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Estimation of Illuminants From Projections on the

Planckian Locus
Baptiste Mazin, Julie Delon and Yann Gousseau

Abstract—This paper introduces a new approach for the
automatic estimation of illuminants in a digital color image.
The method relies on two assumptions. First, the image is
supposed to contain at least a small set of achromatic pixels.
The second assumption is physical and concerns the set of
possible illuminants, assumed to be well approximated by black
body radiators. The proposed scheme is based on a projection
of selected pixels on the Planckian locus in a well chosen
chromaticity space, followed by a voting procedure yielding the
estimation of the illuminant. This approach is very simple and
learning-free. The voting procedure can be extended for the
detection of multiple illuminants when necessary. Experiments on
various databases show that the performances of this approach
are similar to those of the best learning-based state of the art
algorithms.

I. INTRODUCTION

The chromaticities of objects in a scene are highly depen-

dent on the light sources. Humans have the ability, known

as color constancy, to perceive objects almost independently

of the illuminants. In contrast, the influence of illuminants

may be a limiting factor for computer vision applications

such as object recognition or categorization. The goal of

automatic color constancy is to reduce these color variations

as much as possible, and to render colors regardless of the

light source, mimicking in a way the human capacity. The

ability to produce image representations as independent as

possible of the illuminants is also necessary for computational

photography, where this process is often referred to as white

balance. The first step of automatic color constancy consists,

for a given scene, in estimating the colors of the illuminants.

In a second step, when dealing with a single illuminant, the

image can be globally corrected using this estimate so that it

appears as if taken under a canonical illuminant. In this paper,

we focus on the illuminant estimation step. We take interest in

situations where one (single illuminant case) or several (multi-

illuminant case) light sources are involved in the scene.

A. Single illuminant estimation

Illuminant estimation has been a very active research field

in the past decades, see for instance the recent survey [27].

In the case of a single light source, the simpler methods rely

only on the distribution of colors in images. For example,

a very popular way to estimate illuminant chromaticities in

images is to assume that under a canonic light, the average

RGB value observed in a scene is grey. This assumption

gives rise to the Grey-World algorithm [7], which consists in

computing the average color in the image and compensating

for the deviation due to the illuminant. Several refinements

have been proposed, restraining the hypothesis to well chosen

surfaces of the scene, that are assumed to be grey [41]. Let

us mention the work [54], which makes use of an invariant

color coordinate [20] that depends only on surface reflectance

and not on the scene illuminant. Unfortunately, thresholding

this coordinate is generally not enough to select grey pixels

correctly. An extension of this work [55] adds a clustering

step to refine the selection. Potentially grey pixels can also

be selected as the points close to the Planckian locus 1 in a

given chromaticity space [39]. This approach may fail when

two potentially grey surfaces are present in the scene.

Alternatively, the White-Patch assumption [40] supposes

that a surface with perfect reflectance is present in the scene

and that this surface correspond to the brighter points in

the image. This results in the well-known Max-RGB algo-

rithm, which infers the illuminant by computing separately the

maxima of the RGB channels. Variants propose to perform

a preliminary filtering of the image [1], or to replace the

maximum by an average value on a small percentage of the

brighter pixels [9]. A unified framework has been proposed for

these two assumptions (Grey-World and White-Patch) in [24].

More recently, the same unified framework has been extended

to the reflectance first and second order derivatives in the so-

called Grey-Edge methods [50], [30], [8].

Another way to estimate the chromaticity of light sources

is to rely on the dichromatic reflectance model [15], which

takes into account the specular part of the reflectance at each

pixel. Under this model, the pixels of a monochromatic surface

belong to a plane in the RGB color space of the camera, or to a

line in a well chosen chromaticity space, see [23]. Finding the

intersection of those planes permits to recover the illuminant.

In the case of an image containing only one monochromatic

object, the illuminant can still be recovered by assuming that

the light source chromaticity belongs to the Planckian locus.

Physical constraints on the set of illuminants and on the

scene content are also used by Sapiro in [47], where it is

assumed that reflectance spectra and illuminant spectral power

distributions can be approximated by linear combinations of a

small number of known basis functions. A voting procedure

is then proposed, where each pixel votes for a set of possible

illuminants. The Hough transform permits to retrieve the most

probable illuminant.

More involved techniques rely on a learning phase, where

color statistics are learned on a training set of images, taken

under known light sources. Among these methods, gamut-

1In a chromaticity space, the Planckian locus refers to the set of black body
radiators chromaticities.
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based approaches rely on the idea that the range of observ-

able colors under a given illuminant is limited [25]. These

approaches require to learn the set of observable colors under

a known illuminant and to find the best feasible mapping

between the colors of the observed scene and this set. The

chromaticity of the unknown illuminant is then deduced from

this mapping. The gamut mapping problem remains nonethe-

less ill-posed, and additional hypotheses are generally neces-

sary [17], [27]. For instance, these hypotheses may concern

the diversity of colors in the observed scene [25], or the set

of possible light sources [17]. In order to go further, some

authors explore not only the range but also the distribution

of colors under canonical illuminants [22], [45]. This permits

to recast the illuminant estimation as a maximum likelihood

problem [22]. Other methods also involve a simple learning

of color statistics [26].

While they offer correct estimations in a large number of

situations, all of the previously mentioned approaches present

different failure cases. A last category of illuminant estimation

techniques thus proposes to combine the output of several

of these methods [51], [4], [32]. The optimal combination

strategy is learned on training image datasets, eventually

relying on the statistical properties of natural images, or on

more involved semantic information. Recently, Vasquez-Corral

et al. [52] propose to refine color constancy approaches by

incorporating perceptual constraints, weighting the set of illu-

minants “according to their ability to map the corrected image

onto specific colors”, chosen as universal color categories.

