume that for a given
γ, the root z is on the unit disk.Assumption 4 There exist γ > 0 and z ∈ D su
h that Pγ(z) = 0.Under this assumption, let us study:

Pγ(z)

z − 1
= R0(z) + γλw

Q(z)

z − 1
= R0(z) + γλw

Q(z)(z̄ − 1)

|z − 1|2

=
1

|z − 1|2
[

R0(z)|z − 1|2 + γλwQ(z)(z̄ − 1)
]

ℑ
(

Pγ(z)

z − 1

)

=
1

|z − 1|2
[

ℑ(R0(z))|z − 1|2 + γλwℑ(Q(z)(z̄ − 1))
]Taking z belonging to the unit 
ir
le z = cos θ + i sin θ, we obtain:

ℑ(R0(z))|z − 1|2 + γλwℑ(Q(z)(z̄ − 1)) = 2(1− cos θ)ℑ(R0(z)) + γλwℑ(Q(z)(z̄ − 1)). (24)Thanks to properties 7 and 11, we know that the two quantities on the right-hand side are stri
tly positive on the unitdisk and that their sum 
annot be equal to zero. Hen
e, assumption 4 is false. �5.3 General values of ξ, γ = 0We study in this se
tion P0,ξ denoted in this se
tion Pξ.
Pξ(t) = P0(t) + ξ λp S(t)The following result holdsTheorem 2 For all given X ∈ DX , ∀ ξ > 0, Pξ satis�es property (i): three of its roots are stri
tly out of the unitdisk D and the other one is stri
tly inside.Proof The proof is symmetri
 to that of theorem 1. �17



5.4 Rank 
onditionLemma 5 ∀ γ ≥ 0, ∀ ξ ≥ 0, if γ 6= 0 or ξ 6= 0 then Pγ,ξ satis�es property (i).ProofComplex roots If P0 satis�es (ii), the 
omplex roots of Pγ,ξ stay outside D. To prove it, we 
an use the exa
t sameproof as for lemma 3, by adding the 
ontribution of S to the equation (24). We obtain that on the disk:
ℑ(R0(z))|z − 1|2 + γ λw ℑ(Q(z)(z̄ − 1)) + ξ λp ℑ(S(z)(z̄ − 1)) =

2(1− cos θ)ℑ(R0(z)) + γλw ℑ(Q(z)(z̄ − 1)) + ξ λp ℑ(S(z)(z̄ − 1)) (25)and due to property 11 we know that the quantity we added is stri
tly positive and the same 
on
lusion holds.Real roots To get the polynomial Pγ,ξ, one starts from P0, goes to Pγ , and �nally obtains Pγ,ξ. We already provedthat Pγ satis�es the required property. Now, adding ξλwS to this polynomial, we study the evolution of the roots. Asthe roots of S 
an not be 
rossed, the situation is the exa
t same as previously: denoting by r±γ the two real roots of
Pγ , we 
an see that the four following situations:� r−γ < r−S < 1 < r+S < r+γ� r−γ < r−S < 1 < r+γ < r+S� r−S < r−γ < 1 < r+S < r+γ� r−S < r−γ < 1 < r+γ < r+Slead to a stable 
on�guration, namely one root in ]0, 1[, three out of D. �Theorem 3 For every X ∈ DX , for all admissible values of γ and ξ (namely su
h that φp+ξ > 0 and 1−φp+γ > 0),
γ + ξ > 0 if and only if Pγ,ξ satis�es property (i).Proof Any point of the domain Dp,w 
an be rea
hed starting from a point on the axis φp + φw = 1 and addingpositive values of ξ and γ (Figure 1). Hen
e, the ending point of any path using a negative value of ξ or γ, but su
hthat γ + ξ > 0 
an be rea
hed with a path su
h that both γ and ξ remain positive. In whi
h 
ase Lemma 5 appliesand φp + φw > 1 is a su�
ient 
ondition to ensure that Pγ,ξ satis�es the required property for the uniqueness of theequilibrium.By similar reasoning, it is a ne
essary one: any polynomial Pγ,ξ satisfying property (i) has been rea
hed starting froma polynomial P0. If we 
ome ba
k to the study of the dynami
s of its roots, the 
ru
ial point is the movement of theroot 1 of P0. A

ording to Lemma ?? and independently from the fa
t that it is the �rst or se
ond real root of P0,root 1 moves in the proper dire
tion if and only if:

