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AN SIR GRAPH GROWTH MODEL FOR THE EPIDEMICS

OF COMMUNICABLE DISEASES

CHARANPAL DHANJAL AND STÉPHAN CLÉMENÇON

Télécom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13, France

Abstract. It is the main purpose of this paper to introduce a graph-valued
stochastic process in order to model the spread of a communicable infectious
disease. The major novelty of the SIR model we promote lies in the fact that
the social network on which the epidemics is taking place is not specified in
advance but evolves through time, accounting for the temporal evolution of
the interactions involving infective individuals. Without assuming the exis-
tence of a fixed underlying network model, the stochastic process introduced
describes, in a flexible and realistic manner, epidemic spread in non-uniformly
mixing and possibly heterogeneous populations. It is shown how to fit such a
(parametrised) model by means of Approximate Bayesian Computation meth-
ods based on graph-valued statistics. The concepts and statistical methods
described in this paper are finally applied to a real epidemic dataset, related
to the spread of HIV in Cuba in presence of a contact tracing system, which
permits one to reconstruct partly the evolution of the graph of sexual partners
diagnosed HIV positive between 1986 and 2006.

1. Introduction

Although a wide collection of variants of the so-termed standard stochastic SIR

model introduced in [22, 6] have been proposed to describe ever more realistically
the situations encountered in practice (presence of control strategies, possibility
of reinfection, etc.), modelling of the spread of transmissible infectious diseases is
still the subject of a good deal of attention in mathematical epidemiology. Most
of the models proposed in the literature stratify the population under study into
compartments that describe all possible serological statuses related to the disease
and formulate assumptions (of probabilistic nature) that governs the transfer of
individuals from one compartment to another (refer to [1, 25] for a review of classi-
cal stochastic models in the epidemiology context). The unrealistic hypothesis of a
homogeneously mixing population (roughly saying that a given infectious individual
may transmit the disease to any susceptible individual at the same rate) has been
progressively abandoned in the large population framework. It does not account
for the possibility of repeated contacts between pairs of individuals that know each
other. Graph structures, representing the underlying social network structure, are
more and more frequently incorporated to epidemic models. References are much
too numerous to be listed exhaustively, see [5, 17, 29, 38, 20] for instance. The
general idea is to specify a graph structure in advance and let the infectious disease
spread on it (the term percolation is then used in general). Amongst the most
widely used models are the Erdös-Rényi graphs (abusively referred to as “random
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2 AN SIR GRAPH GROWTH MODEL FOR EPIDEMICS

graphs”; see [18, 19] as well as [17] and the references therein for epidemiological
processes taking place on such graphs), small-world graphs (see [2, 4, 40] and also
[27]) or configuration models (see [11, 26, 37] as well as [3, 15, 38]), depending
on the properties of the networks under study (connectivity, transitivity, mixing
patterns, etc.). A good review of the subject is presented in [21]. The concept
of social network also permits one to model efficiently the impact of active detec-
tion strategies of the contact tracing (CT) type, widely used to control the spread
of sexually transmissible diseases. The graph structure is involved explicitly: in-
dividuals diagnosed positive are asked to name those with whom they have had
possibly infectious contacts, the latter, when identified, are then offered a medical
examination and possibly a cure in case of infection.

However, when considering long-lasting epidemics or endemic situations, the
assumption that the social network on which the epidemics occurs remains fixed
becomes highly questionable. In the HIV case for instance, the period during which
two individuals are sexual partners may be very short compared to the duration
of the epidemic. In contrast, this paper proposes a graph-valued epidemiological
process relying on an individual-based dynamics, without specifying a priori an
underlying graph structure or holding the number of contacts (i.e. the degree) of the
individuals in the population under study fixed. We generate a time-evolving graph,
where the occurrence of an infectious contact between two individuals depends on
their own characteristics and on their recent connections both at the same time.
This way, new contacts are established according to a stochastic procedure that
echoes the concept of preferential attachment in graph-mining, see [29], and thus
accounts for real-life situations. As mentioned above, this approach also facilitates
the modelling of the effects of contact tracing.