B. Multi illuminant estimation

All of the previous methods assume that only one illuminant

is present in the scene and that this illuminant is uniform. Less

attention has been paid in the literature to the multi-illuminant

case, or to the case of a varying illuminant, although they can

be considered as more realistic in practice. Typical examples

are the case of outdoor images, with objects illuminated

by direct sunlight and objects in shadows receiving light

scattered by the sky, or the case of indoor scenes with both

an incandescent light source and a natural light source coming

from a window.

The Retinex theory proposed by Land and McCann [40] is

one of the first model addressing the problem of local color

constancy. In order not to confuse changes in illumination from

changes in reflectance, the method assumes that the illuminant

varies spatially smoothly: small changes are thus interpreted

as illumination variations, while large ones are supposed to

be due to reflectance changes. Several papers draw on the

same ideas and try to incorporate additional constraints to the

problem, either on the set of possible illuminants [19], [2]

(assumed to be on the Planckian locus) or on the set of surfaces

reflectances [2]. These approaches [19], [2] also exploit the

illumination variations along matte surfaces to constrain the

solution 2. The work of Finlayson [19] is extended in [38], by

including noise in the model, and refined in [37] for outdoor

2These surfaces must first be identified, for instance thanks to a segmenta-
tion step [2].

scenes, relying on the differences between shadowed and non-

shadowed regions.

In [14], Ebner proposes a very simple solution to the local

illuminant estimation, using a local and iterative version of the

grey world algorithm to compute an illuminant estimation at

each pixel. This algorithm is refined in [16] by using a non-

uniform averaging of local pixels to address sudden illuminant

variations. More recently, the authors of [5] propose to apply

different color constancy algorithms on super-pixels and to

combine their results. In a similar way, Gijensij et al. [31]

evaluate color constancy algorithm on image patches, sampled

with different strategies.

Some authors uses specular highlights [35] to estimate the

spectral power distribution of illuminants through a spectral

imaging device.

Finally, different user guided methods have been proposed

in the literature [34], [6]. The method described in [34] permits

to estimate for each image pixel the mixture between two

illuminants specified by the user. This approach works well

when the transitions between illuminants are smooth but fails

in case of spatially abrupt illuminant changes. To address this

problem, Boyadzhiev [6] proposes an algorithm allowing to

correct images based on user indications on the nature of the

surfaces, specifying whether they are neutral or uniform.

C. Contributions of the paper

The goal of this paper is to introduce a simple and effective

method for the estimation of light sources chromaticities,

without relying on any learning phase. Our approach draws

on a novel voting procedure, combined with two physical

assumptions, one concerning the content of the observed scene

and the other concerning the set of possible illuminants. First,

it is assumed that the scene contains at least some achromatic

(or perfectly reflective) pixels; second, the feasible illuminants

chromaticities are supposed to be in the vicinity of the Planck-

ian locus. A refined version of the proposed voting procedure

permits to deal with situations where more than one illuminant

is involved in the scene, and to automatically estimate the

number of these illuminants. The whole algorithm does not

require any learning step and uses intuitive parameters. The

method being applied globally on the image, the result varies

only slightly with the scales of images. Various experiments

show the efficiency of the proposed method when compared to

state of the art approaches on different databases. A conference

proceedings version of the first part of this work was published

in [42].

The paper is organized as follows. In Section II, we re-

call the color formation model and discuss color constancy.

Section III describes the main steps of our color constancy

algorithm in the case where only one illuminant has to be

estimated. The multi-illuminant version is detailed in Sec-

tion IV. In Sections V-B and V-C, the ability of the algorithm

to retrieve light sources chromaticities is tested on several

databases, both in the mono-illuminant and multi-illuminant

cases.
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II. ILLUMINANTS AND COLORS IN IMAGES

This section presents a brief reminder on color image

formation and on color constancy. We also recall the concept

of black-body radiator, which is used in the rest of the paper

to constrain the set of possible illuminants.

A. Color image formation

Let us denote by E(.,m) the irradiance spectrum falling

on the camera sensor at pixel m and by ρ(λ) =
(ρR(λ), ρG(λ), ρB(λ)) the camera sensitivities functions. The

vector p(m) = (pR(m), pG(m), pB(m)) measured by the

camera at m is given by

pc(m) =

∫

Λ

E(λ,m)ρc(λ)dλ, c ∈ {R,G,B} (1)

where Λ is the visible spectrum. The different image formation

models differ in the way they describe the spectrum E(.,m)
reaching the camera sensor at pixel m. One of the most

popular descriptions is given by the dichromatic reflection

model [48], which decomposes E(.,m) in two parts, a Lam-

bertian component and a specular component:

E(λ,m) = L(λ,m)(αl(m)S(λ,m) + αs(m)), (2)

where L(.,m) is the illuminant spectrum at m, S(.,m) is

the object reflectance spectrum at m and where αl(m) and

αs(m) weight the Lambertian and specular components. The

simpler Lambertian model ignores the specular term.

The illuminant estimation problem is intrinsically under-

constrained: even in the case of a single illuminant, uni-

form across the scene, it is not possible to recover the

complete power distribution L(λ) from the discrete sensor

measures pc(m). In practice, color constancy only aims at

computing for each given pixel m the triplet of values
(∫

Λ
ρc(λ)L(λ,m)dλ

)

c∈{R,G,B}
. Estimating these values from

the observations is still an ill-posed problem and generally

necessitates strong assumptions on the image content or on the

illuminant properties, as described in the following paragraphs.