ξλpS(1) + γλwQ(1) < 0and 
omputing S(1) and Q(1), we �nd that it requires that
(ξ + γ)λpλw(nw + np) > 0 (26)namely that ξ + γ > 0. � 18



6 The rank 
ondition in the 
ase Φy 6= 0Even when the mandate of the Central Banker is just to 
ontrol the in�ation, as the European 
entral bank does,in pra
ti
e, one 
an �nd that the rea
tion of this Central Banker to the output gap Φy is stri
tly positive. In su
h
ountries, this rea
tion is nevertheless smaller than the one of the Federal Reserve bank for instan
e, whose mandateis to rea
t also to the output gap. Thus, in order for our uniqueness result to be useful as a ben
hmark for monetarypoli
y, it should be a real improvement of the standard Taylor rule, i.e. being studied in the 
ase Φy > 0.We are going to see that this 
ase is just a simple generalization of the 
ase Φy = 0.A priori the frontier of indetermina
y 
an be written φp + φw = 1 − θ, with θ positive and to be determined (Galí,2008). The 
hara
teristi
 polynomial P of A is still de�ned by (12):
Pγ,ξ(t) = at4 − bt3 + cγ,ξ,θt

2 − dγ,ξ,θt+ eγ,ξ,θ.with new 
oe�
ients:
a = σβ2

b = β[κp +Φyβ + σ(2 + 2β + λp + λw)]

cγ,ξ,θ = κp[1 + λw + β(1 + φp + ξ)] + λwν[λp + β(1− θ − φp) + βγ] + Φyβ[λp + λw + 2 + β]

+ σ[1 + 4β + β2 + λp(1 + β) + λw(1 + λp + (2− φp − θ)β + βγ)]

dγ,ξ,θ = κp[1 + λw(1− θ) + φp(1 + β) + λwγ + (1 + β + λw)ξ] +

λwν[λp(1− θ) + (1− θ − φp)(1 + β) + (1 + β + λp)γ + λpξ] + Φy[1 + λw + λp + 2β]

+ σ[2β + 2 + λp + λw(1 + λp(1 − θ) + (1 + β)(1 − θ − φp) + (1 + β + λp)γ + λpξ)]

eγ,ξ,θ = σ[1 + λw(1− θ − φp)] + κpφp + κpξ + λwν(1 − θ − φp) + λw(σ + ν)γ +Φy.There is now a third dimension (Φy) to the domain de�ned by Figure 1. We re
over the de
omposition (14) withstri
tly identi
al polynomials Q and S by 
hoosing the baseline polynomial P0 a

ordingly. θ is set su
h that P0(1) = 0,whi
h implies that θ is proportional to Φy:
θ = Φy

(1− β)(λp + λw)

λwλp[σ + ν + np]
. (27)Hen
e the limit 
ondition φp + φw = 1− θ de�nes a tetrahedron in the spa
e (φp, φw,Φy):

φp + φw +Φy

(1− β)(λp + λw)

λwλp[σ + ν + np]
= 1 φp ≥ 0, φw ≥ 0, Φy ≥ 0. (28)This tetrahedron is the frontier of indetermina
y when Φy 6= 0.We keep the notation θ to ease the reading, though θ is given by (27). In the 
ase Φy = 0, the 
ru
ial 
ondition toensure the required properties on P0 is property 5. Property 12 generalizes this property when Φy 6= 0.Property 12 For all X ∈ DX , P ′

0(1) = 4a− 3b+ 2c− d and 6a− 3b+ c 
annot be both negative.Proof We pro
eed again by 
ontradi
tion and assume that 4a− 3b + 2c− d and 6a− 3b + c are both negative for agiven set of parameters X . After simpli�
ation, we obtain:
p1 = 4a− 3b+ 2c− d = κp[λw(1 + θ) + (1− β)(1 − φp)] + λwν[λp(1 + θ)− (1− β)(1 − θ − φp)]