Beyond the description of the probabilistic model of network evolution for the
spread of communicable infectious diseases we propose, issues related to the sta-
tistical calibration of the parameters driving the epidemiological process are also
tackled, from the angle of Approximate Bayesian Computation (ABC). Parameter
estimation for SIR models is usually a difficult task, mainly because the epidemi-
ological process is in general partially observed: a significant part of the infor-
mation about infectious contacts can be missing (time, frequency, identity of the
transmitters, etc.). Hence, in most cases, the model likelihood is of the form of
an integral whose computation is numerically infeasible, even approximately by
means of Markov Chain Monte Carlo (MCMC) methods (see [31, 30, 12]) in cer-
tain situations. Indeed, MCMC techniques can be computationally prohibitive for
high-dimensional missing observations (the number of unobserved events can be
even unknown and arbitrarily large in certain cases) and take several days on par-
allelised systems, see [35]. Originally proposed for making inference in population
genetics [32, 33, 8], ABC offers a promising alternative for statistical inference in
epidemiological models [10, 24, 39] (see also [9] for the theoretical evaluation of
approximation errors). The ABC approach is not based on the likelihood func-
tion but relies on numerical simulations and comparisons between simulated and
observed summary statistics. Here, the major novelty arises from the nature of
the summary statistics considered for the implementation of the ABC procedure,
the latter reflecting the main observable features of the evolution of the social net-
work on which the epidemic takes place. The relevance of our approach is first
supported by numerical experiments based on toy models. It is next applied to
real epidemiological data, concerning the HIV epidemic in Cuba: the data reposi-
tory at our disposal gathers information about 5389 individuals diagnosed as HIV
positive between 1986 and 2006, who are linked together by 4073 declared sexual
contacts. As will be shown, the modelling promoted here permits one to reproduce
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accurately a variety of properties of the incidence process, related to the evolu-
tion of the sexual contact network of the individuals diagnosed HIV positive. The
Cuban HIV epidemic will serve as a running example throughout the article, the
data aforementioned being the main source of inspiration of the present work.

The article is organized as follows. In Section 2, we describe the epidemic model
we propose at length and in full generality. For illustration purposes, we also show
how it applies to the Cuban HIV epidemic, our running example throughout the
article (see [16, 13]). In Section 3, we show that estimation can be carried out
by means of ABC methods in practice, to overcome difficulties caused by missing
observations in epidemiological data. Finally, the application of the concepts and
statistical techniques developed here to the Cuban HIV data is presented in Section
4, together with an in-depth discussion of the results obtained. Technical details
are deferred to the Appendix.

2. Spread of a Transmissible Disease on a Time-evolving Network

We first present a general model of epidemics spreading on an evolving graph,
where individuals make contact according to their characteristics and past relations.
The model bears similarities with preferential attachment models but also with the
SIR models on configuration models, proposed in [3, 15], which considered non-
structured populations and a fixed degree for each individual. This modelling is
applied to the Cuban HIV/AIDS epidemic, for which explicit forms for the rate
functionals and parameters are proposed. Here and throughout, we will denote by
I{E} the indicator function of any event E , a matrix with a bold uppercase letter
e.g. A, and a vector with a bold lowercase letter e.g. b.

2.1. A General Model of an Evolving Epidemic. Here we propose a very
general and elementary stochastic model for epidemics in which individuals are
explicitly represented as well as the contact between individuals over which disease
is transmitted. For the sake of simplicity, it is assumed that the population is
closed to immigration and emigration, and births and deaths are not considered.
The approach subsequently developed could be straightforwardly extended to a
more general framework, accounting for demographic features. The type of contact
modelled corresponds to that over which the disease is spread and in the case of
the HIV epidemic, these are sexual contacts. Taking arbitrarily 0 as time origin,
the model describes the evolution of a marked graph-valued process G = (Gt)t≥0 =
(V,Et,Xt)t≥0 with vertices V = {v1, . . . , vM}, M being the fixed population size
and undirected edges Et ∈ V ×V describing pairs of individuals in contact at time
t ≥ 0. We write vi ∼t vj if there is an edge between the nodes vi and vj at time t.
Furthermore, the matrix Xt = (xt

i)1≤i≤M has rows composed of descriptor vectors
xt
i assigned to the ith individual which take values in a set X ⊂ R

d say, and will be
involved in the rates of various events within the model. The label xt

i describes in
particular the serological status of the individual/vertex: susceptible (S), infective
(I) or removed/detected (R). It can also encapsulate any covariate relevant for
the modelling of the transmission and detection mechanisms, such as its current
degree within the graph (i.e. the number of individuals whom she/he is currently in
contact with), formally dt(vi) =

∑
j 6=i I{vi ∼t vj} for i ∈ {1, . . . , M}. In the HIV

situation, it can store the date of birth, gender, sexual orientation (heterosexual or
bisexual), location, etc. The sets of individuals in the serological states S, I and R
at time t ≥ 0 are respectively denoted by St, It and Rt. We also denote by |St|, |It|
and |Rt| the sizes of these classes. The population evolves through the following
phenomena.
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• Contact: Individuals can establish contacts between each other, which
can result in a disease transmission. We assume that once an individual is
detected, she/he no longer makes contacts. Contacts between an individual
with characteristics x ∈ X and an individual described by x′ ∈ X occur
with rate c(x,x′).
• Infection: When an infected individual with characteristics x makes con-
tact with a susceptible individual described by x′, the latter becomes in-
fected with probability f(x,x′) ∈ [0, 1].
• Detection: Each infective, with characteristics x can be detected by spon-

taneous detection, with rate γ(x), or independently through contact tracing:
each detected individual described by x′ with whom she/he had contacts
exerts on her/him a detection pressure of rate β(x′,x).

If explicit forms for the functionals c, f, γ and β are available, one can write
stochastic differential equations to describe mathematically the evolution of the
population, using Poisson point processes. This, together with acceptance-rejection
algorithms to handle rates which depend on time and random group sizes, allows
exact simulations to be performed. Technical details for this model, including
pseudo-code, are given in Appendix A.

