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Decentralized K-means using randomized Gossip protocols for clustering large datasets Jerome Fellus * , David Picard * and Philippe-Henri Gosselin † jerome.fellus@ensea.fr, picard@ensea.fr, gosselin@ensea.fr I. INTRODUCTION Unsupervised clustering is a popular learning task with many application fields such as data compression, computer vision, and data mining. Available contents in those fields are growing exponentially and with no doubt faster than the computing performances of individual machines. Besides, data tends to originate more and more often from decentralized sources (mobile devices, wireless sensors,. . . ). Such trends raise a challenge for new clustering techniques which have to cope with sizes and layouts of real world data.

Given a set X = {x 1 . . . x n } of n samples in R D , we are interested in producing a codebook M = {µ 1 . . . µ K } made of K vectors in R D called codewords or centroids. M determines a Voronoi partition of R D in K clusters {C k } and a quantization function q : R D → {1..K} so that C k = {x / q(x) = k}. Our goal is to compute a codebook which minimizes the intra-cluster mean square error (MSE):

MSE(M) = 1 N n i=1 x i -µ q(xi) 2 2 
(1)

Unfortunately this problem is NP-hard [START_REF] Mahajan | The planar k-means problem is np-hard[END_REF]. Most approaches to solve it adopt incremental optimization strategies [START_REF] Lloyd | Least squares quantization in pcm[END_REF], but assume that all data is available at a single location. When the whole data is spread over a network of processing units, a distributed optimization problem is raised.

In this paper we investigate decentralized K-means clustering, where N processing nodes shipped with their own local datasets X (1) . . . X (N ) ⊂ R D have to jointly optimize local codebooks M (i) = {µ (i) k }, 1 ≤ i ≤ N so as to model the whole data X = i X (i) . After introducing centralized K-means, distributed strategies and gossip-based aggregation in section 2, we propose in section 3 a decentralized Kmeans algorithm based on randomized gossip protocols with a decentralized codeword-shifting feature. In section 4, We prove that it yields codebooks M (i) which are both consistent over all nodes and equivalent to centralized approaches in terms of MSE, while ensuring a bound on the number of exchanged messages. Section 5 is devoted to its experimental analysis on both synthetic and large real datasets. We conclude the paper giving future research directions in section 6.

II. RELATED WORK

In this section, we present an overview of centralized and distributed K-means algorithms. We show that distributed Kmeans can be efficiently solved using decentralized weighted averaging techniques. Finally, we introduce Gossip aggregation protocols to perform this averaging.

A. Centralized approaches

The first proposals for solving K-means [START_REF] Lloyd | Least squares quantization in pcm[END_REF] are still widely used. Their basic idea is to iteratively improve a codebook M(τ ) with a gradient descent strategy. Starting from a random codebook M(0), two optimization steps are performed at each iteration τ :

Step 1 : Clusters assignment. Given M(τ ), compute the clusters {C k }(τ ) by mapping each sample x ∈ X to its nearest neighbor in M(τ ):

∀k, C k (τ ) = {x ∈ X / arg min µ k (τ )∈M(τ ) x -µ k (τ ) 2 2 } (2)
Step 2 : Codebook update. Given the clusters {C k }(τ ), compute a new codebook M(τ + 1) as their barycenters :

∀k, µ k (τ + 1) = 1 |C k (τ )| xi∈C k (τ ) x i (3) 
Alternating clusters assignment and codebook update, M(τ ) is shown to reach a local minimum of the MSE. To escape from local minima with empty or unbalanced clusters, codeword-shifting techniques that re-assign low density clusters to higher density regions have been proposed [START_REF] Lu | A survey of vq codebook generation[END_REF], [START_REF] Patanè | The enhanced LBG algorithm[END_REF].

Note that if step 2 requires O(K) vector sums computations, step 1 requires O(nK) distances computations, which can be very costly when coupling large datasets with large codebooks. To deal with such situations, several approaches were proposed to overcome the need for random access to data, resulting in so-called online methods (stochastic VQ, streaming [START_REF] Shindler | Fast and accurate k-means for large datasets[END_REF], [START_REF] Ailon | Streaming k-means approximation[END_REF], and others based on competitive learning [START_REF] Kohonen | The self-organizing map[END_REF]). Still, these techniques rely on a single processing unit. They remain quite time-consuming or make intensive use of approximate computations [START_REF] Ailon | Streaming k-means approximation[END_REF].

B. Distributed clustering strategies

To follow a hierarchy by Bandyopadhyay et al. [START_REF] Bandyopadhyay | Clustering distributed data streams in peer-to-peer environments[END_REF], distributed clustering schemes can be grouped in two main categories:

One round models combination. In these approaches, each node i first computes a local model of its own data using a centralized clustering technique. A global combination is then made in only one communication round, either transmitting compact representations of those local models to a central site [START_REF] Januzaj | Dbdc: Density based distributed clustering[END_REF] or propagating them between neighboring nodes [START_REF] Nikseresht | Gossip-based computation of a gaussian mixture model for distributed multimedia indexing[END_REF]. The number of exchanged messages is generally small, but the global model quality strongly depends on the generalization ability of the local models, which is often difficult to obtain.