+ σ[(1− β)(λp + λw(φp + θ)) + λwλp(1 + θ)] + Φy[(2β − 1)(λp + λw)− (1 − β)2] < 0and
p2 = 6a− 3b+ c = κp[λw + 1− β − β(1 − φp)] + λwν[λp + β(1 − θ − φp)]

+ Φyβ[2(1− β) + λp + λw] + σ[λpλw + (1− β)(1 − β + λp + λw)− β(λp + λw(φp + θ))] < 0.19



We denote by ci[r] the 
ofa
tor of the variable r in the expression pi. Now, let us study the stru
ture of thoseinequalities
p1 = κpc1[κp] + σc1[σ] + λwνc1[λwν] + Φyc1[Φy] < 0 (29)
p2 = κpc2[κp] + σc2[σ] + λwνc2[λwν] + Φyc2[Φy] < 0 (30)where

c1[κp] > 0, c1[σ] > 0, c2[λwν] > 0, c2[Φy] > 0, and
c1[λwν], c1[Φy], c2[κp] and c2[σ] are of unknown sign.At least one of the 
ofa
tor of unknown sign of (29) and one of the 
ofa
tor of unknown sign of (30) has to be negativeto ensure the negativity of the whole expression p1 and p2. We begin with a simple propertyProperty 13 If c1[Φy] < 0, then c2[σ] ≥ 0.Indeed, let us assume that c1[Φy] < 0 and c2[σ] < 0. This writes:

(2β − 1)(λp + λw) < (1− β)2

λpλw + (1 − β)2 + (1− β)(λp + λw) < β(λp + λw(φp + θ))Inserting the �rst inequality into the se
ond one, we obtain that
(2β − 1)(λp + λw) + λpλw + (1− β)(λp + λw) < β(λp + λw(φp + θ)) ⇒

λpλw − β(1 − θ − φp)and this is not possible, 
onsidering that λw and λp are stri
tly positive. Hen
e, to ensure that p1 and p2 are stri
tlynegative, the possibilities are the following:(I) c1[λwν] < 0 and c1[Φy] < 0, so c2[σ] ≥ 0 and c2[κp] < 0.(II) c1[λwν] < 0 so c2[σ] ≥ 0 and c2[κp] < 0. c1[Φy] ≥ 0.(III) c1[λwν] < 0 and c1[Φy] ≥ 0.Let us rule out those 
ases in the order.Assumption 5 c1[λwν] < 0 and c1[Φy] < 0, so c2[σ] ≥ 0 and c2[κp] < 0.This implies:
[λw(1 + θ) + (1 − β)(1− φp)]κp < Φy[(1− β)2 − (2β − 1)(λp + λw)]+

λwν[(1 − θ − φp)(1− β)− λp(1 + θ)] − σ[(1− β)(λp + λw(φp + θ)) + λwλp(1 + θ)] = Mand
[β(1− φp)− λw − (1− β)]κp > s[λpλw + (1− β)(1 − β + λp + λw)− β(λp + λw(φp + θ))]+

λwν[λp + β(1 − θ − φp)] + Φyβ[2(1 − β) + λp + λw] = mNow, we 
ompute [λw(1 + θ) + (1 − β)(1 − φp)]m − [β(1 − φp) − λw − (1 − β)]M and prove that it is positive. Forthat purpose, let us study the terms in fa
tor of σ, λwν and Φy. For σ, we 
an see dire
tly that it is stri
tly positive(be
ause of the negative sign of its 
ofa
tor in M). For Φy, we obtain:
λw(1 + θ)β(2 + λp) + λ2

w(1− β + βθ) + λw(1− β)(1 − β + λp)+

(1 − β)[(1 − β)2 − (2β − 1)(λp + λw)] + β2(1 − φp)(λp + λw) > 0and �nally, we obtain for λwν

λpλw(1 + θ) + λp(1− β)(1 − φp) + λwβ(1 + θ)(1 − θ − φp) + λw(1− θ − φp)(1− β)+

(1− β)2(1− θ − φp) + λp(1 + θ)[β(1 − φp)− λw − (1− β)] > 0Hen
e, the assumption 5 
annot hold. 20



