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Abstract

Outdoor sound prediction is both a societal concern and a scientific is-

sue. This paper deals with numerical simulations of micrometeorological

(temperature and wind) fields for environmental acoustics. These simula-

tions are carried out using the reference meso-scale meteorological model at

the Meteo-France weather agency (Meso-NH). Meso-NH predictions at very

fine scales (up to 3 m), including new developments (drag force approach),

are validated both numerically and experimentally under stable, unstable

and neutral conditions. Then, this information can be used as input data for

the acoustic propagation model. The time-domain acoustic model is based

on the Transmission Line Matrix method. Its development has also been

promoted for application to outdoor sound propagation, i.e. to take into

account topography, ground impedance, meteorological conditions, etc. In
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Part 1, the presentation and evaluation of the Transmission Line Matrix

method showed the relevance of this method’s use in the context of environ-

mental acoustics. Finally, simulated noise levels under different propagation

conditions were compared to in-situ measurements. Satisfactory results were

obtained regarding the variability of the observed phenomena.
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1. Introduction

Regarding environmental acoustics, outdoor sound prediction is both a

societal concern and a scientific issue. It is now considered that as of 50 m

from the sound source, the meteorological effects on sound propagation must

be taken into account [1]. In order to qualify and quantify this influence,

many acoustical propagation models have been developed. The meteoro-

logical information is introduced through an atmospheric model of differing

complexity (from the simple linear vertical profile of wind and temperature

to a complex representation of the atmospheric boundary layer). In order to

obtain such a complex representation of the boundary layer, the purpose of

this paper is to use simulation results of the meso-scale meteorological model

Meso-NH in Large-Eddy Simulation (LES) configurations. Then, this infor-

mation can be used as input data for the time-domain sound propagation

model: The Transmission Line Matrix (TLM) method. The associated pa-

per (Part 1) deals with the presentation and evaluation of the Transmission

Line Matrix method in the context of environmental acoustics. In this paper
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(Part 2), the two different models (acoustical and meteorological) are com-

pared with experimental data derived from the Lannemezan-2005 campaign.

In Section 2, the experimental campaign of Lannemezan-2005 is first pre-

sented. An overview of the meso-scale meteorological model Meso-NH and its

configuration is given in Section 3. The results obtained by this model over

the Lannemezan site are next compared with the meteorological measure-

ments during the experimental campaign. In Section 4, the numerical results

of the TLM simulations using Meso-NH simulated meteorological fields as

input data are shown and discussed.

2. Experimental campaign: Lannemezan 2005

Lannemezan-2005 was an experiment conducted near the city of Lan-

nemezan (France) by the Laboratoire Central des Ponts et Chaussées (ex-

LCPC, now Ifsttar), Electricité De France (EDF), Société Nationale des

Chemins de Fer (SNCF) and École Centrale de Lyon (ECL) [1]. It was

designed to be a three-month experiment (from June until August 2005) in

order to study meteorological and ground effects on outdoor acoustic prop-

agation. Fig. 1 shows the Lannemezan-2005 site, its topography and the

location of a selected set of sensors. The Lannemezan-2005 site is flat and

covered with prairie grass. There are tree barriers around 10 m high on each

side of the domain studied. The sound level of a broad-band omnidirectional

sound source had been measured throughout the duration of the campaign

by a cluster of microphones following 3 propagation directions: PD1, PD2,

PD3 (and PD4, not considered in this paper because of the non flat ground).

In addition to microphones, a large number of meteorological sensors were
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deployed in this area. For the meteorological part of the study, a 3D ultra-

sonic anemometer and two 10 m high fully-equipped meteorological towers

(wind speed, wind direction and temperature at heights of 1 m, 3 m and

10 m) were placed respectively at 75, 125 and 175 m from the source in

each direction. Moreover, a 60 m high meteorological tower with three 3D

ultrasonic anemometers, 3 temperature sensors and 3 humidity sensors was

located 200 m north of the source. Information about turbulence kinetic en-

ergy was given by the 3D ultrasonic anemometers and one 60 m mast with a

sampling rate of 10 Hz averaged over 10 minutes. The meteorological towers

provided temperature and wind measurements every 10 seconds, averaged

over 15 minute samples. Regarding noise measurements integrated on 1 s

duration (Leq1s for each 1/3 octave bands on [100 Hz;5 kHz]), the different

microphones were located 50, 100 and 150 m from the sound source in the

different propagation directions. More details are given in Ref. [1].