2.2. Running Example: The Cuban HIV Epidemic. As an application, we
specialise the above model for the Cuban HIV epidemic. Here, the time-evolving
mark xt

i describes the current and past connectivity properties of the individ-
ual/node indexed by i = 1, . . . ,M . Events are simulated from Poisson point pro-
cesses, with an acceptance-rejection procedure when rates depend on time.

2.2.1. Contacts. Sexual contact is the main vector of transmission of HIV, with only
a negligible number of transmissions occurring through blood transfusion, shared
needle use and birth. Each individual vi makes contacts with persons of the ap-
propriate sex at rate λ(xt

i) which depends on its characteristics (sexual orientation,
gender, serological status). When a contact is made, the partner is either a previ-
ous contact or a new one. A new partner is chosen using a procedure very close to
preferential attachment (see [28]).

For this purpose, we associate with each individual an initial number of former
sexual partners. The initial degrees of the vertices, dh(vi) =

∑
j 6=i I{vi ∼0 vj} for

i ∈ {1, . . . , M}, can for instance be drawn from a power law distribution. For the
HIV/AIDS epidemic in Cuba, the database records only the connections which have
occurred during the last two years before detection: some previous edges can be
assessed through earlier detections of contacts, but the list of contacts is partially
observed. A complication of choosing vertices according to their degrees is that we
have an incomplete graph of the sexual contact network since we only model contact
between infected and non-removed individuals and it follows that the degrees are
only known for an individual for the period after infection has occurred.

For a vertex vi, the previous partner vj is chosen with probability α otherwise a
new partner vk is chosen. Let Cij denote the set of non-removed individuals which
are sexually compatible with vi excluding the last partner vj . A possible partner
vk ∈ Cij is chosen proportionally to its degree, i.e. with probability

(1− τ)d(vk) + τdh(vk)∑
vℓ∈Cij

(1− τ)d(vℓ) + τdh(vℓ)
,

where d(vk) is the observed degree of the individual, dh(vk) is the initial degree
and τ ∈ [0, 1] is a user-defined trade off between the initial degree of a vertex and
its observed degree. If we choose τ = 0 then we have a preferential attachment
that depends only on the observed degree d(v). Notice that the choice of the
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contact among individuals with compatible sexual orientation depends only on the
degrees and not on the covariates for the sake of simplicity. The approach can
be straightforwardly extended to more sophisticated models. This model mimics
the preferential attachment actually observed in the social network built from the
Cuban database in which individuals with higher degrees are more likely to form
sexual contact.

2.2.2. Infections. On the occasion of a sexual contact, an infected individual can
infect her/his partner according to a probability f(xt

i,x
t
j) which depends on the

properties of the pair of individuals. When modelling the HIV Cuban epidemic,
only sexual orientation is taken into account and σ denotes the infection probability
for women infecting men, men infecting women and bisexual men infecting men. It
is assumed that women cannot infect each other.

2.2.3. Detections. Random detections are assumed to occur at a constant rate γ
for each infected individual. Independently, an infectious individual vi at time t
can be removed because one of her/his contacts vj has been previously detected,
at time t(vj) ≤ t. We assume that after a person is detected, her/his history of
contacts is searched for a period of between 6 months and 2 years after the date of
detection. Thus, the detection rate of an infected individual vj is given by:

γ + β
∑

j: ∃s≤t s.t. vj∼svi

I{t(vj) ∈ [t− η1, t− η2]},

where η1 = 24× 30 and η2 = 6 × 30 represent the upper and lower time limits on
the contact tracing period.

2.3. Computational Issues. An apparent difficulty of the above model is the
high computational complexity of simulating sexual contacts in a large network.
To mitigate this effect, we simulate contacts only involving at least one infected
individual, and later we show that the non-simulated contacts are effectively mod-
elled using the hidden degree distribution in order to exhibit properties commonly
observed in real social networks. In reality, an infected individual often makes con-
tact with a few other non-removed individuals. Denote the upper bound on the
number of contacts per infective as κ, then the complexity of computing all contact
rates at time t is then O(|It|κ) in which It is often small compared to M . Detection
rates can be computed at a cost proportional to the number of infected individuals.
In practice, a simulated epidemic covering a period of several years and involving
1000s of vertices can be simulated rapidly, a fact which is important for the ABC
parameter estimation described in the next section.

3. Statistical Inference: The ABC Approach

We now explain the principles of ABC estimation in the context of the model
described in Section 2.2.