B. Color correction and the Von Kries diagonal model

In practice, it is usual to assume that the illuminant spectrum

L is constant over the whole image and that the camera

sensitivity functions can be approximated by Dirac delta

functions 3 associated to wavelengths λR, λG and λB . Under

these hypotheses, Equation (1) can be rewritten as

pc(m) = L(λc)(αl(m)S(λc,m) + αs(m)), c ∈ {R,G,B}.
(3)

In this case, the illuminant estimation problem amounts to

retrieve (LR, LG, LB) := (L(λR), L(λG), L(λB)). Assuming

that this illuminant has been retrieved, computing a version of

the same image taken under another illuminant L0 amounts to

3This assumption, very common in the literature, is only an approximation.
Nonetheless, observe that a sharpening technique can be applied if the sensors
response functions are not sufficiently narrow-band [18].

multiply the vector (pR(m), pG(m), pB(m)) by the diagonal

matrix [44]
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C. Distribution of feasible illuminants

It is often necessary to impose a priori information on

the chromaticity of feasible illuminants to solve the color

constancy problem. A possible hypothesis in this context is

to assume that the possible illuminants are well represented

by black-body radiators. According to the Planck model, the

spectrum of light emitted by such an idealized physical body

only depends on its temperature T and is given by

L(T, λ) = c1λ
−5

[

exp
( c2
λT

)

− 1
]−1

, (5)

where T is the temperature in kelvins, λ is the wavelength

and c1 = 3.74183× 1016 Wm2 and c2 = 1.4388× 10−2 mK
are two constants.

Planck’s formula is an accurate estimation of the spectrum

of most natural illuminants including daylight [36]. Besides,

even if artificial light sources (such as fluorescent lights)

generally have a power spectrum which is not well represented

by the Planck formula, it was shown that such sources produce

a set of perceived colors which is very close to those produced

by a black-body radiator. Indeed, as underlined in [21], “for

almost all daylights and typical man-made lights, including

fluorescents, there exists a black-body radiator (...) which (...)

will induce very similar RGBs for most surface reflectances”.

D. Colorspaces and chromaticity spaces

In order to make use of the black-body hypothesis on the

set of feasible illuminants, we need to transfer the camera

related measures p(m) = (pR(m), pG(m), pB(m)) to a more

standard colorspace, where the Planckian locus is known. In

this paper, we rely on the standardized colorspace CIE 1931

XYZ [15]. The conversion from the RGB coordinates of the

camera to XYZ is linear and device dependent. We assume in

this paper that this conversion matrix is known (conversions

matrices can be found in the source code of dcraw [11], for

instance).

Working with a universal colorspace has other benefits.

First, the algorithm parameters do not have to be adapted to

the camera color space and can be defined once and for all.

Second, the computation of color distances and the projections

on the Planckian locus are also much more sound in universal

color spaces than in camera-specific spaces.

Now, when solving the color constancy problem, it is not

possible to distinguish which part of the observed intensity

comes from the light source and which part comes from the

object reflectance. For this reason, the intensity information at

m cannot be recovered and the illuminant is only estimated

up to a multiplicative factor. When trying to retrieve this

illuminant, it is thus sensible to work in a chromaticity space,

i.e. a 2D representation of the 3D color space discarding the
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intensity component. For instance, the xy chromaticity space

is obtained by normalizing the XY Z triplet into (x, y) =
(

X
X+Y+Z

, Y
X+Y+Z

)

.

In this paper, we also make use of the CIE 1960 uv chro-

maticity space, proposed by MacAdam, and mostly used today

to define correlated color temperatures (CCT) 4. According to

the CIE, the isotherms (lines of constant CCT) are defined

in this space as the lines perpendicular to the Planckian

locus [53]. It follows that the correlated color temperature

T (m) of a pixel m is the one of its orthogonal projection

on the Planckian locus, i.e the one of its nearest black body

radiator. The conversion from XYZ to uv is composed of a

linear transformation, followed by a normalization to discard

the intensity component.

Figure 1 shows the curve of black body radiators chro-

maticities, called the Planckian locus, in the CIE 1960 uv
chromaticity diagram (i.e. the set of visible colors in the

uv space). We also display on the same diagram the chro-

maticities of a large variety of illuminants (obtained from the

Colorchecker database, described in [26]). Observe that all of

these chromaticities lie on (or close to) the Planckian locus.

III. VOTING FOR THE MOST PROBABLE ILLUMINANT

In this section, we present a first version of our illuminant

estimation algorithm. We assume in the following that a

single illuminant is used. As described above, estimating the

triplet (LR, LG, LB) from the measured triplets p(m) is an

underconstrained problem and it necessitates some additional

assumptions.

A. Working hypotheses

We rely here on two hypotheses.

The first one concerns the set of possible illuminants of a

scene. We assume that this set is not far from the Planckian

locus, which means that the illuminants are supposed to be

well approximated by black-body radiators. This a priori

is quite common in the literature and was shown to be a

reasonable assumption for most illuminants [36], [21].

Our second assumption concerns the scene content and is

inspired by the white-patch method: we assume that the scene

contains some achromatic or perfectly reflective surfaces.

While it is possible to find or create counter examples, this

assumption is more often satisfied in practice than the one of

the grey-world algorithm (the average reflectance of a scene

is grey), especially for scenes containing man-made objects.

Both hypotheses will be discussed in the section devoted to

the algorithm evaluation.

B. Algorithm description

The main idea of our method is to select pixels close to the

Planckian locus and to make these pixels vote for the most

probable illuminant. Before describing the algorithm more

precisely, let us recall that the conversion matrix between the

RGB coordinates of the camera and the XYZ colorspace is

4The correlated color temperature of a light source is the temperature of
the black body radiator with the most perceptually similar color.

assumed to be known and that Y is the luminance component

in this space.

The first part of the algorithm works as follows. First, for

all pixels m, the observed color triplet p(m) is transformed

in a 2D chromaticity vector c(m) = (u(m), v(m)) in the CIE

1960 uv diagram. We also compute the luminance Y (m) of

the color triplet in the space XYZ. Next, all pixels at a distance

from the Planckian locus L larger than a threshold δ in the uv

diagram are discarded, which means that we only keep pixels

m such that

min
r∈L

‖c(m)− r‖2 < δ, (6)

these pixels being considered as the most probably grey in the

image. We then project each of the remaining chromaticities

c(m) orthogonally on the Planckian locus:

cPlanck(m) := projL(c(m)) = argmin
r∈L

‖c(m)− r‖2. (7)

If the argmin in the previous equation is not uniquely defined 5,

we choose randomly one of the possible projections. This

assignment permits to define the correlated color temperature

T (m) of the pixel m, as the temperature of the black body

radiator whose chromaticity is cPlanck(m) 6. We keep only

the pixels whose correlated temperature falls inside a given

interval [Tmin, Tmax], containing the temperatures of the most

common illuminants.