Incremental aggregations. In contrast, incremental approaches perform a global aggregation step after each local Kmeans optimization step. They take benefit from the intrinsic data parallelism of the assignment step [START_REF] Fatta | Fault tolerant decentralised k-means clustering for asynchronous large-scale networks[END_REF]- [START_REF] Datta | Approximate distributed kmeans clustering over a peer-to-peer network[END_REF]. Each node performs assignment (step 1) independently on its own data, all samples being assigned to one cluster. This yields a global parition of X in K clusters. The associated optimal codebook M ⋆ (τ ), called consensus codebook, is then made of their barycenters {µ ⋆ k }. M ⋆ (τ ) can not be locally computed at node i, since it involves the locally unknown global partition. Still, computing the barycenters µ

(i) k of the locally computed clusters C (i) k forms local codebooks M (i) = {µ (i) 1 . . . µ (i) K } ≡ [µ (i) 1 . . . µ (i)
K ] which optimally fit local data. It is easy to see that the consensus codewords µ ⋆ k are actually the barycenters of the µ

(i)
k computed by all nodes i, weighted by the corresponding clusters sizes n

(i) k = |C (i) k |: µ ⋆ k = i {x ∈ C (i) k } i n (i) k = i n (i) k µ (i) k i n (i) k . (4) 
Therefore, estimating M ⋆ amounts to compute an entrywise weighted average of all the M (i) taken as matrices [µ

(i)
k ] k in a decentralized fashion. A large work is available on distributed averages computation, including transmission to a central site [START_REF] Durut | A discussion on parallelization schemes for stochastic vector quantization algorithms[END_REF], combination along a spanning tree (e.g. using an Echo/Probe walk on the network [START_REF] Eisenhardt | Classifying documents by distributed p2p clustering[END_REF]) and local neighboring nodes random sampling [START_REF] Datta | K-means clustering over peer-to-peer networks[END_REF]. Centralized aggregation suffers from the obvious communication bottleneck at the master node. Hierarchical aggregation is bandwidth-friendly, but very sensitive to nodes failures. Neighborhood sampling exhibits limited and balanced communication costs as well as potential asynchrony, but unbiased estimates and diffusion speeds can not be guaranteed.

C. Decentralized averaging using Gossip protocols

Decentralized averaging consists in estimating the average of N values locally hosted by N nodes only using local exchanges between neighboring nodes. Each node i holds a local value v i (0) ∈ R, and must converge to v = 1 N i v i (0). Decentralized averaging can be solved using Gossip-based protocols [START_REF] Kempe | Gossip-based computation of aggregate information[END_REF]. Gossip protocols exhibit low communication costs, robustness to failure and scalability to large networks with point-to-point connectivity. Each node i regularly sends a fraction κ ij (t) ≥ 0 of its current estimate v i (t) to a randomly selected set of neighboring nodes and keeps the remaining portion. The absence of message from i to j is rendered by κ ij (t) = 0. Upon receipt of a value v, the target node j adds it to its local v j (t). The coefficients κ ij (t) are randomly sampled from a predefined random distribution and must respect a so-called mass-conservation constraint: ∀t, i, j κ ij (t) = 1. Noting the vector v(t) = (v 1 (t) . . . v N (t)) T , we get a corresponding matrix form:

v(t + 1) T = v(t) T K(t), with K(t) = [κ ij (t)] ij (5)
The distribution of the diffusion matrices K(t) fully characterizes a given protocol. Mass conservation implies rowstochastic diffusion matrices (i.e. K(t)1 = 1) and entails that the sum of all node values is kept constant. Then, provided that nodes converge to a same value, this value will be v.

∀t, v(t + 1)1 = v(t) T K(t)1 = v(t) T 1 ∀t, i v i (t) = i v i (0) = N v
However, convergence requires such a state to be a fixed-point of the diffusion matrices (v1 T K(t) = v1 T , i.e, K(t) are also column-stochastic). Any message from i to j must then come with a (simultaneous) message from j to i [START_REF] Boyd | Randomized gossip algorithms[END_REF]. This can be problematic in unreliable routing environments.

Sum-Weight protocols [START_REF] Kempe | Gossip-based computation of aggregate information[END_REF], [START_REF] Bénézit | Weighted gossip: Distributed averaging using non-doubly stochastic matrices[END_REF], [START_REF] Iutzeler | Analysis of sum-weight-like algorithms for averaging in wireless sensor networks[END_REF] were proposed to release the column-stochasticity constraint, thus allowing oneway push messages. They couple each estimate v i (t) with a weight w i (t) updated with the same rules (w i (0) = 1). The quotients v i (t)/w i (t) are shown to be consistent estimators for v. Interestingly, weighted averages can be computed using initial weights other than 1. Gossip protocols were successfully applied to decentralized K-means clustering [START_REF] Fatta | Fault tolerant decentralised k-means clustering for asynchronous large-scale networks[END_REF], [START_REF] Fatta | Epidemic k-means clustering[END_REF] and decentralized Expectation Maximization (EM) on Gaussian Mixtures Models [START_REF] Nikseresht | Gossip-based computation of a gaussian mixture model for distributed multimedia indexing[END_REF].