Assumption 6 c1[σ] < 0 so c2[σ] ≥ 0 and c2[κp] < 0. c1[λwν] ≥ 0Now we use Φy and obtain
[(1− β)2 − (2β − 1)(λp + λw)]Φy > κp[λw(1 + θ) + (1− β)(1 − φp)] + λwν[λp(1 + θ)− (1 − θ − φp)(1 − β)]+

σ[(1 − β)(λp + λw(φp + θ)) + λwλp(1 + θ)] = mand
Φyβ[2(1− β) + λp + λw] < −σ[λpλw + (1 − β)(1− β + λp + λw)− β(λp + λw(φp + θ))]

− λwν[λp + β(1− θ − φp)] + κp[β(1 − φp)− λw − (1− β)] = M.We pro
eed as previously and 
ompute β[2(1−β)+λp+λw]m− [(1−β)2− (2β− 1)(λp+λw)]M . It is straightforwardto see that the 
ofa
tors of σ and λwν are positive. The 
ofa
tor of κp is
βλw(1 + θ)[2(1− β) + λw + λp] + β(1 − β)2(1− φp) + β2(1− φp)(λp + λw)+

λw(1− β)[(1 − β)2 − (2β − 1)(λp + λw)] > 0be
ause all the terms involved are positive. As previously, we get a 
ontradi
tion and assumption 6 
annot hold.Assumption 7 c1[λwν] < 0 and c1[Φy] ≥ 0Now, we have to use λwν. We de�ne
[(1− θ − φp)(1− β)− λp(1 + θ)]λwν > κp[λw(1 + θ) + (1− β)(1 − φp)] + Φy[(2β − 1)(λp + λw)− (1 − β)2]+

σ[(1 − β)(λp + λw(φp + θ)) + λwλp(1 + θ)] = mand
[λp + β(1 − θ − φp)]λwν < κp[λw + 1− β − β(1 − φp)]− Φyβ[2(1 − β) + λp + λw]

− σ[λpλw + (1− β)(1 − β + λp + λw)− β(λp + λw(φp + θ))] = MThe 
ofa
tor of Φy in [λp + β(1− θ− φp)]m− [(1− θ− φp)(1− β)− λp(1 + θ)]M is stri
tly positive, and we just haveto 
ompute the 
ofa
tors of σ and κp. The 
ofa
tor of σ is:
λp(1− β) + λpλw(1− β)(φp + θ) + λpλwβ(1 + θ)(1 − θ − φp) + λpλw(1− β)(1− θ − φp)+

λ2
pβ(1 + θ) + λpλwβ(1 + θ)(φp + θ) + (1 − β)2(1 − θ − φp)(λp + λw) + (1− β)3(1 − θ − φp)

− λp(1 + θ)(1 − β)2 − λp(1 + θ)(1 − β)(λp + λw).The annoying terms are the one of the last line, be
ause of their negative sign. But using the fa
t that c1[λwν] < 0,whi
h writes
λp(1 + θ) < (1− β)(1− θ − φp)we get that the fourth line is greater than:

−(1− β)3(1− θ − φp)− (1 − β)2(1 − θ − φp)(λp + λw)and those terms exa
tly 
an
el the one of the third line. Hen
e the 
ofa
tor of σ is stri
tly positive. Now we 
omputethe 
ofa
tor of κp. Note that if λw +1−β−β(1−φp) < 0 we immediately know that this 
ofa
tor is positive. Hen
e,we 
an assume that this quantity is positive. Hen
e, c2[σ] < 0, and that 
an be written
λw(1− β) + (1− β)2 < β(λp + λw(φp + θ)) − λpλw − λp(1− β)The 
ofa
tor of κp writes

2λpλw(1 + θ) + λw(1 + θ)β(1 − θ − φp) + λp(1 − β)(1 − φp) + β(1 − β)(1 − φp)(1 − θ − φp)+

(1− β)λp(1 + θ) + β(1 − φp)[(1− θ − φp)(1− β) − λp(1 + θ)]

− λw(1− β)(1 − θ − φp)− (1 − β)2(1− θ − φp)21



using the former inequality, the annoying terms on the third line are greater than
λpλw(1 − θ − φp) + λp(1− β)(1 − θ − φp)− βλp(1− θ − φp)− βλw(φp + θ)(1 − θ − φp)we have dire
tly that