The second step of the algorithm is a voting procedure

permitting to retrieve the most probable temperature T 0 for the

illuminant. At the end of the first step, the remaining points

in the chromaticity diagram are used to build a temperature

histogram. For computing this discrete histogram, we convert

the correlated temperature T (measured in Kelvin) into the

MIRED (Micro Reciprocal Degree) scale TMired = 106/T
before the discretization. Indeed, the Kelvin temperature scale

does not yield a satisfying sampling of the Planckian locus.

The conversion to the MIRED scale is advocated by Priest [43]

as providing a better sampling of the color temperature accord-

ing to human perception. When computing the temperature

histogram, the contribution of each pixel m is weighted by a

power of its luminance Y (m). This weighting is a way to favor

the brightest pixels in the image, and to limit the influence of

the darkest ones without completely discarding them 7. The

temperature T 0 of the illuminant is then estimated as the most

represented one in this weighted histogram. For the sake of

simplicity, the argmax of the histogram is chosen here, but a

more sophisticated procedure, based on mode detection, can

also be applied. We will see in the next Section how such

a procedure can be used for the detection and estimation of

several illuminants.

At the last step of the algorithm, we compute the barycenter

of all pixels m who have participated in the choice of T 0

(those pixels which were kept to build the histogram and

5If the chromaticity of a pixel is far from the Planckian locus, Equation (7)
may have several solutions.

6In practice, we use the approximation proposed by [33] to compute the
projections and correlated color temperatures.

7In a way, this weighting scheme can be seen as a trade off between the
Grey-World and the White-Patch hypotheses [24].
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whose discrete correlated color temperature falls in the bin

T 0). In other words, all the chromaticities remaining at this

point are averaged to compute the final estimation. This

barycenter, which may be outside of the Planckian locus

but remains close to it, is chosen as the output illuminant.

Algorithm 1 gives a complete description of the procedure.

input : Image p in RGB (camera colorspace).

Thresholds δ, Tmin, Tmax, number N of bins in

the histogram, power n, canonical illuminant

(uref , vref).
output: Chromaticity (ue, ve) estimated in the CIE 1960

uv space.

Initialize the histogram H = 0 on N bins;

for each pixel m do

[c(m), Y (m)] = ConvertRGB→uvY (p(m));
[cPlanck(m), T (m)] = ProjPlanck(c(m));
// cPlanck(m) is the projection of the

chromaticity c(m) on the Planckian

locus in the uv chromaticity space

and T (m) is the temperature (in

Kelvins) of the projection;

d(m) = distance(c(m), cPlanck(m));
if d(m) < δ and Tmin ≤ T (m) ≤ Tmax then

TMIRED(m) = 106/T (m);
weight(m) = Y (m)n;

Add weight(m) to bin TMIRED(m) in H;

end

end

if H == ∅ then

return (uref , vref);
end

Find T 0 = argmax(H);
P = list of pixels m such that TMIRED(m) = T 0 and

d(m) < δ
return (ue, ve) = Barycenter(P );

Algorithm 1: Illuminant selection algorithm. In practice, the

following parameters provide good results on various dataset

δ = 0.0125, Tmin = 2000K,Tmax = 20, 000K,N = 30,

and n = 3. These parameters are used for all experiments in

Section V.

IV. ALGORITHM REFINEMENT WITH MODES SELECTION

The algorithm described in the previous section outputs

a single illuminant after selecting the principal mode of

the temperature histogram in a rough way (argmax of the

histogram). In practice, the histogram may contain multiple

modes, especially when several illuminants are present in the

scene. Moreover, even with a single illuminant, the argmax

choice is not always the most appropriate, since the mode may

extend over a large range of temperatures. In this section, we

propose a mode selection algorithm, inspired from a contrario

methods [13], which permits to refine the detection and to

manage the multi-illuminant cases.

Since we do not have any a priori information on the

number of illuminants present in the scene, segmentation-

based approaches such as k-Means cannot be used straightfor-

wardly. Gaussian mixtures with a minimum description length

criteria can be used to address the problem, but this would

introduce an a priori on the shape of the modes that is not

very accurate in practice. We propose here a generic algorithm

which detect modes in an histogram. The algorithm is inspired

from the a contrario mode selection presented in [13], [12].

It is adapted to the specific weighting procedure used to build

the temperature histogram.

Let H be an histogram with N bins, each bin corresponding

to a CCT interval in the mired scale. This histogram is obtained

as explained in Algorithm 1: the contribution of each pixel mi

i ∈ {1, . . . ,M} is weighted by a mass wi equal to a power

function of its luminance. Following the general idea of a

contrario approaches [13], modes are detected as intervals

in which the total mass contradicts a null hypothesis H0.