In this paper, we extend the work on Gossip K-means from [START_REF] Fatta | Fault tolerant decentralised k-means clustering for asynchronous large-scale networks[END_REF]. We prove it to be equivalent to the centralized version (i.e, the partitions obtained at each K-means iteration are the same), provided that a sufficient condition on the number of exchanged messages is met. Furthermore, we improve the output codebook by including a decentralized codeword shifting procedure.

III. RANDOMIZED GOSSIP CLUSTERING ALGORITHM

Our proposed Gossip K-means algorithm is presented in Algorithm 1. We describe the procedure for a node i, all nodes running the same procedure independently and starting with an initial local codebook M (i) (0) independently drawn at random. At each iteration τ , i first performs a local optimization step on its own data, and then estimates the consensus codebook M ⋆ (τ ) using a randomized Gossip aggregation protocol.

A. Local optimization (step 1)

Each local sample x ∈ X (i) is assigned the cluster C (i) k (τ ) associated with the nearest codeword in the current local codebook. Meanwhile, we compute the size, sum and squared error for each cluster

C (i) k (τ ), (denoted by n (i) k (τ ), s (i) k (τ ) and d (i) k (τ )).
The locally optimal codebook is thus s

(i) k (τ )/n (i) k (τ ).
Algorithm 1: Gossip K-Means with codeword-shifting 1 At node i Input:

X (i) = {x (i) } ⊂ X : Local training dataset for node i K : Number of desired clusters ∆ min : MSE improvement convergence criterion σ shif t : Clusters errors RSD termination threshold Output: A local codebook M = [µ k ] k 2 begin 3 Initialize M = [µ k ] k at random ; MSE old ← ∞ ; 4 repeat 5 (n k ) k ← 0 K ; [s k ] k ← 0 K×D ; (d k ) k ← 0 K 6 foreach x ∈ X i do 7 k ← arg min k ′ x -µ k ′ 2 2 8 n k += 1 ; s k += x ; d k += x -µ k 2 2 9 end 10 Run EmissionProcedure() and ReceptionProcedure() concurrently 11 M ← [s k /w k ] k ; (d k ) k ← (d k /w K+1 ) k ; MSE ← 1 K k d k 12 while CodewordShifting() 13 end Algorithm 2: EmissionProcedure 1 w ← (n 1 , . . . , n k , 1) 2 for t ← 1 to M do 3 Draw a neighbor node j ∈ N i at random 4 ([s k ] k , (d k ) k , w) ← 1 2 ([s k ] k , (d k ) k , w) 5 Send ([s k ] k , (d k ) k , w) to j 6 end Algorithm 3: ReceptionProcedure 1 repeat 2 Upon receipt of a message ([s (j) k ] k , (d (j) k ) k , w (j) ) 3 ([s k ] k , (d k ) k , w) += ([s (j) k ] k , (d (j) k ) k , w (j) ) 4 while EmissionProcedure is running B. Gossip aggregation (step 2)
Step 1 yields a global partition

{ j C (j) 1 , . . . , j C (j) K } of X which has an associated optimal codebook M (τ ) made of the locally unknown barycenters µ ⋆ k (τ ) of the j C (j) k (Eq. 4). ∀k, µ ⋆ k (τ ) = 1 i n (i) k (τ ) i s (i) k (τ ) (6) 
These weighted averages are estimated using a dedicated asynchronous sum-weight gossip protocol. Each node i maintains a D×K estimates matrix

S (i) = [s (i) 1 . . . s (i)
K ] and a K-dimensional squared errors vector d (i) . Each s

(i) k is coupled with a weight w (i) k , d (i) being coupled with w (i) K+1 . Starting with S (i) = [s (i) 1 (τ ) . . . s (i) K (τ )], d (i) = (d (i) 1 (τ ) . . . d (i) K (τ )) T and w (i) = (n (i) 1 (τ ) . . . n (i)
K (τ ), 1) T , each node i runs emission and reception procedures concurrently: Emission procedure. Repeatedly, node i divides all entries of S (i) ,d (i) and w (i) by 2 and sends them to a randomly chosen neighboring node j.