3.1. Data and Statistics. Beyond the very general and flexible generative epi-
demics model described in the previous section, the major purpose of this article
is to develop computationally efficient tools for statistical inference based on infor-
mation at the individual level. In the contact tracing situation, a contact database
is built in a sequential manner each time a detection occurs, where detected indi-
viduals are listed together with their attributes and declared contacts. It is thus
possible to rebuild the evolution of the sexual contact network among individuals
who have been diagnosed as infected. Define G = (Gt)t≥0 as the corresponding
marked graph-valued process, which will be referred to as the observable network

in the sequel. At time t ≥ 0, this graph counts Rt = {vi : t(vi) ≤ t} vertices



6 AN SIR GRAPH GROWTH MODEL FOR EPIDEMICS

among those of Gt, namely Vt = Rt. We may thus write Gt = (Vt, Et,Xt) with
Xt = (xt

i)vi∈Rt
, where Et is a set of edges between vertices in Rt . Hence, at any

time T ≥ 0, estimation must rely on the path (Gt)t∈[0,T ], or on certain summary
properties, e.g. the incidence curve (i.e. the mapping t ∈ [0, T ] 7→ Rt).

3.2. Approximate Bayesian Computation Using Graph-based Statistics.

As usual in Bayesian statistics [23], ABC’s principle is to estimate a posterior
distribution, given a prior distribution π(θ) of the parameter θ and data x. However,
instead of focusing on the posterior density p(θ |x), ABC aims at a possibly less
informative target density p(θ |S(x) = sobs) ∝ Pr(sobs|θ)π(θ) where S is a summary
statistic that takes its values in a normed space, and sobs denotes the observed
summary statistic. The summary statistic S can be a d-dimensional vector or an
infinite-dimensional variable such as a L1 function for example. Of course, if S
is sufficient, then the two conditional densities are the same. To proceed, ABC
simulates random parameters θi in the prior distribution, and from this, a data
set xi is simulated and the associated summary statistic S(xi) is computed, for
i = 1, . . . , N . Parameters are accepted if d(S(xi), sobs) ≤ ε, given a particular
tolerance threshold ε and similarity measure d.

For the purpose of accelerating the convergence to the target distribution and
taking advantage of the exploration of the parameter space, adaptive ABC algo-
rithms where the sampling distribution of the parameter θ is changed during the
procedure have been considered [7, 34, 36]. For clarity, we recall the procedure
proposed in [36] as this is the method we use for the parameter estimation of our

epidemic model. We start from N parameter values (θ
(1)
0 , . . . , θ

(N)
0 ) (also called par-

ticles) drawn from the prior π(θ). The procedure generates for every t ∈ {0, . . . , T }

a sample (θ
(1)
t , . . . , θ

(N)
t ) and we modify it recursively until their empirical distri-

bution is close enough to the target distribution. There are three steps to the
procedure for each iteration t:

(1) For each t, let Kt(., .) be a perturbation kernel and εt be a threshold pa-

rameter. To each θ
(i)
t of the current sample, we associate a weight

wi
t =

π(θ
(i)
t )

∑N

j=1 w
j
t−1Kt(θ

(j)
t−1, θ

(i)
t )

for t > 0 and with wi
0 = 1.

(2) Selection step: we sample (θ(1)∗, . . . , θ(N)∗) (with replacement) from the

empirical distribution of (θ
(1)
t , . . . , θ

(N)
t ) weighted by the wi

t’s. If t = 0 then
the sample is taken from the prior distribution.

(3) Mutation step: we transform the current sample (θ(1)∗, . . . , θ(N)∗) into
a sample (θ(1)∗∗, . . . , θ(N)∗∗) by using an acceptance-rejection proce-
dure. For this, we simulate θ(i)∗∗ from the distribution Kt(θ

(i)∗, .) for each
i ∈ {1, . . . , N} and associate to it a simulated dataset x∗∗

i for which the

summary statistics S(x∗∗
i ) is computed. We repeat this simulation of θ(i)∗∗

as long as d(S(x∗∗
i ), sobs) ≥ εt or S(x

∗∗
i ) is not defined, where d is a simi-

larity measure. When the particle is accepted set θ
(i)
t+1 = θ(i)∗∗.

The idea is that instead of repeating N independent Monte-Carlo estimations, we
consider a whole (interacting) sample. The parameter space is explored by moving
each parameter, and selecting the best parameters for the next step. For N suffi-
ciently large, the exploration of the parameter space will not be stuck in areas of low

probabilities. In Step 1 and iteration t, the denominator
∑N

j=1 w
j
t−1Kt(θ

(j)
t−1, θ

(i)
t )

gives the probability of having θ
(i)
t when we start at a position sampled from

the weighted empirical distribution of the (θ
(1)
t−1, . . . , θ

(N)
t−1) and perturbed with the
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transition kernel Kt(., .). Toni et al. propose for instance uniform perturbations:
Kt = σU(−1, 1) where U(−1, 1) is the uniform distribution on [−1, 1]. Step 2 can
be understood as a selection step where we remove particles which are obtained with
a probability much lower than if they had been sampled from the prior π(θ). Step
3 is the mutation step, where we explore the parameter space, starting from the
“best” selected positions. The rejection-acceptance step depends on the threshold
εt that may vary.