Let us describe more precisely this hypothesis H0. For a

given interval [a, b] and a pixel mi we define two random

variables Bi and Wi. The first one Bi, corresponds to the

event “the CCT of mi belongs to [a, b]”. The second random

variable Wi corresponds to the mass wi of mi. The variables

Bi and Wi i ∈ {1, . . . ,M} are said to follow the null

hypothesis H0 if they are mutually independent, if all variables

Bi follow the same Bernoulli law of parameter p[a,b] (p[a,b]
being the relative length of the interval [a, b] in the histogram)

and if all the variables Wi follow an exponential law with

expectation λ 8. The exponential distribution have been chosen

because it is a reasonable approximation of the law of weights

wi on most natural images. In practice, the parameter λ is

learned for each image. Now, let us consider the random

variable D[a,b] =
∑M

i=1 WiBi. This variable describes the

mass observed in the interval [a, b] when the null hypothesis is

satisfied. When M is large enough, the central limit theorem

can be applied and leads to approximate the law of D with a

Normal law N (Mp[a,b]λ,Mpλ2 ∗ (2− p[a,b])). It follows that

for all α, we can approximate the probability P[D[a,b] > α]
by

F (α) :=

∫ +∞

α

gµ,σ(x)dx, (8)

with µ = Mp[a,b]λ and σ = Mpλ2 ∗ (2 − p[a,b]). In

consequence, the interval [a, b] is said to be meaningful if it

contains a mass H[a,b] such that

F [H[a,b]] <
2

N(N − 1)
. (9)

The coefficient
N(N−1)

2 , corresponding to the number of inter-

vals in the histogram H 9, is introduced to control the number

of false alarms [13], [12]. Indeed, thresholding at 2
N(N−1)

permits to ensure that the expected number of detected modes

under the null hypothesis is smaller than one.

Intervals satisfying this test are selected. Then, a maximality

criterion is applied, permitting to keep only intervals which

neither contain, nor are contained in more meaningful intervals

(intervals with a smaller F [H[a,b]] value). For each of the

8Recall that the density of the exponential distribution with parameter λ is
f(x) = 1

λ
exp(−x/λ).

9An interval, in this context, refers to any set of consecutive bins of H .
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maximal intervals, we apply the final procedure described

in Algorithm 1 and for each mode selected, we average the

contributing pixels to obtain an illuminant estimation.

V. EXPERIMENTS

In this section, we investigate the performance of our

illuminant estimation algorithm. Our method is first evaluated

and confronted with standard or state-of-the-art approaches on

scenes containing a single illuminant. In order to assess the

quality of the results, the comparison is performed on three

different databases, namely the Colorchecker dataset [26], the

Grey-Ball dataset [10] and the SFU laboratory dataset [3].

In the second part of this section, we test the ability of our

method to deal with multi-illuminant situations.

A. Colorspaces and error statistics

The standard way to compare illuminant estimation algo-

rithms is to measure angular errors between the estimated

illuminants and the groundtruth illuminants provided with the

databases (see Section V-B). Before describing more precisely

the experimental protocol used in our experiments, it is im-

portant to specify which color spaces are used for computing

these errors and why.

A great deal of illuminant estimation algorithms work

directly in the RGB colorspace of the camera. Now, the

colorspace of a camera depends on the sensitivity functions of

its sensors. As a consequence, errors computed for two differ-

ent cameras are not directly comparable, since the respective

color components may have very different dynamic ranges for

instance. This is the case for the Colorchecker database, which

contain images taken with two different cameras, a Canon 5D

and a Canon 1D. We believe that computing error statistics

in a universal space is the only way to obtain error measures

between illuminant estimations that are consistent from one

camera to the other, and from one database to the other.

For all of these reasons, whenever possible, we provide the

errors statistics of our algorithm both in the RGB space of

the camera and in the standard colorspace sRGB 10. Since

our approach provides an estimated illuminant in the standard

chromaticity space uv, we convert the obtained estimation

both to the camera colorspace and to sRGB. This permits to

compute error statistics in each of these colorspaces.

B. Single illuminant estimation

1) Protocol: For the single illuminant evaluation, we fol-

low an experimental protocol similar to the one described

in [28]. Each image used in these experiments is provided

with a measure Lg of the light source illuminating the scene.

Following [29], the angular error between this groundtruth and

the estimated illuminant Le is defined as

Ea(L
e,Lg) = cos−1

(

Le · Lg

||Le|| · ||Lg||

)

. (10)

This error can be seen as an angle in a RGB space between two

“grey” axes defined by the illuminants Le and Lg. Observe

10We refer here to the linear sRGB colorspace (primaries and white point).
We do not apply any gamma correction.

that the illuminant intensity is not involved in this error

computation.

We compute several error statistics for each database. As

noticed by the authors of [28], the error distribution is not

symmetric and therefore, the mean is weakly informative. The

median and the trimean measure are more meaningful statistics

in practice.

2) Databases: We now describe the three databases used

for the single illuminant comparison.

a) Colorchecker dataset: The Colorchecker dataset, pro-

vided by Gehler et al. [26], is composed of 568 images,

captured with two different cameras (a Canon EOS-1D and

a Canon EOS-5D). As a consequence, as said before, results

computed in the camera RGB space, averaged in different

spaces, should be taken cautiously. The database is composed

of indoor and outdoor scenes, corresponding to a large variety

of illuminants. These groundtruth illuminants are provided as

RGB triplets in the respective colorspaces of the cameras. The

two cameras used to create the dataset being known, we can

easily convert these triplets in the XYZ colorspace 11 and

visualize their projections on the CIE 1960 uv chromaticity

diagram (see Figure 1).

Gehler et al. [26] provide the database in both RAW and

TIFF versions. The TIFF version was found [49] to be subject

to non-linear corrections such as gamma-correction, clipping

and demosaicing. Our experiments therefore rely on the RAW

versions.
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Fig. 1. Colorchecker illuminants groundtruth in the CIE 1960 uv diagram.
The red triangular region represents the set of possible colors in sRGB and the
blue line represents the Planckian locus (the chromaticities of the Planckian
illuminants). The green region around the Planckian locus correspond to a
distance threshold δ = 0.0125 and the green lines are iso-CCT lines. Each
of the 568 red points corresponds to the uv coordinates of an illuminant of
the Colorchecker database. Observe that almost all the chromaticities of these
illuminants lie in the chosen vicinity of the Planckian locus.

b) Grey-Ball dataset: The Grey-Ball dataset [10] comes

with 11,346 JPEG images extracted from videos. As recom-

mended by [28], the gamma correction has been removed in

order to work with linear images. The output RGB system

of the camera (Sony VX-200) being unknown, we assume a

sRGB space for these images. For each image, a grey-ball

is present in the visual field of the camera. The creators of

the database use the pixels belonging to the grey-ball in order

11The conversion matrices are documented in dcraw [11].
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TABLE I
FIRST TABLE SHOWS PERFORMANCES ON THE COLORCHECKER DATASET [49] IN THE CAMERA RGB SPACE AND SECOND TABLE SHOWS RESULTS IN THE

SRGB COLORSPACE. RESULTS ARE COMPARED TO LEARNING-FREE METHODS ([40], [7], [3], [50]) AND METHODS INVOLVING A TRAINING PHASE

([25], [27], [8]). OBSERVE THAT OUR ALGORITHM PROVIDES COMPARABLE PERFORMANCES WITH MORE COMPLEX LEARNING-BASED ALGORITHMS.