Reception procedure. Upon receipt of a message from node j, i adds received entries to the corresponding ones in its own S (i) , d (i) and w (i) . After sending M messages, i obtains local estimates of the consensus codewords and the average cluster-wise squared errors by dividing the entries of S (i) and d (i) by their associated weights in w (i) . Using notations from section II.C, a message from i to j boils down to applying (Eq. 5) to each entry of (S (i) , d (i) , w (i) ) with:

K(t) = I + 1 2 e i (e j -e i ) T (7) 
where i uniformly drawn at random in {1 . . . N } j uniformly drawn at random in {1 . . . N } \ i

The t nth message exchanged at iteration τ is thus represented by the random matrix K(t) which only involves one sender i and one receiver j = i. In section 4, we derive a minimal value for M , above which the codeword estimates become sufficiently close to the consensus ones to ensure that our algorithm produces partitions that are equivalent to a centralized K-means at each iteration τ .

C. Codeword-shifting and termination test (step 3)

Algorithm 4: CodewordShifting

1 if 0 ≤ MSE old -MSE MSE old < ∆ min then 2 if √ k (d k -MSE) 2 MSE
< σ shif t then return False; Our codeword shifting feature is a node-local procedure inspired from the centralized approach of [START_REF] Patanè | The enhanced LBG algorithm[END_REF]. It is triggered when the relative improvement of the global MSE is lower than a given threshold ∆ min (i.e, the MSE converged to a minimum) but the relative standard deviation (RSD) of the clusters squared errors is higher than a given σ shif t (i.e, the clusters are unbalanced). The MSE is locally estimated using the squared errors estimates d (i) from step 2.

RSD (i) = K k=1 d (i) k -MSE (i) 2 MSE (i) = 1 K K k=1 d (i) k
If node i satisfies the codeword shifting condition, it shifts the codeword with lowest squared error k min near the one with highest squared error k max . More precisely, µ kmin becomes µ kmax plus a small arbitrary vector η. Although this selection criterion is weaker than [START_REF] Patanè | The enhanced LBG algorithm[END_REF], empty clusters are progressively avoided and the produced codebooks have better balanced clusters squared errors, leading to a more fair density modeling.

If the RSD is lower than a threshold σ shif t , the algorithm terminates at node i and M (i) (τ + 1) is returned.

IV. CONVERGENCE ANALYSIS

Here we analyze the convergence of our algorithm and derive a probabilistic bound on the number of messages M each node i has to send at each iteration. This bound ensures that the error resulting from the decentralized aggregation step will be low enough to have no impact on subsequent operations, i.e, the algorithm's behavior at each iteration τ is equivalent to a centralized K-means trained on the whole data. Firstly, we identify a criterion to evaluate this equivalence, and then we find the number of messages exchanges required to reach this criterion. The full proofs of the needed lemmas and theorems are deferred to Appendix A.

To ensure that the algorithm behaves the same as a centralized K-means, a sufficient condition is to get the same global partition of X as the centralized version at each iteration. This yields a so-called zero-mismatch constraint on the local codebooks. Focusing on a single iteration, we omit τ for better readability. Denoting by μ(i) 1 . . . μ(i) K the codewords estimates at node i and by µ ⋆ k the consensus codewords, zero-mismatch corresponds to satisfying:

∀i, ∀x ∈ X (i) , arg min k x - μ(i) k 2 = arg min k x -µ ⋆ k 2
.

Using simple triangular inequalities, and denoting by m

(i) NN (x) the m nth nearest neighbor of x among the {μ (i)
k }, the following lemma gives an upper bound on the estimates squared error to meet the zero-mismatch constraint:

Lemma IV.1 The zero-mismatch constraint is met if ∀i, M (i) -M ⋆ 2 F
≤ Kǫ zmc where

ǫ zmc = 1 2 min i min x∈Xi x -2 (i) NN (x) 2 2 -x -1 (i) NN (x) 2 2 
.

We now need to find the number of messages to exchange in order to reach this error bound for all local codebook estimates. We adopt the same approach as in [START_REF] Iutzeler | Analysis of sum-weight-like algorithms for averaging in wireless sensor networks[END_REF]. I and 1 respectively denote the N×N identity matrix and the N -dimensional all ones vector. Our protocol being driven by the diffusion matrices K(t) from Eq.7, and noting P(t) = K(1)K(2) . . . K(t), we first state this lemma: Lemma IV. [START_REF] Lloyd | Least squares quantization in pcm[END_REF] The estimation error at any node i after t exchanged messages is always upper-bounded as follows:

∀t, i, M(i) (t) -M ⋆ 2 F ≤ KD max k i w (i) k (0) 2 min i w (i) k (t) 2 ψ(t) where ψ(t) = max k (I -wk 1 T )P(t) 2 F with wk = 1 N i w (i) k (0) (w (1) 
k (0) . . . w

(N ) k (0))
This bound involves two terms which depend on t. We thus upper-bound ψ(t) and lower-bound min j w (j) k (t). Using P(t+1) = P(t)K(t+1), ψ(t) is upper-bounded by taking its conditional expectation given ψ(t -1) to get an expression of E[ψ(t)]. Markov's inequality then yields an upper bound on ψ(t) with probability greater than δ:

Lemma IV.3 ψ(t) is upper-bounded as follows: ∀δ, ∀ǫ, ∀t ≥ ln N -ln (1 -δ) -ln ǫ ln 2N 2 -2N 2N 2 -3N -1 P[ψ(t) ≤ ǫ] ≥ δ
To lower-bound min i w (i) k (t) we observe that there is always a weight which is greater than the average wk of all nodes weights for cluster k and analyze its diffusion speed. That is, we find the minimum number of messages T δ beyond which all nodes received a part of this weight with probability at least δ. As no weight can decrease by more than half its value at each message event, weights are never lower than wk 2 -T δ .