In order to validate the meteorological model, 3 typical clear-sky condi-

tions were chosen in the Lannemezan-2005 experimental database. As pre-

sented by Foken [2], the dimensionless stability parameter ζ (ζ = z/LMO,

where z is the height above ground and LMO stands for the Monin-Obukhov

length [2]) has been used to define the degree of stratification of the surface

layer (unstable, neutral and stable atmospheres correspond respectively to

−1 < ζ, −1 < ζ < 0 and 0 < ζ). These parameter values have been calcu-

lated from averaged measurements (15 min) of the 3D ultrasonic anemome-

ters.
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Figure 1: Lannemezan-2005 experiment, acoustical and meteorological sensor locations.
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The 3 days chosen were:

• 17th June 2005 during day-time, corresponding to unstable conditions

(ζ = −0.3), unfavorable propagation conditions along the PD1 direc-

tion and homogeneous conditions along PD3 ;

• 3rd July 2005 during night-time, corresponding to very stable condi-

tions (ζ = 0.3) and favorable propagation conditions along PD3 ;

• 16th June 2005 during night-time, presenting neutral-stable atmospheric

characteristics (ζ = 0.1) and favorable propagation conditions along the

PD1 and PD3 directions.

3. Meso-NH

3.1. Presentation

Meso-NH is the non-hydrostatic meso-scale atmospheric model produced

by the French research community [3]. It is intended to be applicable at

all atmospheric scales, ranging from large (synoptic) scales to small scales

(Large-Eddy Simulation). The model can use a 3D 1.5 order turbulence

scheme, with two different mixing length parameterizations [4, 5, 6]. Its

performance for several boundary layer regimes has been tested successfully

[7, 8, 9]. The model allows for all types of boundary layers (stable, neutral,

unstable) to be investigated over different types of surface cover and provides

a resolution on the order of 1 m. However, for such high resolutions, a

description of the effects of the canopy on flow using a roughness approach

(as is usually done in large-scale atmospheric models) was not sufficient.

Thus, a new development has been introduced in order to take into account
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the drag force of the high vegetation[10]. A detailed description of the basic

equations of the Meso-NH model is available into the Meso-NH scientific

manual [11].

3.2. Configuration

Simulations were conducted using 3 grid-nested domains centered on the

main domain of the Lannemezan-2005 site. The domain size was chosen large

enough to resolve the large-scale eddies. Large-eddy simulations (LES) are

performed with horizontal resolutions of 50 m, 10 m and down to 2 m in order

to resolve the smallest eddies. A vertical terrain-following stretched grid is

used with 50 levels in the first 100 m above ground, for a total of 80 levels up

to 6000 m. Table 1 summarizes the model configurations. It can be noticed

that for the unstable case (17-06-2005), the vortices are large enough to make

the third model unnecessary. Surface fluxes were output by the surface model

ISBA [12]. The cover positioning was derived from interpolation of the Corine

database [13] (horizontal resolution of 250 m) except for the field experiment

of Lannemezan-2005 where the data have been completed manually in order

to better describe the position of trees. As an initialization for the Meso-NH

simulations, vertical wind and temperature profiles have been assumed using

ARPEGE analysis [14] above 60 m and observations of the 60 m tower below.

Then, this profile is interpolated vertically and horizontally over the whole

domain, taking into account the orography.
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Table 1: Configuration of the nested models – DEAR: Deardorff mixing length, BL89:

Bougeault Lacarrere mixing length [2].

Horizontal

Resolution 1st Grid 2nd Grid 3rd Grid

Mixing

length

03-07-2005

04h30

Stable

50 m (10 × 10 km2) 10 m (2 × 2 km2) 3.3 m (500 × 400 m2)

BL89 BL89 DEAR

16-06-2005

04h30

Neutral

50 m (10 × 10 km2) 10 m (2 × 2 km2) 3.3 m (500 × 400 m2)

BL89 BL89 DEAR

17-06-2005

16h00

Unstable

50 m (10 × 10 km2) 10 m (2 × 2 km2) X

DEAR DEAR X
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3.3. Results

Figs. 2, 3 and 4 show the comparison between simulation and experimen-

tal results for the profiles of wind speed, temperature and turbulent kinetic

energy (TKE) at the three selected times (local time). The mean vertical

profile is calculated from a space and time averaging over the different masts

(on PD1, PD2 and PD3), and over 15 min time periods. In this particular

case of the 16th of June 2005 at 04h30 (Fig. 2), we observe good agreement

between experimental results and Meso-NH simulations. Let’s note in par-

ticular the good reproduction of the inflection point in the wind speed and

the very good representation of the TKE mean vertical profile. For the neu-

tral and unstable cases (06-17-2005, Fig. 2 and 06-16-2005, Fig. 3), there is

a good agreement between Meso-NH simulations and experimental results.

For the stable case (07-03-2005, Fig. 4), Meso-NH simulations produce an

excessive wind speed value. Regarding temperature and TKE values, a more

detailed review has been presented in [15]. Finally, Meso-NH is considered

as a relevant model to provide input data for propagation simulations with

the TLM method.

4. TLM

As described in the associated paper (Part 1), recent developments of the

TLM method have been carried out and validated in order to take into ac-

count different ground impedance characteristics [16], fully-absorbing bound-

ary layers [17] and meteorology [18]. Thus, the TLM can now be considered

as a reference method for the simulation of outdoor sound propagation.
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Figure 2: Mean vertical profiles (thick line) and dispersion (thin lines) of the wind speed,

temperature and turbulent kinetic energy (total TKE in continuous line with dispersion,

subgrid TKE in dashed line and resolved TKE in dotted line), both measured (black) and

simulated (red) on 16-06-2005 at 04h30 (neutral case).

Figure 3: Mean vertical profiles (thick line) and dispersion (thin lines) of the wind speed,

temperature and turbulent kinetic energy (total TKE in continuous line with dispersion,

subgrid TKE in dashed line and resolved TKE in dotted line), both measured (black) and

simulated (red) on 17-06-2005 at 16h30 (unstable case).
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Figure 4: Mean vertical profiles (thick line) and dispersion (thin lines) of the wind speed,

temperature and turbulent kinetic energy (total TKE in continuous line with dispersion,

subgrid TKE in dashed line and resolved TKE in dotted line), both measured (black) and

simulated (red) on 03-07-2005 at 04h30 (stable case).

4.1. Configuration

For the following simulations, the spatial resolution of the TLM method

is 0.04 m and performed in 2D during 0.65 seconds. The central frequency

of the sound source (gaussian pulse) is 500 Hz. Perfectly absorbing bound-

ary layers are set around the computational domain, except on the bottom

side where ground impedance conditions are assumed to be absorbing. In

the Miki impedance model [16], air flow resistivity is set at 150 k.N.s.m−4,

which is the measured mean value during the Lannemezan-2005 experiment

[19]. The meteorological fields (temperature and wind) are extracted on each

propagation direction and integrated into the acoustic model. Because of the

major difference in time scales between acoustical and meteorological fluctu-

ations (e.g. sound speed ∼ 340 m.s−1 vs air flow speed ∼ 10 m.s−1), it has

been decided to use fixed meteorological variables during the time duration

of the simulation (0.65 sec).
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4.2. Results

In this paper, only 315 Hz, 400 Hz, 630 Hz and 800 Hz third octave band

results are presented for the different cases in the PD3 propagation direction.

It is possible to find exhaustive results in [15]. In order to compare TLM

simulations with measurements under very weak meteorological effects, near

perfect homogeneous conditions (vertical speed sound gradient < 0.015 s−1)

have first been extracted from the Lannemezan-2005 database. This com-

parison is reported in grey on the figures 5, 6 and 7, which shows a very good

agreement between simulated and measured values at any distances and for

all frequency bands. This confirms that the choice of ground impedance pa-

rameters is sufficiently accurate and relevant [14, 20, 21]. TLM simulations

using vertical linear profiles are also proposed, in red on the figures. The

gradient is calculated at a height of 3 m from the measurements, which al-

lows validating the accuracy of the TLM method and better evaluating the

impact of the input meteorological data.
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Figure 5: Sound attenuation (normalised by the free field and by a reference microphone

located 10 m from the sound source) as a function of the distance from the source, for

315Hz, 400Hz, 630Hz and 800 Hz third octave bands. The bold grey lines traduce the

experimental dispersion over the three-month measurements. Comparison between experi-

mental data during the campaign of Lannemezan 2005 (points) and TLM predictions (full

line) using (blue) measured meteorological conditions on 17-06-2005 at 16h30 following

PD3, (grey) nearly-homogeneous conditions and (red) rough (linear) vertical profiles of

sound speed.
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Figure 6: Sound attenuation (normalised by the free field and by a reference microphone

located 10 m from the sound source) as a function of the distance from the source, for

315Hz, 400Hz, 630Hz and 800 Hz third octave bands. The bold grey lines traduce the

experimental dispersion over the three-month measurements. Comparison between experi-

mental data during the campaign of Lannemezan 2005 (points) and TLM predictions (full

line) using (blue) measured meteorological conditions on 03-07-2005 at 04h30 following

PD3, (grey) nearly-homogeneous conditions and (red) rough (linear) vertical profiles of

sound speed.
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Figure 7: Sound attenuation (normalised by the free field and by a reference microphone

located 10 m from the sound source) as a function of the distance from the source, for

315Hz, 400Hz, 630Hz and 800 Hz third octave bands. The bold grey lines traduce the

experimental dispersion over the three-month measurements. Comparison between experi-

mental data during the campaign of Lannemezan 2005 (points) and TLM predictions (full

line) using (blue) measured meteorological conditions on 16-06-2005 at 04h30 following

PD3, (grey) nearly-homogeneous conditions and (red) rough (linear) vertical profiles of

sound speed.
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Then, the meteorological variables (wind and temperature) of the TLM

model are derived from Meso-NH simulation results on the same site and

for the same dates. These comparisons between TLM simulations and ex-

perimental data are presented in red in Fig. 5 (blue line for ”exact” profiles

directly generated from Meso-NH). These comparison results generally show

very good agreement and especially underscore the benefit in taking into

account meteorological effects during acoustic propagation, even with only

roughly fitted (linear) meteorological profiles. The different case studies have

shown that:

• For unstable case (Fig. 5), a good accuracy of the TLM method un-

der relatively homogeneous conditions. This confirms that the choice

of ground impedance parameters is sufficiently accurate and relevant

and moreover that TLM is suitable for the purpose of outdoor sound

propagation.

• In stable conditions (Fig. 6), because the sound pressure levels are very

sensitive to the meteorological fields and, in the case of low quality

Meso-NH simulations, the TLM simulations can be sometimes quite

far from experiments. When using vertical profiles calculated from

measurements, the TLM simulations show significantly better results.

• For neutral case (Fig. 7), if the atmospheric boundary layer simulated

by Meso-NH is in sufficient agreement with the meteorological obser-

vations, then the TLM sound predictions are also in good agreement

with the corresponding experimental acoustic data.

Finally, these comparative results generally show a good agreement, even
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with only roughly fitted (linear) meteorological profiles.

5. Conclusion

This paper deals with the use of the meso-scale meteorological model

(Meso-NH) in order to enhance the time-domain sound propagation model

(TLM) with temperature and wind speed profiles. Thanks to the com-

parison between simulation results and experimental data derived from the

Lannemezan-2005 campaign, this study has shown the strong sensitivity of

the acoustical model to the vertical profiles of temperature and wind speed,

and has thus demonstrated the need to make use of accurate meteorological

simulations as input data. The associated paper (Part 1) having shown the

relevance of the TLM method for outdoor acoustic propagation modeling,

the present Part 2 has raised the interest of this prospective work from the

perspective of coupling acoustical and meteorological models.
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