Method Mean Median Trimean Best-25% Worst-25%

White-Patch [40] 7.5° 5.7° 6.4° 1.5° 16.2°
Grey-World [7] 6.4° 6.3° 6.3° 2.3° 10.6°
general Grey-World [3] 4.7° 3.5° 3.8° 1.0° 10.2°
1st – order Grey-Edge [50] 5.3° 4.5° 4.7° 1.8° 10.2°

Pixel-based Gamut Mapping [25] 4.2° 2.3° 2.9° 0.5° 10.8°
Edge-based Gamut Mapping [27] 6.5° 5.0° 5.4° 1.9° 13.6°
ML (category-wise prior) [8] 3.7° 3.0° 3.1° 1.0° 7.6°

Proposed method δ = 0.02 4.1° 2.7° 3.1° 0.8° 9.6°
Proposed method (fixed parameters) 4.5° 3.1° 3.5° 0.8° 10.8°

Method Mean Median Trimean Best-25% Worst-25%

White-Patch [40] 7.9° 5.6° 6.2° 1.7° 18.0°
Grey-World [7] 6.9° 5.0° 5.5° 1.3° 15.6°
general Grey-World [3] 5.2° 3.2° 3.7° 0.7° 12.9°
1st – order Grey-Edge [50] 6.0° 3.9° 4.6° 1.2° 14.0°

Proposed method δ = 0.02 5.0° 2.9° 3.4° 0.7° 13.0°
Proposed method (fixed parameters) 5.2° 3.0° 3.5° 0.7° 13.4°

to deduce the groundtruth illuminants and to provide these

illuminants as RGB triplets 12. As shown on Figure 2, this

dataset covers a large variety of illuminants.
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Fig. 2. Grey-Ball groundtruth illuminants projected in the CIE 1960 uv
chromaticity diagram.

c) SFU laboratory dataset: This database [3] contains

321 images from 31 different scenes, each one being illumi-

nated by 11 light sources. Scenes generally contain only few

objects, the range of colors in images is thus limited. This

database is therefore a challenging case for color constancy

algorithms.

For each image in the database, the authors provide the

spectra of the groundtruth illuminants and the corresponding

triplets in the colorspace of the camera. When projecting these

spectra onto the xy diagram, as shown in the left part of

Figure 3, we observe that all of these illuminants are in the

vicinity of the Planckian locus. One image in the database

contains a colorchecker: we use this image and the knowledge

of the corresponding illuminant to estimate the conversion

12Pixels belonging to the grey-ball are discarded from the comparative
experiments.

sRGB gamut

Planckian locus

ph−ulm

solux−3500+3202

solux−3500

solux−4100+3202

solux−4100

solux−4700+3202

solux−4700

syl−50MR16Q+3202

syl−50MR16Q

syl−cwf

syl−wwf

Fig. 3. Groundtruth illuminants in the xy diagram for the SFU LAB database.
On the left, the direct projection of illuminant spectra in the xy diagram. On
the right, projections of the illuminant triplets provided with the database
after their conversion to XYZ. The difference between the two projections is
explained by an imperfect compatibility between the camera colorspace and
XYZ.

matrix between the camera colorspace and XYZ 13. This

permits to project onto the xy diagram the illuminant triplets

provided along with the illuminant spectra, as shown on the

right part of Figure 3. Surprisingly, the projections obtained

with these triplets differ noticeably from the ones obtained

with the spectra, which means that the sensitivity functions

of the camera used to create the database do not provide a

perfect matching between the camera colorspace and XYZ. In

practice, this problem should be less significant with recent

cameras, which now offer a good compatibility with standard

colorspaces.

13Note that in this case, the conversion matrix could also be estimated
thanks to the camera sensitivity functions. In practice, these sensitivity
functions are rarely known, while it is always possible to take a picture of a
colorchecker under a known illuminant.
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TABLE II
PERFORMANCES ON THE LINEAR SFU GREY-BALL DATABASE, IN THE CAMERA COLORSPACE. ON THIS DATASET, IT CAN BE OBSERVED THAT DESPITE

THE LARGE VARIABILITY OF ILLUMINANTS (SEE FIGURE 2), THE PROPOSED ALGORITHM STILL PROVIDES STATE OF THE ART RESULTS.

Method Mean Median Trimean Best-25% Worst-25%

White-Patch [40] 12.7° 10.5° 11.3° 2.5° 26.2°
Grey-World [7] 13.0° 11.0° 11.5° 3.1° 26.0°
general Grey-World [3] 11.6° 9.7° 10.2° 3.4° 22.7°
1st – order Grey-Edge [50] 10.6° 8.8° 9.2° 3.0° 21.1°

Pixel-based Gamut Mapping [25] 11.8° 8.9° 10.0° 2.8° 24.9°
Edge-based Gamut Mapping [27] 12.8° 10.9° 11.4° 3.6° 25.0°
ML [8] 10.3° 8.9° 9.2° 2.8° 20.3°

Our method (δ = 0.0075) 10.5° 8.2° 8.9° 2.2° 22.5°
Our method (fixed parameters) 11.1° 9.1° 9.5° 2.6° 23.0°

3) Comparative evaluation: Tables I to V show the results

obtained with the three different databases. In each table,

the results of our approach are provided with two different

sets of parameters: a set of fixed parameters, identical for all

experiments and provided in Algorithm 1, and a set where the

threshold δ is optimized for the database.

a) Colorchecker: For the Colorchecker dataset, results

are provided both in the colorspace of the camera and in the

sRGB colorspace (see Table I).