Lemma IV.4 min i w (i) k (t) is lower bounded as follows: ∀δ, ∀t > T δ , ∀k, P[min i w (i) k (t) ≥ wk 2 -T δ ] ≥ δ
The analytical expression of T δ is difficult to obtain, but a lookup table using the inverse function can be easily computed and is given in Appendix B.

Gathering the results of Lemmas IV.1-4, the following theorem expresses the total number of messages T required to meet the zero-mismatch constraint:

Theorem IV.5 The zero-mismatch constraint is met with probability δ when at least T messages have been exchanged in the network, where

T = 3 ln N + 2T δ 1/2 ln 2 + ln D -ln (1 -δ 1/2 ) -ln ǫ zmc ln 2N 2 -2N 2N 2 -3N -1
To have T exchanges, it is sufficient that each node send at least M = T /N messages. We then obtain the number of messages a single node has to send to ensure equivalence with a centralized K-means algorithm:

Theorem IV.6 An iteration of the distributed algorithm given in Algorithm 1 is equivalent to a centralized K-means iteration with probability greater than δ provided that every node i sends at least M messages, with

M = 3 ln N + 2T δ 1/2 ln 2 + ln D -ln (1 -δ 1/2 ) -ln ǫ zmc N ln 2N 2 -2N 2N 2 -3N -1 V. EXPERIMENTS
The proposed algorithm has been evaluated both on synthetic and real-world data, using various indicators from the decentralized clustering literature [START_REF] Bandyopadhyay | Clustering distributed data streams in peer-to-peer environments[END_REF]. The MSE over the whole data (MSE g ) evaluates modeling and generalization ability of the decentralized algorithm at each node. The relative error to consensus (REC) evaluates the consistency between nodes in terms of normalized Euclidean distance between codebooks.

MSE g = 1 N K N i=1 K k=1 x∈C (i) k x -µ (i) k 2 2 (8) 
REC = 1 N N i=1 M (i) -M ⋆ 2 F M ⋆ 2 F ( 9 
)
The Percentage of Membership Mismatches (PMM) focuses on the consistency of the produced local quantizers q (i) with respect to the consensus one q

⋆ . PMM = 1 N |X| N i=1 {x / q (i) (x) = q ⋆ (x)} (10) 

A. Experiments on synthetic data

We first evaluate our algorithm on synthetic data sampled from from multiple normal laws with a very heterogeneous distribution between nodes, i.e, each node has its own generation law. We compare performances with a classical centralized Kmeans on the full data. Evaluation is made both with and without codeword-shifting. At convergence (about 30 iterations), we both achieve a very low REC (in the order of 10 -7 ) and a zero PMM. That is, all nodes get the same codebook and generate the same partitions. Moreover, Figure 1 highlights the obtained global MSE is close to the MSE given by a centralized K-means algorithm with an initial codebook set to M ⋆ (0). Our decentralized codeword-shifting feature brings improvements which are comparable with those obtained in a centralized setup.

B. Experiments on real-world data

Secondly, we demonstrate the scalability of our algorithm on large datasets, namely UCI Census 90 and INRIA Holidays. The former contains 2.5 millions samples with 68 attributes, and the latter is a set of 4.5 millions 128-dimensional SIFT descriptors extracted from 1491 images. Their content is spread on 10, 50, 100 and 1000 nodes, with an highly skewed distribution. Obtained MSE g over time are reported in Figure .2. Performances in terms of MSE are comparable with a centralized K-means, while the decentralization of the processing provide much lower computational complexity. Beside, local datasets being large, the duration of the Gossip aggregation step becomes negligible with respect to the local assignment step.

C. Lowering the number of exchanged messages

Finally, we show experiments with lower values of M . Results in terms of MSE g , PMM and REC are reported in Figure .3. Interestingly, the overall convergence of the decentralized K-means still holds even when M is very low. This means that full convergence to the consensus codebook is not really necessary, and especially that it may suffice to steadily reduce the assignment error instead of looking for a perfect match at each iteration. The slope of the PMM's decrease illustrates this cross-iterations progressive improvement. Besides, results with M higher than the theoretical bound confirm that higher values do not bring more accuracy.