3.3. Graph Matching. As previously recalled, the ABC approach should be ex-
tended so as to find model parameters which produce observable networks “closest”
to the observation G in average, which leads us to the issue of measuring graph sim-
ilarity, see [41, 14]. In the graph similarity problem, we require a “distance” metric
d(H,H ′) between two undirected graphs H = (V,E) and H ′ = (V ′, E′). Notice
that H and H ′ need not have the same number of vertices. One can also consider
this problem in terms of an adjacency matrix A ∈ {0, 1}M×M which has Aij = 1
if there is an edge from the i-th to the j-th vertex otherwise Aij = 0. In our case
the graph also has a vertex label matrix X ∈ R

M×d such that the ith row of X is
a label for the ith vertex.

We restrict our discussion to distances based on the adjacency matrix as they
can often be phrased as (relaxed) continuous optimisations and hence solved using
off-the-shelf optimisation algorithms. In particular we consider the approach of [42]
which seeks to solve

min (1− ν)F0(P)− ν〈C,P〉F ,

where F0(P) = ‖A−PA′P‖2F , ‖A‖
2
F =

∑
i,j A

2
ij is the Frobenius norm, ν ∈ [0, 1]

is a trade-off between matching labels and graph structure and P is a permutation

matrix, i.e. a binary matrix in which rows and column sum to 1. The ijth entry
of C is the cost of fitness between the ith vertex in G and the jth in G′ (a larger
score corresponds to a better matching), and hence the total cost of fitness is
given by 〈C,P〉F , where 〈U,V〉F =

∑
i,j UijVij is the Frobenius inner product.

Minimising the above objective is combinatorial in nature and hence the constraint
on P is relaxed to be in the set of matrices with row and columns sums equal to
one and non-negative entries (known as doubly stochastic matrices). In addition, to
avoid numerical issues and to ensure that the scales of ‖A−PA′P‖2F and 〈C,P〉F
are similar, one uses a normalised version of the above objective,

min φ(G, Ĝ) = min (1 − ν)
‖A−PA′P‖2F
‖A‖2F + ‖A′‖2F

− ν
〈C,P〉F

‖C‖F
,

where the fractional part of the first term is in the range [0, 1] and the second term
is greater than zero.

To detail label matching first let Ĉij = ‖x̂i − x̂j‖, where x̂i is the ith label

normalised so that the norm of each column of X̂ = [x̂1, . . . , x̂M ]T is 1. Then the

cost of fitness matrix is found with Cij = (max(Ĉ)− Ĉij)/(max(Ĉ)−min(Ĉ)) for
all i, j. In this way, entries of C are in the range [0, 1] and similar vertex labels
have a small cost of fitness. In the case that the graphs are not the same size, the
cost of fitness matrix C of smaller dimension is extended with values min(Ĉ). For
adjacency matrices one pads with values ξ ≥ 0.

Going back to the issue of selecting a model on the basis of the temporal evolution
of the observable network (Gt)t∈[0,T ], we propose to consider a subdivision π : t0 =
0 < t1 < . . . < tK = T of the time interval and compute the weighted mean
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objective:

Φπ(G, Ĝ) =

∑K

i=0 ω(1− ω)K−iφ(Gti , Ĝti)∑K

i=0 ω(1− ω)K−i
.

This value is an exponentially weighted average with parameter ω ∈ [0, 1] where
the weight for the ith term is ω(1 − ω)K−i. Each term can be negative (although
in practice we observed it to be always positive) however this fact is not important
when used in the context of ABC.

4. Numerical Experiments

In this section, we perform a series of simulations using the stochastic epidemic
model in conjunction with ABC. There are two primary aims of this work: the
first is that we wish to observe how effectively ABC predicts parameters and the
second is to see how well the corresponding models predict unseen time periods.
We experiment with toy data and real data concerning the HIV epidemic in Cuba.

4.1. Toy Example. Our simulated epidemic is generated using the following pa-
rameters: the number of initial infected individuals |I0| = 100, probability of
changing partner α = 0.9, random detection rate γ = 0.001, contact tracing rate
β = 0.001, sexual contact rate λ = 0.1, and infection probability σ = 0.005. The
graph contains M = 5000 individuals and we simulate the epidemic for 1000 days,
making observations for the purposes of graph matching every 100 days. The initial
graph has a hidden degree sequence generated using a power law with exponent 2,
there is an equal proportion of individuals from each gender and a proportion of
0.05 individuals are labelled as bisexual. To test the variability of the generated
networks we simulated 10 epidemics under different random seeds and found a mean
number of non-detected infected individuals of 39.8 (with standard deviation 6.6)
and a mean number of detected individuals of 94.4 (with standard deviation 4.9).

Next we attempt to recover the parameters of the model using ABC and the

graph match objective Φπ(G, Ĝ), with respect to initial simulated graph. We fix
ω = 0.5, ε = 0.5 and the graph matching regularisation parameter ν = 0.2 as we
are more interested in the structure as opposed to matching the covariates of the
vertices. The covariates for the vertices are: gender, sexual orientation, detection
time and detection type (contact tracing or random detection). Graph matching
is performed using the quadratic convex relaxation algorithm of [42]. Note that
we do not explicitly model differences in contact rates and infection probabilities
between different covariate tuples as this would complicate the model and make
parameter selection much more costly. We modify the ABC procedure slightly by
setting ǫ1 = 0.8 and then computing ǫi, i > 1, as the mean objective of the particles
at population i − 1. We stop ABC when all accepted particles have an objective
value less than κ = 0.3 and take a population size of 50 particles.