Error statistics from state of the art approaches in the camera

chromaticity space are reproduced from [28]. As explained

before, error statictics in the camera colorspace should be

taken with caution, since the database is composed of two

different cameras. It also appears that the results provided

in the literature on this database were computed from RAW

images without removing the black level of the camera (which

is different for these two cameras), which also introduces bias

in the results (for fair comparison, we did the same for our

algorithm).

Error statistics of common learning-free methods in sRGB

are computed by running these algorithms directly on images

converted to sRGB, after removing the camera black level (129

for the Canon 5D and 0 for the Canon 1D). Interestingly, there

is a reversal of role in the relative performances of the Grey-

World and White-Patch algorithms when comparing their error

statistics in sRGB and RGB. This confirms the importance of

the colorspace chosen to run the different algorithms and to

compute the error statistics.

Observe that in both colorspaces, our approach shows better

results than standard, learning-free methods. We also see from

this table that our approach provides comparable performances

with more complex learning-based algorithms, while keeping

a very reasonable computational cost.

b) Grey-Ball: On the Grey-Ball database (see Table II),

our approach also shows better results than standard illuminant

estimation methods. On this database, the results of our

approach are even slightly better than the more complex,

state of the art learning-based methods if the parameter δ is

well chosen. Observe also that the algorithm is quite stable,

providing good results both in the Colorchecker and in the

Grey-Ball databases with the same set of parameters.

c) SFU Lab: For the SFU Lab database, results are

also provided both in sRGB and in the camera colorspace.

Table III first shows the statistical errors on the entire database.

As explained before, these results should be interpreted with

TABLE IV
PERFORMANCES ON THE SFU LAB DATABASE WITH RESPECT TO THE

ILLUMINANT.

Illuminant Mean Median Worst-25%(µ)

ph-ulm 8.5° 4.6° 21.5°
solux-3500+3202 5.3° 1.9° 16.6°
solux-3500 7.2° 2.7° 22.6°
solux-4100+3202 4.8° 1.6° 15.7°
solux-4100 6.5° 2.9° 20.3°
solux-4700+3202 4.5° 1.5° 15.2°
solux-4700 7.1° 2.7° 21.1°
syl-50MR16Q+3202 5.9° 2.1° 18.7°
syl-50MR16Q 7.3° 2.9° 22.4°
syl-cwf 6.9° 3.5° 20.7°
syl-wwf 5.9° 4.6° 14.6°

caution because the RGB color space of the camera used

in this database is not perfectly compatible with standard

colorspaces, which is a prerequisite of our algorithm. Despite

this drawback, the performance of our approach on this

database is relatively close to those of the most recent state

of the art algorithms. Looking at the median and trimean

columns, we see that our approach yields slightly lower

performances than the best learning-based approaches. On the

Best 25% column, our results are slightly better. This can be

explained by a large variance of the error distribution on this

database. When a scene satisfies the algorithm assumptions,

that is if there is a grey surface in the scene, or a set of

very light grey dots, the algorithm yields excellent results.

Otherwise, the results are very poor, as shown in the Worst-

25% column. This is illustrated by Table V, which shows the

errors statistics depending on the kind of observed scene. As

might be expected, the scenes containing achromatic surfaces,

shown on the top of Figure 4, produce excellent results. On

the contrary, scenes without achromatic surfaces are subject to

very large estimation errors. Table IV shows that error statistics

are much less dependent on the type of illuminant used than

on the type of scene.

4) Parameter selection: We comment below the influence

of the different parameters of the algorithm. The parameters δ,

Tmin and Tmax delimit the set of colors considered as being

potentially achromatic (we refer to this set as the illuminant

gamut). From our experiments, it appears that the result of

our algorithm is not sensitive to small modifications of Tmin

and Tmax. The choice of δ has a stronger impact on the

results, but in practice the choice of δ = 0.0125 has led to
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(a) Books (b) Plastic (c) Jersey (d) Monkey

(e) Apples (f) Blocks (g) Fruits (h) Papers

Fig. 4. Examples of scenes for which the algorithm hypotheses are satisfied (top) or not (bottom).

TABLE III
THE FIRST TABLE SHOWS PERFORMANCES ON THE SFU LAB DATABASE, IN THE CAMERA RGB COLORSPACE. THE SECOND TABLE SHOWS THE

COMPARATIVE RESULTS IN THE UNIVERSAL SRGB COLORSPACE.

Method Mean Median Trimean Best-25% Worst-25%

White-Patch [40] 9.1° 6.5° 7.5° 1.8° 21.1°
Grey-World [7] 9.8° 7.0° 7.6° 0.9° 23.6°
general Grey-World [3] 5.4° 3.3° 3.8° 0.5° 13.8°
1st – order Grey-Edge [50] 5.6° 3.2° 3.7° 1.1° 14.1°

GSI [54] – 3.9° – – –
Cluster [55] – 3.6° – – –

Pixel-based Gamut Mapping [25] 3.7° 2.3° 2.5° 0.5° 9.4°
Edge-based Gamut Mapping [27] 3.9° 2.3° 2.7° 0.5° 10.0°

Our method (δ = 0.015) 6.4° 2.4° 3.6° 0.3° 19.3°
Our method (Fixed parameters) 6.5° 2.7° 4.0° 0.3° 19.0°

Method Mean Median Trimean Best-25% Worst-25%

White-Patch [40] 6.3° 4.9° 5.2° 1.4° 13.8°
Grey-World [7] 10.9° 8.0° 8.7° 1.3° 26.2°
general Grey-World [3] 4.6° 3.2° 3.4° 0.5° 10.9°
1st – order Grey-Edge [50] 5.8° 3.4° 4.0° 1.1° 14.6°

Our method (δ = 0.015) 5.3° 1.9° 2.5° 0.3° 16.4°
Our method (Fixed parameters) 6.2° 2.6° 3.7° 0.4° 17.7°

TABLE V
PERFORMANCES ON THE SFU LAB DATABASE WITH RESPECT TO THE

TYPE OF SCENE.

Scene Mean Median Worst-25%(µ)

Apples 21.4° 22.5° 29.7°
Blocks 27.4° 29.3° 31.2°
Fruit 20.0° 20.4° 25.7°
Paper 14.0° 12.5° 20.2°

Books 4.2° 3.3° 7.3°
Jersey 1.7° 1.6° 2.5°
Monkey 0.8° 0.8° 1.7°
Plastic 2.0° 1.0° 4.9°

good performances for all the tested datasets. Observe that

the algorithm is prone to fail on an image if the groundtruth

illuminant is located far outside of the illuminant gamut. A

possible improvement for these specific cases would consist

in replacing the hard threshold δ by a soft one. Let us also

mention that weighting the contribution of the pixels in the

histogram with a power of the luminance is quite important in

practice, although the performances of the algorithm are not

radically affected by the choice of this power.

C. Multi illuminant estimation

In this section, we evaluate the ability of our approach to

deal with scenes lit by multiple light sources. As described

in Section IV, the mode selection occurring at the end of

our algorithm can be extended to detect several modes in the

temperature histogram H . In practice, we assume that each of

these detected modes has been generated by a light source.

Observe that removing the uniqueness assumption for the

illuminant is potentially dangerous. Indeed, the inherent ambi-

guity of the illuminant estimation problem (an observed color

may correspond to a neutral surface seen under a colored

illuminant as well as a colored surface seen under a canonical
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illuminant) increases when the number of light sources is

unknown.

Evaluating the algorithm in this multi-illuminant framework

raises two questions. First, when only one light source is used

in the scene, to what extent the multiple mode detection can

deteriorate performances? Second, when several illuminants

are indeed involved in the scene, how the results are improved

by detecting these secondary modes ? We suggest an experi-

ment for each of these questions.

1) Measuring errors between two sets of illuminants:

Before describing these experiments, let us detail how we

measure the error between an arbitrary number of illuminants

and estimations. For this task, we make use of the EMD

distance introduced by Rubner et al. in [46]. Let Ng be the

number of groundtruth illuminants present in the scene and

let Ne be the number of estimated illuminants. We attribute a

mass 1/Ng to each groundtruth illuminant and a mass 1/Ng

to each one of our estimations. We then compute the EMD

distance between the two sets of illuminants, the cost function

between two illuminants being defined as their euclidean

distance in the rg chromaticity diagram.

2) Multi-illuminant case: There is no standard dataset

for the evaluation of multi-illuminant detection algorithms.

In order to evaluate our algorithm, we follow the protocol

previously proposed by Gijsenij et al. in [31]. We create a

synthetic dataset from the Colorchecker database. Each image

is first corrected using the provided groundtruth illuminant

and the Von Kries model. Then, for each corrected image,

two illuminants L1 and L2 are randomly selected 14 in the

set of groundtruth illuminants provided with the database. The

corrected image is then illuminated by these two light sources,

a mask defining the local proportions of each illuminant, as

illustrated by Figure 5. Several masks are possible (vertical,

horizontal or diagonal). In order to smooth the transition

between illuminants, Gaussian filtering with random standard

deviation (between 1 and 5) is used to blur the binary masks.

3) Single illuminant case: For the single illuminant case,

we reproduce partially the experiment on the Colorchecker

dataset [49] described in Section V-B, except that we allow our

algorithm to detect several meaningful modes. The experiment

illustrates the behavior of our algorithm when the a priori on

the number of illuminant is removed. The performance of the

algorithm can only decrease in this framework, the goal of the

experiment is to measure to which extent.

4) Results: Table VI shows the performance of our algo-

rithm on the set of images generated using two light sources,

as described in V-C2. Our algorithm is tested twice on this

dataset. In the first experiment, we deliberately keep only

one mode (the most meaningful one) in the histogram. In the

second experiment, we release the uniqueness assumption and

we keep all the maximal meaningful modes. In this multi-

illuminant framework, authorizing the detection of multiple

modes permits to increase quite significantly the detection

accuracy.

14We check that these two illuminants are not too close in practice, and
discard the pairs such that EMD(L1, L2) > 1.11. This threshold roughly
corresponds to the one used in [31].

Table VII shows the performance loss resulting from the

relaxation of the uniqueness assumption when applying our

algorithm on the original images of the Colorchecker dataset.

The first line of the table shows the error statistics when

the number of illuminants to be detected is not imposed at

all, and the second line shows the performance of the single

mode detection. Observe that the performance loss between

both configurations is very reasonable. We insist on the fact

that to the best of our knowledge, no algorithm had been

proposed in the literature to estimate at the same time the

number of illuminant present in the scene and the color of

these illuminants.

VI. CONCLUSION

In this paper, a new procedure for the estimation of single

or multiple illuminants in color images has been proposed.

A novel and simple voting scheme has been introduced and

combined with physical constraints, in order to select the

most probable illuminants in a chromaticity space. It has

been shown that this algorithm permits to achieve state of the

art performances on different challenging databases without

requiring any learning step. The ability of the whole procedure

to deal with situations where the number of light sources

is unknown has also been demonstrated. To the best of

our knowledge, such ability was not reported before in the

literature. The proposed procedure works globally on images,

even in the multi-illuminant case. This strongly differs from

several recent approaches working locally on image patches or

superpixels [5], [31]. These methods enable local color cor-

rections, but cannot automatically detect the number of light

sources. As a future work, we intend to explore connexions and

tradeoffs between these local procedures and our approach.
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