−βλw(φp + θ)(1 − θ − φp) + βλw(1 + θ)(1 − θ − φp) > 0.Now we use
λp(1 + θ) < (1− θ − φp)(1 − β)to obtain that

−βλp(1− θ − φp) + β(1 − β)(1 − φp)(1− θ − φp) > −β(1 − β)(1− θ − φp)
2 + β(1 − β)(1− φp)(1 − θ − φp) > 0hen
e, the 
ofa
tor of κp is also stri
tly positive. �From property 12, the de
omposition of polynomial P , the de�nition of its 
oe�
ients and the de�nition of θ (27), allthe developments derived in the 
ase Φy = 0 apply and theorem 3 
an be generalized.Theorem 4 For every X ∈ DX , for all admissible values of γ and ξ (namely su
h that φp+ξ > 0 and 1−θ−φp+γ > 0with θ = Φy

(1−β)(λp+λw)
λwλp[σ+ν+np]

> 0), γ + ξ > 0 if and only if Pγ,ξ,θ satis�es property (i).In other words, the neo-Keneysian model with staggered pri
es and wages (1) to (5) has a unique solution underrational expe
tations if and only if Φp +Φw +Φy
(1−β)

(nw+np)

(

1
λp

+ 1
λw

)

> 1.

22



Referen
esAdjemian, S., Bastani, H., Juillard, M., Karamé, F., Mihoubi, F., Perendia, G., Pfeifer, J., Ratto, M., and Villemot,S. (2011). Dynare: Referen
e manual, version 4. Dynare Working Papers, CEPREMAP.Blan
hard, O. and Gali, J. (2007). Real wage rigidities and the New Keynesian model. Journal of Money, Credit andBanking, 39(1).Blan
hard, O. and Kahn, C. (1980). The solution of linear di�eren
e models under rational expe
tations. E
onometri
a:Journal of the E
onometri
 So
iety, 48(5):1305�1311.Bullard, J. and Mitra, K. (2002). Learning about monetary poli
y rules. Journal of Monetary E
onomi
s, 49(6):1105�1129.Clarida, R., Gali, J., and Gertler, M. (1999). The s
ien
e of monetary poli
y: a new Keynesian perspe
tive. Journalof E
onomi
 Literature, XXXVII(De
ember):1661�1707.Er
eg, C., Henderson, D., and Levin, A. (2000). Optimal monetary poli
y with staggered wage and pri
e 
ontra
ts.Journal of monetary E
onomi
s, 46.Galí, J. (2008). Monetary Poli
y, in�ation, and the Business Cy
le: An introdu
tion to the new Keynesian Framework.Prin
etion University Press.Lu
as, R. J. (1976). E
onometri
 poli
y evaluation: A 
ritique. Carnegie-Ro
hester Conferen
e Series on Publi
Poli
y, 1(1):19�46.Rotemberg, J. and Woodford, M. (1999). Interest rate rules in an estimated sti
ky pri
e model. Monetary poli
y rules,I(January):57�126.Taylor, J. (1993). Dis
retion versus poli
y rules in pra
ti
e. Carnegie-Ro
hester 
onferen
e series on publi
 poli
y.Woodford, M. (1987). Three questions about sunspot equilibria as an explanation of e
onomi
 �u
tuations. TheAmeri
an E
onomi
 Review, 77(2):93�98.Woodford, M. (2001). The Taylor rule and optimal monetary poli
y. The Ameri
an E
onomi
 Review, 91(2).Woodford, M. (2011). Interest and pri
es: Foundations of a theory of monetary poli
y. Prin
etion University Press.

23



A General elements on neo-Keynesian models for monetary poli
y solvedunder rational expe
tationsThis paper was written as a 
ollaboration between an e
onomist and an applied mathemati
ian. This appendix providesthe ne
essary de�nitions to set our problem for someone not familiar with neo-Keynesian models for monetary poli
ysolved under rational expe
tations.De�nition 1 (Dynami
 Sto
hasti
 General Equilibrium Models (DSGE)) A DSGE model is a set of equa-tions whi
h des
ribes jointly the short term �u
tuations of key ma
roe
onomi
 variables (growth, in�ation, interestrate...). The dynami
 of these variables, referred to as endogenous variables, will depend on their past, present andfore
ast values, but also on exogenous variables (sho
ks), whose dynami
 is not des
ribed by the model.In this 
lass of models are neo-Keynesian models, parti
ularly useful in the 
ontext of monetary analysis and RealBusiness Cy
le models in whi
h nominal variables (in parti
ular pri
es) are supposed �exible.These models borrow from mi
roe
onomists their modelling of di�erent e
onomi
 agents (households, �rms, govern-ments, banks, monetary authority...) on di�erent markets (goods, assets, labour...). They have triggered an extensiveliterature at the frontier between e
onomi
s and applied mathemati
s.E
onomi
 de
isions, su
h as savings, investments, 
onsumption, wage setting, will then be written as fun
tions of thepast and present values of various e
onomi
 variables and the expe
tation formed by the de
iding agent over the futurevalues of some of these e
onomi
 variables. These latter variables will be referred to as forward looking variables. Forinstan
e, a household may in
rease its savings and redu
e today's 
onsumption if it believes the remuneration of itssavings will in
rease tomorrow.To solve su
h a model, one must de�ne how agents form their expe
tations over the future. One way to de�ne thisfun
tion is to make the (strong) assumption that every e
onomi
 agent knows the others' fun
tions of de
ision andwill form expe
tations 
ompatible with them.7 As a 
onsequen
e, all agents will form the same expe
tations.To understand better the 
on
ept of expe
tations in this framework, it is important to point out the sto
hasti
 dimen-sion of DSGE models, whi
h 
ontains two types of variables8.Endogenous variables are the result of the agents' de
isions (
onsumption, pri
es, produ
tion, savings, investments...).Their dynami
 is des
ribed by the model.Exogenous ones are perturbations, or sho
ks on the endogenous variables whi
h are not explained in the model (oilsho
k, 
hange in the bargaining power of trade unions, �s
al 
hanges, so

er team winning the world 
up, hurri
anesdestroying houses or fa
tories...). These variables will be summarized with random variables (usually iid white noises)impa
ting the e
onomy in various ways.Sin
e the realizations of these random variables are not known in advan
e, agents must try to guess them. From theseguesses, they 
an dedu
e future values of the endogenous variables.De�nition 2 (Rational expe
tations) The expe
tations mentioned so far are 
alled rational expe
tations.They are the statisti
al operator expe
tation (or �rst moment), over the distribution of possible realizations of theexogenous variables, 
onditional on the values of the endogenous and exogenous variables up to now and the equationsof the model, whi
h we will denote E(.|t)To sum up, if the endogenous variables, i.e. the variables of interest, are gathered in the ve
torX(t), and the exogenousvariables in the ve
tor z(t) our model 
an be written as
E(X(t+ 1)|t) = AX(t) +Bz(t) (31)The ve
tor X 
an in
lude endogenous variables at the 
urrent and the previous period to allow for the representationof the model above, in whi
h 
ase the number of forward looking variables will be stri
tly lower than the dimension of

X . The 
omponents of the ve
tor z(t) are simply the di�erent exogenous variables at the 
urrent period. The matrix
B des
ribes the way in whi
h these sho
ks (the exogenous variables) impa
t the endogenous variables.7This idea is attributed to Robert Lu
as (Lu
as, 1976) and has been a 
ornerstone of ma
roe
onomi
s sin
e then.8A variable being a fun
tion of time, a sequen
e indexed by time or a time series, depending on where you 
ome from in s
ien
e.24



A solution to su
h a model is a traje
tory of endogenous variables 
ompatible with the equations of the model (in
lud-ing the expe
tation me
hanism) for any realization of the exogenous variables over time. It is not unique a priori.The non-uniqueness of the solution would mean that in su
h an e
onomy, there 
an be spontaneous �u
tuations, asagents beliefs or 
oordination "jump" from one solution to another. Su
h equilibria are 
alled sunspot equilibria andare problemati
 as they in
rease the volatility of the e
onomy (Woodford, 1987).An important 
hara
teristi
 of the model is the number of forward looking variables, i.e. the variables upon whi
hthe agents must form some expe
tations. In a seminal paper of 1980, Blan
hard and Kahn have shown that there isa unique solution to model (31) if and only if there are as many forward looking variables as eigenvalues of A whi
hare stri
tly larger than one in modulus.Theorem 5 (Blan
hard, Kahn) We 
onsider a linearised DSGE model:
E(X(t+ 1)|t) = AX(t) +Bz(t) (32)in whi
h X gather endogenous variables and z exogenous variables. If solved under rational expe
tations, this modelhas a unique solution if and only if there are as many forward looking variables in X as there are eigenvalues of Awhi
h are stri
tly larger than one in modulus.DSGE models are widely used in 
entral banks to enlighten the 
ondu
t of monetary poli
y. Indeed, su
h modelsprovide a normative framework to analyse the e�e
t of the Central Bank on the e
onomy and des
ribe how its behaviour
an be optimal, that is maximize a welfare 
riterion.De�nition 3 (Central Bank and monetary poli
y) A 
entral bank is a politi
al institution. Histori
ally, theseinstitutions have been 
reated to print and issue the money needed for e
onomi
 transa
tions. Nowadays, they alsousually serve 
ontrol and regulation purposes on the private banking system.More important for this paper is the 
entral bank's role in 
ondu
ting monetary poli
y : by setting the interest rate atwhi
h it lends money to private banks, the 
entral banks 
an 
ontrol in�ation and a
tivity. The 
hoi
e of this shortterm interest rate is the monetary poli
y instrument through whi
h the 
entral bank monitors (though imperfe
tly) thee
onomy.For instan
e, the European 
entral bank's9 mandate is to maintain pri
e stability, understood as an average in�ationof 
onsumption pri
es lower but 
lose to 2%.(Taylor, 1993) showed that the Federal Reserve (the USA Central Bank) monetary poli
y is to set its interest ratefollowing a fun
tion of pri
e in�ation and the level of produ
tion.De�nition 4 (Taylor rule) The Taylor rule is a fun
tion whi
h des
ribes monetary poli
y de
isions, i.e. the 
hoi
eof the interest rate by the Central Banker, as a linear fun
tion of in�ation and output:

it = i∗ + φππt + φyytwhere i, i∗, π, y are the interest rate set, the interest rate target of the Central Banker, pri
e in�ation and output gap10.Many variations of this rule have been studied, using expe
ted future in�ation, output growth, over four quartersin�ation...(Taylor, 1993) argues that this rule is a good ben
hmark for monetary poli
y 
ommittees. Indeed later resear
h haveshown that su
h a rule is optimal in the standard neo-Keynesian model for monetary poli
y analysis (Woodford, 2001).Another key issue is the uniqueness of the model's solution: the solution is unique if and only if the model satis�esthe 
ondition of theorem (5) also known as the rank 
ondition or Blan
hard and Kahn 
ondition. On the standardneo-Keynesian model for monetary poli
y analysis, it has been shown that this 
ondition solely depends on the Cen-tral Banker's poli
y rule. Numeri
ally on more 
omplex models, we generally �nd that ensuring the uniqueness of the9http://www.e
b.int/press/gov
de
/html/index.en.html10The output gap is the deviation of output (i.e. produ
tion) from its potential or optimal value. It 
aptures the extend to whi
h thee
onomy is overheating. 25



solution relies 
ru
ially on the Central Banker. This result is known as the Taylor prin
iple: the Central Banker'srea
tion to pri
e in�ation must be higher than one. More simply, it means that if in�ation in
reases by 1 point, theCentral Banker should in
rease its interest rate by more than 1 point.In this paper we determine the ne
essary and su�
ient 
onditions to ensure the uniqueness of the solution to a modelless 
onstrained than the standard neo-Keynesian model for monetary poli
y analysis. This model is borrowed from(Er
eg et al., 2000) and (Galí, 2008), it di�ers from the standard framework by in
luding wage rigidities in additionto pri
e rigidities. In this model the Central Banker aims at stabilizing altogether pri
e and wage in�ation and output,so we 
onsider a poli
y rule rea
ting to these three endogenous variables. We show that the ne
essary and su�
ient
ondition to ensure the uniqueness of the solution depends only on the rea
tion fun
tion of the Central Banker, i.e.on how the interest rate is set.
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