VI. CONCLUSION

We presented a decentralized K-means clustering algorithm with codeword-shifting using a randomized Sum-Weight Gossip protocol to incrementally estimate a consensus codebook at each iteration. Nodes endowed with their local datasets iteratively converges to the same codebook, both in terms of clusters assignment and centroids locations. Classical improvements brought by codeword-shifting features in centralized settings hold when using our decentralized counter-part.

We provided a probabilistic bound on the number of messages each node has to send above which our algorithm is equivalent to a centralized K-means. The number of messages turned out to grow logarithmically with the number of nodes in the network, demonstrating the scalability of our method to large networks and datasets. This bound is backed by experiments which interestingly show that there is no need for full convergence in the decentralized aggregation step to get consistent results, suggesting that there exists a tighter bound to guarantee global consistency. Relative Error to Consensus (%) 
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NN (x) be the m nth nearest neighbor of x among the μ(i) k ′ and assume ǫ zmc satisfies

ǫ zmc < 1 2 min i min x∈Xi x -2 (i) NN (x) 2 2 -x -1 (i) NN (x) 2 2 
.

Then for any node i and any of its local samples x ∈ X (i) ,

2ǫ zmc < x -2 (i) NN (x) 2 2 -x -1 (i) NN (x) 2 2 Let l ∆ = arg min k x - μ(i) k 2 2 , i.e, μ (i) l = 1 
(i)

NN (x). Then, ∀k = l, x - μ(i) k 2 2 ≥ x -2 (i) NN (x) 2 2 . Thus, 2ǫzmc < x - μ(i) k 2 2 -x - μ(i) l 2 2
x -μ(i)

l 2 2 + ǫzmc < x - μ(i) k 2 2 -ǫzmc As ∀k ′ , ǫ zmc ≥ μ(i) k ′ -µ ⋆ k ′ 2 2 , x - μ(i) l 2 2 + μ(i) l -µ ⋆ l 2 2 < x - μ(i) k 2 2 - μ(i) 
k -µ ⋆ k 2 2
Thanks to triangle inequalities, one can note that

x - μ(i) l + μ(i) l -µ ⋆ l 2 2 ≤ x - μ(i) l 2 2 + μ(i) l -µ ⋆ l 2 2 x - μ(i) k 2 2 - μ(i) k -µ ⋆ k 2 2 ≤ x - μ(i) k + μ(i) k -µ ⋆ k 2 2 x -µ ⋆ l 2 2 < x -µ ⋆ k 2 2
This means that any node i assigns any sample x ∈ X (i) to the same cluster as the consensus codebook would yield. Since

∀i, M ⋆ -M (i) 2 F ≤ K max k µ ⋆ k - μ(i) k 2 2
≤ Kǫ zmc , the zero-mismatch condition is satisfied provided that all nodes reach an estimation squared error lower than Kǫ zmc .

B. Proof of Lemma IV.2 (upper bound on absolute error after t exchanged messages)

Notations. Let μ(i) kc (t) refers to the c th component of node i's estimate for consensus codeword µ ⋆ k after exchanging t messages on the network. We focus on a single locally estimated codebook entry μ(i) kc (t) denoted μi (t). Let s i (t) and w i (t) denote the associated sum and weight, i.e, μi (t) = si(t) wi(t) . Let s(t) = (s 1 (t) . . . s N (t)) T and w(t) = (w 1 (t) . . . w N (t)) T . The consensus entry to estimate µ ⋆ kc (simply noted µ) is thus given by s(0) 1 w(0) 1 . A message event affects s(t) and w(t) by applying a diffusion matrix K(t): s(t + 1) T = s(t) T K(t) and w(t + 1) T = w(t) T K(t) Define P(t) as the product of the diffusion matrices K(1)K(2) . . . K(t).

Proof: As by definition μj (t) = sj (t) wj (t) and µ = l s l (0) l w l (0) ,

∀i, |μ i (t) -µ| 2 ≤ N j=1 |μ j (t) -µ| 2 |μ i (t) -µ| 2 = N j=1 1 w j (t) 2 s j (t) -w j (t) N l s l (0) N l w l (0) 2
We know that s(t) T = s(0) T P(t) and w(t) T = w(0) T P(t). Noting w -(t) ∆ = min j w j (t) yields:

|μ i (t) -µ| 2 ≤ N j=1 1 w -(t) 2 s j (t) -w j (t) N l s l (0) N l w l (0) 2 ≤ 1 w -(t) 2 N j=1 N l=1 s l (0)P lj (t) - N l s l (0).w j (t) w(0) 1 2 ≤ 1 w -(t) 2 N j=1 N l=1 s l (0) P lj (t) - N m w m (0)P mj (t) w(0) 1 2 ≤ s(0) 2 2 w -(t) 2 N j=1 N l=1 P lj (t) - N m w m (0)P mj (t) w(0) 1 2 ≤ s(0) 2 2 w -(t) 2 N j=1 N l=1 P lj (t) - N m w m (0)P mj (t) w(0) 1 2
Let w = w(0)/ w(0) 1 . This translates into the following Frobenius matrix norm: We now consider this result for any codebook component µ kc .