To use ABC, we fix prior distributions and permutation kernels as follows. For
the number of initial infected individuals |I0| we use the truncated discrete normal
distribution as the prior with range [0, 1500]. The discrete normal distribution is
used for the perturbation kernel. The prior distributions of α and σ are truncated
normal distributions with range [0, 1] and their perturbation kernels are normal
distributions. Finally, for the rate parameters the priors are gamma distributions
and the corresponding perturbation kernels are normal distributions. The complete
set of parameters for the stochastic model are written θ = [|I0| α γ β λ σ]T and
we denote the mean and standard deviations of the prior distribution as µπ(θ)
and σφ(θ) respectively. We set µπ(θ) = [100 0.9 0.001 0.001 0.1 0.005]T and
σφ(θ) = µπ(θ)/10. To evaluate the standard deviation of the perturbation kernels
at iteration i, we use one fifth of the standard deviation of the particles at iteration
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i−1. At the end of the ABC process we use the parameters obtained for the epidemic
models to resimulate them and record the number of infectives and detections.

Real Estimate
|I0| 100.0000 (10.0000) 99.2800 (4.2002)
α 0.9000 (0.0900) 0.8747 (0.0694)
γ 0.0010 (0.001) 0.0011 (0.0002)
β 0.0010 (0.001) 0.0010 (0.0003)
λ 0.1000 (0.100) 0.0773 (0.0568)
σ 0.0050 (0.005) 0.0082 (0.0029)

Table 1. Real and estimated values using ABC correct to 4 d.p.
with standard deviations in parenthesis.
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Figure 1. Detections for 50 simulated epidemics under the pa-
rameters learnt using ABC on the simulated data. Error bars rep-
resent the standard deviation.

The results for the ABC procedure are shown in Table 1, and we see that there
is generally a close match for the real and estimated parameters with the exception
of the contact rate and infection probability. Moreover, the standard deviations of
the estimated parameters are significantly smaller than the equivalent deviations
used for the corresponding prior distributions. We would not expect near-identical
parameters due to the stochastic nature of the epidemic, which is apparent in terms
of the infections and detections for the ABC-estimated models and the “ideal” one
shown in Figure 1. In this case a slightly higher infection rate and lower contact
rate produces a similar number of detections to the ideal case particularly in the
predicted period. The number of infectives on average match the ideal number
well, however the standard deviation is large, and furthermore there appears to be
an overestimation of infectives in the test period. In general we should not expect
accurate prediction of the number of infectives since we match only on the detected
vertices. Figure 1(b) shows the breakdown of the detections between those that
are randomly detected and those that are contact traced. Again we see a tight
correspondence between the real and estimated models although the estimated
models tend to overestimate random detections slightly for the first 700 days.

4.2. Cuban HIV Epidemic. We next try to fit the model to the real epidemic
data using ABC in a similar manner to that described above. For training purposes
we consider intervals starting and ending on the 1st of January: 1990-1992 1992-
1994, 1998-1999 and 2002-2003. These intervals have been chosen according to the
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temporal behaviour of the real epidemic as described in [16]. In particular the
first few years of the recorded epidemic after 1986 are avoided due to significant
changes occurring during this period. We include the period 1990-1992 since it
occurs just after a sudden increase in the detection of isolated vertices in 1990 and
it is interesting to observe the error of the model over this change. In 1997 there
is a sudden increase in detection rate, and thus we model two periods after this
point. The first is in 1998 and the second is towards the end of the recorded period,
however not the final year since not all detected individuals at the end of 2004 have
been entered into the database.

In each simulated epidemic the initial detected graph is based on that of the
real epidemic, and we use total graph size of M = 26945, 5 times larger than the
observed epidemic at the end of the recorded period. For ABC, we sample 20 parti-
cles and compute graph objectives in steps of T/5 using ǫ1 = 0.8 with successive ǫ’s
generated from the last as before. The ABC procedure stops when ǫi is smaller than
κ = 0.3. The same prior and perturbation kernels as those from the toy experiment
are used for the parameters. In this case we fix µπ(θ) = [500 0.5 0.01 0.1 0.1 0.1]T

and σπ(θ) = [400 0.5 0.01 0.1 0.1 0.1]T and hence the prior is relatively uninfor-
mative. As before the standard deviation of each perturbation kernel at iteration
i is one fifth of the standard deviation of the particles at iteration i− 1. After the
learning stage we simulate using all accepted particles for a time of 1.2T to observe
if the model is predictive for this period, recording graph properties at steps of T/5.

1990-1992 1992-1994 1998-1999 2002-2003
t5 t6 t5 t6 t5 t6 t5 t6

|R|. 711 794 988 1050 2193 2252 4517 4684
|R|. est. 714 (8) 804 (22) 988 (6) 1017 (11) 2192 (3) 2268 (30) 4516 (5) 4662 (13)

RD 470 510 627 662 1433 1473 3196 3327
RD est. 470 (20) 502 (23) 679 (6) 693 (8) 1515 (18) 1563 (10) 3285 (7) 3379 (12)

CT 241 284 361 388 760 779 1321 1357
CT est. 244 (24) 301 (40) 309 (5) 325 (8) 677 (17) 705 (35) 1231 (6) 1283 (9)

LC 301 359 457 483 1133 1158 2129 2174
LC est. 153 (21) 178 (40) 347 (20) 365 (28) 1066 (81) 1164 (105) 2479 (33) 2771 (49)

NC 290 310 365 389 747 769 1659 1740
NC est. 359 (23) 375 (30) 405 (9) 402 (9) 778 (38) 762 (47) 1488 (12) 1422 (17)

|E| 571 679 925 970 1962 2007 3631 3729
|E| est. 393 (28) 467 (49) 735 (11) 769 (18) 1894 (56) 2006 (80) 3878 (28) 4220 (49)

φ(Gti
, Ĝti

) .35 (.07) .44 (.05) .37 (.06) 0.49 (.02) .25 (.13) .52 (.02) .34 (.10) .51 (.03)

Table 2. Some properties of the evolving graphs with standard
deviations in parentheses. LC means largest connected component,
and NC is the number of components.

Figure 2 compares the number of real and estimated detections. We see that
on average the estimated number of total detections are close to the real ones for
the training periods. Furthermore, the predictions for the number of detections
are accurate for the test time point, with the exception of the period 1992-1994.
Here the estimated models underestimate the detections by just 33 individuals and
most of these errors come from an underestimation in the number of contact traced
detections, which in part are cancelled out by an overestimation in the number
of random detections. It is worth noting that the number of detections could be
estimated to a similar accuracy using curve fitting for example however in our case
we can determine much more detailed properties of the simulated epidemic as we
have complete networks.

Table 2 shows some further properties of the real and estimated graphs for time
points t5 and t6. There is a tendency to underestimate the number of edges in the
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Figure 2. Result of the ABC procedure to find parameters for
the epidemic model on the real data. In black is the total number
of detections, blue is the number of random detections and red
are contact traced detections. The solid lines represent estimated
figures where error bars show the standard deviation, and dashed
lines represent the real figures.

graphs for the periods 1990-1992 and 2002-2003. As one might expect this results
in smaller largest components and fewer components overall when compared to the
real epidemic. In 1998-1999 the corresponding figures are relatively accurate with
an error in the number of vertices in the largest component of just 6 and the cor-
responding number of estimated components is 762 versus 769 in the real network.
In general, we should not expect results too close to the real epidemic due to its
complexity relative to the model we propose, for example immigration/emigration,
changes in health policy and infection spread through Men having Sex with Men

(MSM) contact. We also looked at the values of φ(Gti , Ĝti) and we see that the

graphs at t5 are quite accurate with φ(Gt5 , Ĝt5) ≤ 0.37. This increases on the test
time point t6, most significantly with 1998-1999 and 2002-2003.

Some additional insight into the generated epidemics can be garnered from Table
3 which shows estimated parameter values. Note firstly that the random detection
rate increases over time, and this correlates with the trend observed in the real
epidemic. As a comparison we compute the random detection rate per infected
person for the real epidemic based on the start of each time period, t1− t0, denoted
α̂ in the table. This value is computed by (|Rr

t1
| − |Rr

t0
|)/((t1 − t0)|It0 |) where R

r
i

is the set of individuals detected randomly at time i in the real data and |It0 | is the
initial infected individuals in the simulated epidemic. There is a general increase in
random detection rate over time. We might expect that these values underestimate
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1990-1992 1992-1994 1998-1999 2002-2003
|It0 | 537.8500 (50.9228) 158.2000 (5.1342) 359.2500 (81.1664) 421.8500 (5.4889)
α 0.7766 (0.0352) 0.8200 (0.0234) 0.4309 (0.1669) 0.4718 (0.0124)
γ 0.0005 (0.0001) 0.0024 (0.0001) 0.0031 (0.0015) 0.0037 (0.0001)
β 0.0913 (0.0316) 0.0342 (0.0044) 0.0373 (0.0375) 0.0288 (0.0038)
λ 0.0187 (0.0029) 0.0315 (0.0012) 0.0281 (0.0053) 0.0360 (0.0005)
σ 0.0604 (0.0166) 0.1245 (0.0058) 0.1408 (0.0286) 0.1828 (0.0022)
α̂ 0.0005 0.0017 0.0015 0.0024

Table 3. Estimated values for real epidemic correct to 4 d.p. with
standard deviations in parenthesis. The final line, α̂, represents
the estimated random detection rate from the start of each period
using the real epidemic.

the ones found in the simulation as random detections are overestimated slightly
in practice. The high contact tracing rate in 1990-1992 corresponds exactly to the
description of the epidemic given in [16]. Specifically after 1989 the number of
individuals detected using contact tracing increases however the rate of random
detections also increase at this point, and outpaces that of contact tracing. The
increase in infection rate over time can be explained by the discovery of infected
individuals in new geographical locations in the epidemic, for example during 1990-
1992 there is a heightened detection rate in Pinar del Rio. As explained in [16], one
reason for the increase in the number of detections in 1997 is the lack of detections
in the beginning of the 1990’s which created a pool of undetected individuals. In
the estimated parameters for the stochastic model this is approximated using a
high infection rate σ and low value of α.

We conclude the analysis of the generated networks by making some remarks on
the computation time, measured on an Intel Xeon E5430 running at 2.66GHz with
32GB RAM. The computation of each model is relatively efficient taking just 326
seconds on average for the final iteration of ABC and for the most costly time period,
2002-2003. Of this, the majority of the time is spent on graph matching, specifically
281 seconds. An average of 45 seconds was required to simulate an increase of 793
vertices in the detection graph and approximately 6000 unique contacts.

5. Conclusions

In this paper, we introduced a novel graph-based SIR epidemic model which
did not specify the graph structure in advance. The resulting model simulates
events of contact, infection and detection using Poisson processes, is efficient to
compute and general enough to encapsulate a wide variety of epidemics. Here we
specified a model for the spread of HIV, with an application to the Cuban epidemic.
The graph generated from the model was matched to a partially observed real
epidemic graph using state-of-the-art graph matching in conjunction with ABC for
parameter estimation. We saw a close fit of the number of estimated detections as
well as several graph properties of the real epidemic. Furthermore, several trends
in the true epidemic were shown to be explained by the estimated parameters of
the stochastic model.

With this work one can naturally adapt the model proposed to other epidemics
where data is available. Furthermore, one can attempt to improve the efficiency
of large graph matching by looking at online methods which can leverage previ-
ous matches in time evolving graphs. This would enable not just the study of
large graphs but also more complicated stochastic models which may better fit the
dynamics of real epidemics.
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Appendix A. Simulation Algorithm

The pseudo code for the stochastic epidemic model is shown in Algorithm 1.
Note that the sets of individuals in the states Susceptible, Infected and Removed
are denoted at time t ∈ R+ by St, It and Rt. We denote by |St|, |It| and |Rt|
the sizes of these classes and the population is assumed to be closed, with size
M . The algorithm is initialised with rate functions for contact and detection,
c : X × X → R

+ and g : X → R
+ which indicate how frequent each respective

event occurs based on the characteristics of vertices at time t. One also supplies
a probability f : X × X → [0, 1] of an infection occurring between two individuals
who have contact. An initial contact graph G0 is required, and in order for the
simulation to give non-trivial results there must be at least one infected individual.
The initial SIR states of individuals are given in the sets S0, I0, R0 and also for
simplicity mirrored in the vertex labels X0.

After initialising variables, the loop starts by upper bounding the contact and
detection rates in Step 4 with ρ̂t. Notice that this upper bound depends only on
the composition of the population at time t, and allows us to decide when the next
event occurs by sampling from a Poisson distribution with this rate. Steps 6 and 7
compute rates for contact and detection events for all of the vertices in the graph
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Algorithm 1 Modelling an epidemic spread over a network

1: Input: t = 0, T > 0, G0 = (V,E0,X0) with |V | = M , S0, I0, R0, contact rate
function c, infection probability f , detection rate g

2: T = {t}
3: while (t < T and |It| 6= 0) do

4: Sample exponential variable τ with rate ρ̂t =
∑

i6=j Â
t

ij +
∑M

i=1 b̂
t

i where Â
t

and b̂
t
are upper bounds on contact and detection rates for s > t

5: Let t← t+ τ , and update xt
i for all i

6: Contact rates At ∈ R
M×M , At

ij = c(xt
i,x

t
j) for (v

t
i , v

t
j) ∈ ((St ∪ It)× It)

7: Detection rates bt ∈ R
M , bt

i = g(xt
i) for v

t
i ∈ It

8: Choose event βt according to the probabilities At
ij/ρ̂t and bt

i/ρ̂t
9: if βt is contact event (vi, vj) and vi ∈ It then

10: Et ← Et ∪ {(vi, vj)}
11: if infection occurs with probability f(xt

i,x
t
j) then

12: It ← It ∪ {vj}
13: end if

14: else if βt detection event of vi then
15: Rt ←Rt ∪ {vi}
16: end if

17: Update T ← T ∪ {t}
18: end while

19: Output: St, It, Rt, Gt, ∀t ∈ T .

and store the rates at time t in At ∈ R
M×M and bt ∈ R

M respectively. Notice that
At must be symmetric and is typically a sparse matrix. The computation of event
probabilities is computed from the rates, specifically the probability of each event
is proportional to its rate. It follows that one chooses an event βt according to the
probabilities At

ij/ρ̂t (individual vi has a contact with vj) and bt
i/ρ̂t (individual vi is

removed). With a probability (ρ̂t −
∑

i6=j A
t
ij −

∑M

i=1 b
t
i)/ρ̂t, nothing happens. At

Step 11 we check if a contact results in an infection based on the infection probability
function f , and then the loop iterates after updating variables accordingly.