|μ i (t) -µ| 2 ≤ s(0)
Remembering that w depends on k, we note this vector wk :

wk ∆ = 1 i w (i) k (0) (w (1) 
k (0) . . . w

(N ) k (0)) T . Let J k = I -1 wT k and ψ k (t) = J k P(t) 2 F .
We get an upper bound on the estimation error for any codebook component:

∀i, k, c, μ(i) kc (t) -µ ⋆ kc 2 ≤ i s (i) kc (0) 2 min i w (i) k (t) 2 ψ k (t)
By summing for all components, we bound the codebooks estimation error at any node i:

∀i, M(i) (t) -M ⋆ 2 F ≤ KD max k max c i s (i) kc (0) 2 min i w (i) k (t) 2 ψ(t) where ψ(t) = max k ψ k (t)
Without loss of generality, we can consider that all data is normalized inside the unit sphere. This leads to max c i s

(i) kc (0) 2 ≤ i w (i)
k (0) 2 , which gives our claimed result.

C. Proof of Lemma IV.3 (upper bound on ψ(t))

Proof: We first express the conditional expectation of ψ k (t + 1) given ψ k (t) for any k. We use the fact that ∀A,

A 2 F = Tr(AA T ): ∀k, E [ψ k (t+1)| ψ k (t)] = E[Tr(J k P(t+1)P(t+1) T J T k )|ψ k (t)] = Tr(J k P(t)E K(t+1)K(t+1) T ψ k (t)]P(t) T J T k )
Since K(t) is stationary and does not depend on ψ k (t-1),

E [ψ k (t + 1)|ψ k (t)] = Trace(J k P(t)E[KK T ]P(t) T J T k )
We further calculate E KK T using the distribution of the diffusion matrices K(t) defined in Eq.7:

E KK T = 1 N (N -1) i,j =i I- 1 2 e i (e i -e j ) T I- 1 2 (e i -e j ) e T i = I - 1 2N (N -1) i,j =i 2e i e T i -e j e T i -e i e T j -e i e T i = I - 1 2N (N -1) (N -1)I -11 T + I -11 T + I = 1 - N + 1 2N (N -1) I + 1 N (N -1) 11 T Consequently, E[ψ k (t + 1)|ψ k (t)] = Tr J k P(t) (1- N +1 2N (N -1) )I - 1 N (N -1) 11 T P(t) T J T k
As K(t)1 = 1 and J k 11 T = 0, J k P(t)11 T = 0. Hence,

E[ψ k (t + 1)|ψ k (t)] = 1- N +1 2N (N -1)
Tr(J k P(t)P(t)

T J T k ) = 1- N +1 2N (N -1) ψ k (t)
From this recursion, and since

ψ k (0) = Tr(J k J T k ) = wk 2 2 ≤ N , we get the following bound on E[ψ(t)]: E[ψ(t)] ≤ N 1 - N + 1 2N (N -1) t (11)
For a given constant ǫ, we want P[ψ(t) ≤ ǫ] to be greater than a given parameter δ. Thanks to Markov's inequality, we know that

∀t, ∀ǫ, P[ψ(t) ≥ ǫ] ≤ E[ψ(t)] ǫ 
We thus look for values of t such that E[ψ(t)] ǫ is lower than 1δ. Using Eq.11, it is sufficient that

1 -δ ≥ N ǫ 1 - N + 1 2N (N -1) t ln (1 -δ) ≥ ln(N ) -ln(ǫ) + t ln 1 - N + 1 2N (N -1) t ≥ ln N -ln (1 -δ) -ln ǫ ln (1 -N +1 2N (N -1) ) -1
This proves the bound on ψ(t) claimed in Lemma IV.3.

D. Proof of Lemma IV.4 (lower bound on weights)

Proof: After any number t of exchanged messages, it is obvious that for any value of k there is always at least one node, say z t , whose weight w (zt) k is greater or equal to the average wk of all nodes weights for k. Mass conservation law ensures that w doesn't depend on t: ∀t, ∀k, ∃z t , w

(zt) k (t) ≥ wk ∆ = 1 N i w (i) k (t)
Weights decrease only when a message is sent, and according to our definition of K(t), the weights of the sender are divided by 2 and others increase or remain constant. Therefore, as receivers add incoming weights to their current ones, if w (zt) k diffuses to a node i before t + ∆t, w (i) k (t + ∆t) will be at least wk 2 -∆t :

P z t ,i (t+∆t) = 0 ⇒ P z t ,i (t+∆t) ≥ 2 -∆t ⇒ w (i) k (t+∆t) ≥ wk 2 -∆t
We study how w (zt) k diffuses over the network, i.e, the number ∆t of messages required to have information diffused from z t to all other nodes during [t, t + ∆t]. As the distribution of the K(t) is not time-dependent, this amounts to finding ∆t such that all entries in row z t of P(∆t) are strictly positive. We proceed by counting the number R z (t) of such positive entries in any given row z. As P(0) = I, R z (0) = 1. When the t nth message is sent from node i to node j, R z (t) increases by 1 only if i had a non-null entry and j had a null entry. The pair (i, j) being uniformly drawn among N (N -1) possible message events, the probability that R increases depends solely on its current value:

∀t > 0, p r ∆ = P [R(t + 1) -R(t) = 1 | R(t) = r] = r(N -r) N (N -1)
This defines a pure-birth stochastic process with a probability p r of transition from state r to state r + 1 quadratic in r. We are then interested in the probability P (t) to reach state N in t steps, starting from state 1, which is given by the entry 1, N of the transition matrix raised to power t:

P (t) ∆ = P[R(t) = N | R(0) = 1] = (M t ) 1,N
Conversely, given a parameter δ, we obtain the number of exchanged messages required to get diffusion of w Then when t > T δ1 , we have with probability greater than δ 1 ∀k, i w

(i) k (0) 2 min i w (i) k (t) 2 ≤ N 2 2 2T δ 1 i w (i) k (0) 2 ( i w (i) k (0)) 2 ≤ N 2 2 2T δ 1 ( i w (i) k (0)) 2 ( i w (i) k (0)) 2 = N 2 2 2T δ 1
Thus it is sufficient that DN 2 2 2T δ 1 ψ(t) ≤ ǫ zmc , thus 

ψ(t) ≤ ǫ zmc N 2 2 2T δ
P ψ(t) ≤ ǫ zmc N 2 2 2T δ 1 D | min i w i (t) ≥ w2 -T (δ1) ≥ δ 2 ⇒ P ψ(t) ≤ ǫ zmc N 2 2 2T δ 1 D ∩ min i w i (t) ≥ w2 -T (δ1) ≥ δ 1 δ 2
Hence, given a parameter δ, and taking δ 1 = δ 2 = √ δ, we get our final bound on the number of messages to exchange to meet the zero-mismatch constraint with probability at least δ: 
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 1 Fig. 1. Comparison of the obtained MSEg versus a centralized K-means algorithm on a synthetic dataset.

Fig. 2 .

 2 Fig. 2. MSEg obtained on UCI UScensus90 and INRIA Holidays datasets using our algorithm versus a centralized K-means with codeword-shifting.

Fig. 3 .

 3 Fig. 3. MSEg, PMM, and REC for various number of messages by node M

  with probability at least δ, by computing the value T δ for which ∀t > T δ , P (t) ≥ δ. Empirical values for T δ are given in Appendix B. This yields the following lower bound on weights:∀k, ∀δ, ∀t > T δ , P[min i w (i) k (t) ≥ wk 2 -T δ ] ≥ δ E. Proof of Theorem IV.5 (number of exchanged messages for zero-mismatch)Proof: Using Lemma IV.1, we know that the zero mismatch condition is satisfied provided that ∀i, M (i) (t) -M ⋆ 2 F ≤ Kǫ zmc Using Lemma IV.2 then Lemma IV.4, a sufficient condition isKD max k i w (i) k (0) 2 min i w

  (i) k (t) 2 ψ(t) ≤ Kǫ zmc ∀k, ∀δ 1 , ∀t > T δ1 , P min i w (i) k (t) ≥ wk .2 -T δ 1 ≥ δ 1

  ∀δ, ∃T , ∀t ≥ T , P ∀i, M(i) -M ⋆ 2 F ≤ Kǫ zmc ≥ δ whereT = 3 ln N + 2 ln 2T δ 1/2 + ln Dln (1δ 1/2 )ln ǫ zmc ln 2N 2 -2N 2N 2 -3N -1

  1 D By Lemma IV.3, this is guaranteed with probability greater than δ 2 whent ≥ ln Nln (1δ 2 )ln ǫ zmc + 2 ln N + 2 ln 2T δ1 + ln D ln 2N 2 -2N 2N 2 -3N -1 ≥ 3 ln Nln (1δ 2 )ln ǫ zmc + 2 ln 2T δ1 + ln D ln 2N 2 -2NRemarking that ∀N, 2 ln 2 ≥ ln 2N 2 -2N 2N 2 -3N -1 , we have T ≥ T δ1 . To conclude, provided that t ≥ T , (t) ≥ w2 -T (δ1) ≥ δ 1 and

	2N 2 -3N -1	= T
	P min	

i w i

APPENDIX A : PROOFS

In this section we provide the proofs for the lemmas and theorems stated in section IV. Focusing on the decentralized aggregation step at a given K-means iteration τ , we made it implicit. Therefore, M ⋆ (τ ) is simply noted M ⋆ .

A. Proof of Lemma IV.1 (maximal error to satisfy zeromismatch constraint)

APPENDIX B : PRACTICAL VALUES FOR T δ

To compute practical values for T δ , we use a lookup table. T δ versus δ and N is shown in Figure .4 below: