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hen considering the problem of unmixing 

hyperspectral images, most of the literature 

in the geoscience and image processing 

areas relies on the widely used linear mixing 

model (LMM). However, the LMM may be not 

valid, and other nonlinear models need to be considered, for 

instance, when there are multiscattering effects or intimate inter-

actions. Consequently, over the last few years, several significant 

contributions have been proposed to overcome the limitations 

inherent in the LMM. In this article, we present an overview of 

recent advances in nonlinear unmixing modeling. 

MOTIVATION FOR NONLINEAR MODELS

Spectral unmixing (SU) is widely used for analyzing hyperspectral 

data arising in areas such as remote sensing, planetary science 

chemometrics, materials science, and other areas of microspec-

troscopy. SU provides a comprehensive and quantitative mapping 

of the elementary materials that are present in the acquired data. 

More precisely, SU can identify the spectral signatures of these 

materials (usually called endmembers) and can estimate their 

relative contributions (known as abundances) to the measured 

spectra. Similar to other blind source separation tasks, the SU 

problem is naturally ill posed and admits a wide range of admissi-

ble solutions. As a consequence, SU is a challenging problem that 

has received considerable attention in the remote sensing, signal, 

and image processing communities [1]. Hyperspectral data analy-

sis can be supervised, when the endmembers are known, or 

unsupervised, when they are unknown. Irrespective of the case, 
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most SU approaches require the definition of the mixing model 

underlying the observations. A mixing model describes in an ana-

lytical fashion how the endmembers combine to form the mixed 

spectrum measured by the sensor. The abundances parametrize 

the model. Given the mixing model, SU boils down to estimating 

the inverse of this formation process to infer the quantities of 

interest, specifically the endmembers and/or the abundances, 

from the collected spectra. Unfortunately, defining the direct 

observation model that links these meaningful quantities to the 

measured data is a non trivial issue, and requires a thorough 

understanding of complex physical phenomena. A model based 

on radiative transfer (RT) could accurately describe the light scat-

tering by the materials in the observed scene [2] but would lead 

to very complex unmixing problems. Fortunately, invoking sim-

plifying assumptions can lead to exploitable mixing models. 

When the mixing scale is macroscopic and each photon 

reaching the sensor has interacted with just one material, the 

measured spectrum y Rp
L

!  in the thp  pixel can be accurately 

described by the LMM 
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where L  is the number of spectral bands, R  is the number of 

endmembers present in the image, mr  is the spectral signa-

tures of the thr  endmember, a ,r p  is the abundance of the thr  

material in the thp  pixel and n p  is an additive term associ-

ated with the measurement noise and the modeling error. 

The abundances can be interpreted as the relative areas 

occupied by the materials in a given image pixel [3]. Thus it 

is natural to consider additional constraints regarding the 

abundance coefficients a ,r p
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In that case, SU can be formulated as a constrained blind 

source separation problem, or constrained linear regression, 

depending on the prior knowledge available regarding the end-

member spectra. 

Due to the relative simplicity of the model and the straight-

forward interpretation of the analysis results, LMM-based 

unmixing strategies predominate in the literature. All of these 

techniques have been shown to be very useful whenever the 

LMM represents a good approximation to the actual mixing. 

There are, however, practical situations in which the LMM is 

not a suitable approximation [1]. As an illustrative example, 

consider a real hyperspectral image, composed of L 160=  spec-

tral bands from the visible to near infrared, acquired in 2010 by 

the airborne Hyspex hyperspectral sensor over Villelongue, 

France. This image, with a spatial resolution of 0.5 m, is repre-

sented in Figure 1(a). From primary inspection and prior 

knowledge coming from available ground truth, the 50 50#  

pixel region of interest depicted in Figure 1(c) is known to be 

composed of mainly R 3=  macroscopic components (oak tree, 

chestnut tree, and an additional nonplanted-tree component). 

When considering the LMM to model the interactions between 

these R 3=  components, all the observed pixels should lie in a 

two-dimensional linear subspace, that can be easily identified by 

a standard principal component analysis (PCA). Conversely, if 

nonlinear effects are present in the considered scene, the 

observed data may belong to a two-dimensional nonlinear man-

ifold. In that case, more complex nonlinear dimension reduc-

tion procedures need to be considered to accurately represent 

the data. The accuracy of these dimension reduction procedures 

in representing the data set into a two-dimensional linear or 

nonlinear subspace can be evaluated thanks to the average 

reconstruction error (ARE), defined as 
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where yn  are the observed pixels and ynt  the corresponding esti-

mates, and ,P 2 500=  is the number of pixels. Here we contrast 

two approaches, a locally linear Gaussian process latent variable 

model (LL-GPLVM) introduced in [4] and PCA. When using PCA 

to represent the data, the obtained ARE is .8 4 10 3
#

-  while 

using the LL-GPLVM, the ARE is reduced to . .7 9 10 3
#

-  This 

demonstrates that the investigated data set should be preferably 

represented in a nonlinear subspace, as clearly demonstrated in 

Figure 1(b), where the nonlinear simplex identified by the fully 

constrained LL-GPLVM has been represented as blue lines. For 

the studied hyperspectral image, the nonlinearity seems to be 

weak, which is often the case for most real applications. How-

ever, the models and algorithms presented in this article are 

also interested for more severe nonlinearities, for instance 

encountered when analyzing mineral data set. 

Consequently, more complex mixing models need to be 

considered to cope with nonlinear interactions. These models 

are expected to capture important nonlinear effects that are 

inherent characteristics of hyperspectral images in several 

applications. They have proven essential to unveil meaningful 

information for the geoscience community [5]–[10]. Several 

approximations to the RT theory have been proposed, such as 

Hapke’s bidirectional model [3]. Unfortunately, these models 

require highly nonlinear and integral formulations that hinder 

practical implementations of unmixing techniques. To over-

come these difficulties, several physics-based approximations 

of Hapke’s model have been proposed, mainly in the spectros-

copy literature (e.g., see [3]). However, despite their wide 

interest, these approximations still remain difficult to apply 

for automated hyperspectral imaging. In particular, for such 

models, there is no unsupervised nonlinear unmixing algo-

rithm able to jointly extract the endmembers from the data 

and estimate their relative proportions in the pixels. Mean-

while, several approximate but exploitable non-LMMs have 

been recently proposed in the remote sensing and image pro-

cessing literatures. Some of them are similarly motivated by 

physical arguments, such as the class of bilinear models intro-

duced later. Others exploit a more flexible nonlinear mathe-

matical model to improve unmixing performance. Developing 

effective unmixing algorithms based on non-LMMs represents 

a challenge for the signal and image processing community. 



 

Supervised and unsupervised algorithms need to be designed to 

cope with nonlinear transformations that can be partially or 

totally unknown. Solving the nonlinear unmixing problem 

requires innovative approaches to existing signal processing 

techniques. 

More than ten years after Keshava and Mustard’s compre-

hensive review article on spectral unmixing [11], this article 

provides an updated review focusing on nonlinear unmixing 

techniques introduced in the past decade. In [11], the problem 

on nonlinear mixtures was thoroughly addressed but, at that 

time, very few algorithmic solutions were available. Capitalizing 

on almost one decade of advances in solving the linear unmix-

ing problem, scientists from the signal and image processing 

communities have developed, and continue to do so, automated 

tools to extract endmembers from nonlinear mixtures, and to 

quantify their proportions in nonlinearly mixed pixels. 

NONLINEAR MODELS

In [1], it is explained that linear mixtures are reasonable when 

two assumptions are wholly fulfilled. First the mixing process 

must occur at a macroscopic scale [12]. Second, the photons 

that reach the sensor must interact with only one material, as is 

the case in checkerboard type scenes [13]. An illustration of this 

model is depicted in Figure 2(a) for a scene composed of two 

materials. When one of these two assumptions does not hold, 

different nonlinear effects may occur. Two families of nonlinear 

models are described in what follows. 

INTIMATE MIXTURES

The first assumption for linear mixtures is a macroscopic mix-

ing scale. However, there are common situations when inter-

actions occur at a microscopic level. The spatial scales 

involved are typically smaller than the path length followed by 
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[FIG1]  (a) Real hyperspectral Madonna data acquired by the Hyspex hyperspectral scanner over Villelongue, France. (b) The 
representation of the ,P 2 500=  pixels (black dots) of the data and boundaries of the estimated nonlinear simplex (blue lines). (c) The 
region of interest shown in true colors.



 

the photons. The materials are said to be intimately mixed [3]. 

Such mixtures have been observed and studied for some time, 

e.g., for imaged scenes composed of sand or mineral mixtures 

[14]. They have been advocated for analyzing mixtures 

observed in laboratory [15]. Based on RT theory, several theo-

retical frameworks have been derived to accurately describe 

the interactions suffered by the light when encountering a 

surface composed of particles. 

An illustration of these interactions is represented in Fig-

ure 2(b). Probably the most popular approaches dealing with 

intimate mixtures are those of Hapke in [3] since they involve 

meaningful and interpretable quantities that have physical sig-

nificance. Based on these concepts, several simplified non-

LMMs have been proposed to relate the measurements to 

some physical characteristics of the endmembers and to their 

corresponding abundances (that are associated with the rela-

tive mass fractions for intimate mixtures). In [2], the author 

derives an analytical model to express the measured reflectances 

as a function of parameters intrinsic to the mixtures, e.g., the 

mass fractions, the characteristics of the individual particles 

(density, size) and the single-scattering albedo. Other popular 

approximating models include the discrete-dipole approxima-

tion [16] and the Shkuratov’s model [17] (interested readers are 

invited to consult [3] or the more signal processing-oriented 

papers [18] and [19]). However these models also strongly 

depend on parameters inherent to the experiment since it 

requires the perfect knowledge of the geometric positioning of 

the sensor with respect to the observed sample. This depen-

dency upon external parameters makes the inversion (i.e., the 

estimation of the mass fractions from the collected spectra) very 

difficult to implement and, obviously, even more challenging in 

a unsupervised scenario, i.e., when the spectral signatures of the 

materials are unknown and need to be also recovered. 

More generally, it is worth noting that the first requirement 

of having a macroscopic mixing scale is intrinsically related to 

the definition of the endmembers. Indeed, defining a pure mate-

rial requires specification of the spatial or spectral resolution, 

which is application dependent. Consider a simple scene com-

posed of three materials , , and .A B C  It is natural to expect 

retrieval of these components individually when analyzing the 

scene. However, in other circumstances, one may be interested 

in the material components themselves, for instance, 

, , , , ,B B CA A1 2 1 2 1  and C2 if we assume that each material is 

composed of two constituents. In that case, pairs of subcompo-

nents combine and, by performing unmixing, one might also be 

interested in recovering each of these six components. Con-

versely, it may be well known that the material A  can never be 

present in the observed scene without the material .B  In such a 

case, unmixing would consist of identifying the couple A B+  

and ,C  without distinguishing the subcomponent A  from the 

subcomponent .B  This issue is frequently encountered in auto-

mated spectral unmixing. To circumvent this difficulty in defin-

ing the mixture scale, it makes sense to associate pure 

components with individual instances whose resolutions have 

the same order of magnitude than the sensor resolution. For 

example, a patch of sand of spatially homogeneous composition 

can be considered as a unique pure component. In that case, 

most of the interactions occurring in most of the scenes of 

interest can be reasonably assumed to occur at a macroscopic 

level, at least when analyzing airborne and spaceborne remotely 

sensed images. 

BILINEAR MODELS

Another type of nonlinear interaction occurs at a macroscopic 

scale, in particular in so-called multilayered configurations. One 

may encounter this nonlinear model when the light scattered by a 

given material reflects off other materials before reaching the sen-

sor. This is often the case for scenes acquired over forested areas, 

where there may be many interactions between the ground and 

the canopy. An archetypal example of this kind of scene is shown 

in Figure 2(c). 

Several models have been proposed to analytically describe 

these interactions. They consist of including powers of products of 

reflectance. However they are usually employed such that interac-

tions of orders greater than two are neglected. The resulting mod-

els are known as the family of the bi-LMMs. Mathematically, for 

most of these bilinear models, the observed spectrum y Rp
L

!  in 

L  spectral bands for the ith pixel is approximated by the  following 

expansion: 
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[FIG2] (a) The LMM: the imaged pixel is composed of two materials. (b) Intimate mixture: the imaged pixel is composed of a 
microscopic mixture of several constituents. (c) Bilinear model: the imaged pixel is composed of two endmembers: tree and soil.  
In addition to the individual contribution of each material, bilinear interactions between the tree and the soil reach the sensor.
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where 9  stands for the termwise (Hadamard) product 
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In the right-hand side of (4), the first term, also found in (1), sum-

marizes the linear contribution in the mixture while the second 

term models nonlinear interactions between the materials. The 

coefficient , ,i j pb  adjusts the amount of nonlinearities between the 

components mi  and m j  in the thp  pixel. Several alternatives for 

imposing constraints on these nonlinear coefficients have been 

suggested. Similarly to [10], Nascimento and Dias assume in [20] 

that the (linear) abundance and nonlinearity coefficients obey 
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It is worth noting that, from (5), this Nascimento model (NM), 

also used in [21], can be interpreted as an LMM with additional 

virtual endmembers. Indeed, considering m mi j9  as a pure 

component spectral signature with corresponding abundance 

,, ,i j pb  the model in (5) can be rewritten 
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with the positivity and additivity constraints in (2) where 
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and ( / ) ( ) .R R R1 2 1= +u  This NM reduces to the LMM when 

a 0,s p =u  for , , .s R R1 f= + u  

Conversely, in [9], Fan and his coauthors have fixed the non-

linearity coefficients as functions of the (linear) abundance coef-

ficients themselves: a a, , , ,i j p i p j pb =  ( ) .i j!  The resulting model, 

called the Fan model (FM) in what follows, is fully described by 

the mixing equation 
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subject to the constraints in (2). One argument to explain the 

direct relation between the abundances and the nonlinearity 

coefficients is the following: if the ith endmember is absent in 

the thp  pixel, then a 0,i p =  and there are no interactions 

between mi  and the other materials m j  ( ) .j i!  More gener-

ally, it is quite natural to assume that the quantity of nonlinear 

interactions in a given pixel between two materials is directly 

related to the quantity of each material present in that pixel. 

However, it is clear that this model does not generalize the 

LMM, which can be a restrictive property. 

More recently, to alleviate this issue, the generalized bilin-

ear model (GBM) has been proposed in [22] by setting 

a a, , , , , ,i j p i j p i p j pb �=
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where the interaction coefficient ( , )0 1, ,i j p !c  quantifies the 

nonlinear interaction between the spectral components mi  and 

.m j  This model has the same interesting characteristic as the 

FM: the amount of nonlinear interactions is governed by the 

presence of the endmembers that linearly interact. In particular, 

if an endmember is absent in a pixel, there is no nonlinear 

interaction supporting this endmember. However, it also has 

the significant advantage of generalizing both the LMM when 

0, ,i j pc =  and the FM when .1, ,i j pc =  Having 0, ,i j p 2c  indicate 

that only constructive interactions are considered. 

For illustration, synthetic mixtures of R 3=  spectral com-

ponents have been randomly generated according to the LMM, 

NM, FM, and GBM. The resulting data set are represented in 

the space spanned by the three principal eigenvectors (associ-

ated with the three largest eigenvalues of the sample covari-

ance matrix of the data) identified by a principal component 

analysis in Figure 3. These plots illustrate an interesting prop-

erty for the considered data set: the spectral signatures of the 

pure components are still extremal points, i.e., vertices of the 

clusters, in the cases of FM and GBM mixtures contrary to the 

NM. In other words, geometrical endmember extraction algo-

rithms (EEAs) and, in particular, those that are looking for the 

simplex of largest volume (see [23] for details), may still be 

valid for the FM and the GBM under the assumption of weak 

nonlinear interactions. 

All these bilinear models only include between-component 

interactions m mi j9  with i j!  but no within-component inter-

actions .m mi i9  Finally, in [24], the authors derived a non-LMM 

using a RT model applied to a simple canyonlike urban scene. 

Successive approximations and simplifying assumptions lead to 

the following linear-quadratic mixing model (LQM) 
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with the positivity and additivity constraints in (2) and 

( , ) .0 1, ,i j p !b  This model is similar to the general formulation 

of the bilinear models in (4), with the noticeable difference that 

the nonlinear contribution includes quadratic terms .m mi i9  

This contribution also shows that it is quite legitimate to 

include the termwise products mmi j9  as additional compo-

nents of the standard linear contribution, which is the core of 

the bilinear models described in this section. 

OTHER APPROXIMATING PHYSICS-BASED MODELS

To describe both macroscopic and microscopic mixtures, [25] 

introduces a dual model composed of two terms 
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The first term is similar to the one encountered in LMM and 

comes from the macroscopic mixing process. The second one, 

considered as an additional endmember with abundance 

,a ,R p1+  describes the intimate mixture by the average single-

scattering albedo [2] expressed in the reflective domain by the 

mapping .·R^ h  



 

Altmann et al. have proposed in [26] an approximating model 

able to describe a wide class of nonlinearities. This model is 

obtained by performing a second-order expansion of the nonlin-

earity defining the mixture. More precisely, the thp  observed pixel 

spectrum is defined as a nonlinear transformation ·gp ^ h of a lin-

ear mixture of the endmember spectra 
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where the nonlinear function gp  is defined as a second-order poly-

nomial nonlinearity parameterized by the unique nonlinearity 

parameter b p
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This model can be rewritten 

 ,by Ma Ma Ma np p p p p p9= + +^ ^h h  

where , ,M m mR1 f= 6 @ and , , .a aa , ,p p R p
T

1 f= 6 @  The parame-

ter b p  tunes the amount of nonlinearity present in the thp  pixel 

of the image and this model reduces to the standard LMM when 

.b 0p =  It can be easily shown that this polynomial postnonlinear 

model (PPNM) includes bilinear terms m mi j9  ( )i j!  similar to 

those defining the FM, NM and GBM, as well as quadratic terms 

m mi i9  similar to the LQM in (8). This PPNM has been shown to 

be sufficiently flexible to describe most of the bilinear models 

introduced in this section [26]. 

LIMITATION OF A PIXEL-WISE NONLINEAR SU

Having reviewed the above physics-based models, an important 

remark must be made. It is important to note that these models 

do not take into account spatial interactions from materials pres-

ent in the neighborhood of the targeted pixel. It means that these 

bilinear models only consider scattering effects in a given pixel 

induced by components that are present in this specific pixel. This 

is a strong simplifying assumption that allows the model parame-

ters (abundance and nonlinear coefficients) to be estimated pixel-

by-pixel in the inversion step. Note, however, that the problem of 

taking adjacency effects into account, i.e., nonlinear interactions 

coming from spectral interference caused by atmospheric scatter-

ing, has been addressed in an unmixing context in [27]. 

NONLINEAR UNMIXING ALGORITHMS

Significant promising approaches have been proposed to nonlin-

early unmix hyperspectral data. A wide class of nonlinear unmix-

ing algorithms rely explicitly on a nonlinear physics-based 

parametric model, as detailed earlier. Others do not require defi-

nition of the mixing model and rely on very mild assumptions 

regarding the nonlinearities. For these two classes of approaches, 

unmixing algorithms have been considered under two different 

scenarios, namely supervised or unsupervised, depending on the 

available prior knowledge on the endmembers. When the end-

members are known, supervised algorithms reduce to estimating 

the abundance coefficients in a single supervised inversion step. 

In this case, the pure spectral signatures present in the scene 

must have been previously identified. For instance, they use prior 
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[FIG3] Clusters of observations generated according to (a) the LMM, (b) NM, (c) FM, and (d) GBM (blue) and the corresponding 
endmembers (red crosses).



 

information or suboptimal linear EEA. Indeed, as previously 

noted, when considering weakly nonlinearly mixed data, the 

LMM-based EEA may produce good endmember estimates when 

there are pure pixels in the data set (see “On the Use of Geometri-

cal LMM-Based EEAs to Identify Nonlinearly Mixed Endmem-

bers”). In contrast, an unsupervised unmixing algorithm jointly 

estimates the endmembers and the abundances. Thus the unmix-

ing problem becomes even more challenging, since a blind 

source separation problem must be solved. 

MODEL-BASED PARAMETRIC NONLINEAR 

UNMIXING ALGORITHMS

Given a nonlinear parametric model, SU can be formulated as a 

constrained nonlinear regression or a nonlinear source separa-

tion problem, depending on whether the endmember spectral 

signatures are known or not. When dealing with intimate mix-

tures, some authors have proposed converting the measured 

reflectance into a single scattering albedo average; since this 

obeys a linear mixture, the mass fractions associated with each 

endmember can be estimated using a standard linear unmixing 

algorithm. This is the approach adopted in [15] and [18] for 

known and unknown endmembers, respectively. To avoid the 

functional inversion of the reflectance measurements into the 

single scattering albedo, a common approach is to use neural-

networks (NNs) to learn this nonlinear function. This is the 

strategy followed by Guilfoyle et al. in [28], for which several 

improvements have been proposed in [29] to reduce the compu-

tationally intensive learning step. In these NN-based 

approaches, the endmembers are assumed to be known a priori, 

and are required to train the NN. Other NN-based algorithms 

have been studied in [30]–[33]. 

For the bilinear models introduced previously, supervised 

nonlinear optimization methods have been developed based on 

the assumption that the endmember matrix M  is known. When 

the observed pixel spectrum y p  is related to the parameters of 

interest pi  (a vector containing the abundance coefficients as 

well as any other nonlinearity parameters) through the function 

( , ),M ${  unmixing the pixel y p  consists of solving the following 

minimization problem: 

 ( , ) .argmin y Mp p 2
2

i i{-=

i

t  (11)

This problem raises two major issues: 1) the nonlinearity of the 

criterion resulting from the underlying nonlinear model ( )${  

and 2) the constraints that have to be satisfied by the parameter 

vector .i  Since the NM can be interpreted as an LMM with 

additional virtual endmembers, estimation of the parameters 

can be conducted with a linear optimization method as in [20]. 

In [9], [34] dedicated to FM and GBM, the authors propose to 

linearize the objective criterion via a first-order Taylor series 

expansion of ( ) .${  Then, the fully constrained least square 

(FCLS) algorithm of [35] can be used to estimate parameter 

vector .i  An alternative algorithmic scheme proposed in [34] 

consists of resorting to a gradient descent method, where the 

step-size parameter is adjusted by a constrained line search pro-

cedure enforcing the constraints inherent to the mixing model. 

Another strategy initially introduced in [22] for the GBM is 

based on Monte Carlo approximations, developed in a fully 

Bayesian statistical framework. The Bayesian setting has the 

great advantage of providing a convenient way to include the 

parameter constraints within the estimation problem, by defin-

ing appropriate priors for the parameters. This strategy has 

been also considered to unmix the PPNM [26]. 

When the spectral signatures M  involved in these bilinear 

models need also to be identified in addition to the abundances 

and nonlinearity parameters, more ambitious unmixing algo-

rithms need to be designed. In [36], the authors differentiate 

the NM to implement updating rules that generalize the spar-

sity promoting iterated constrained endmember (SPICE) algo-

rithm introduced in [37] for the LMM. Conversely, NMF-based 

iterative algorithms have been advocated in [38] for the GBM 

defined in (7), and in [24] for the LQM described in (8). More 

recently, an unsupervised version of the Bayesian PPNM-based 

unmixing algorithm initially introduced in [26] has been 

investigated in [39]. 

Adopting a geometrical point of view, Heylen and Scheun-

ders propose in [40] an integral formulation to compute geode-

sic distances on the nonlinear manifold induced by the GBM. 

The underlying idea is to derive an EEA that identifies the sim-

plex of maximum volume contained in the manifold defined by 

the GBM-mixed pixels. 

MODEL-FREE NONLINEAR UNMIXING ALGORITHMS

When the nonlinearity defining the mixing is unknown, the SU 

problem becomes even more challenging. In such cases, when 

the endmember matrix M  is fixed a priori, a classification 

approach can be adopted to estimate the abundance coefficients, 

which can be solved using support vector machines [41], [42]. 

Conversely, when the endmember signatures are not known, a 

geometrical-based unmixing technique can be used, based on 

ON THE USE OF GEOMETRICAL LMM-BASED EEAS TO IDENTIFY NONLINEARLY MIXED ENDMEMBERS

The first automated spectral unmixing algorithms, proposed 

in the 1990s, were based on geometrical concepts and were 

designed to identify endmembers as pure pixels (see [1] and 

[23] for comprehensive reviews of geometrical linear unmix-

ing methods). It is worth noting that this class of algorithms 

does not explicitly rely on the assumption of pixels coming 

from linear mixtures. They only search for endmembers as 

extremal points in the hyperspectral data set. Provided there 

are pure pixels in the analyzed image, this might indicate 

that some of these geometrical approaches can be still valid 

for nonlinear mixtures that preserve this property, such as 

the GBM and the FM as illustrated in Figure 3. 



 

graph-based approximate geodesic distances [43] or manifold 

learning techniques [44], [45]. Another promising approach is to 

use nonparametric methods based on reproducing kernels [46]–

[51] or on Gaussian processes [4] to approximate the unknown 

nonlinearity. These two later techniques are described below. 

Nonlinear algorithms operating in reproducing kernel Hilbert 

spaces (RKHS) have received considerable interest in the 

machine-learning community, and have proved their efficiency in 

solving nonlinear problems. Kernel-based methods have been 

widely considered for detection and classification in hyperspectral 

images. Surprisingly, nonlinear unmixing approaches operating 

in RKHS have been investigated in a less in-depth way. The algo-

rithms derived in [46] and [47] were mainly obtained by replacing 

each inner product between endmember spectra in the cost func-

tions to be optimized by a kernel function. This can be viewed as 

a nonlinear distortion map applied to the spectral signature of 

each material, independently of their interactions. This principle 

can be extremely efficient in solving detection and classification 

problems as a proper distortion can increase the detectability or 

separability of some patterns. It is, however, of little physical 

interest in solving the unmixing problem because the nonlinear 

nature of the mixtures is not only governed by individual spectral 

distortions, but also by nonlinear interactions between the mate-

rials. In [48], a new kernel-based paradigm was proposed to take 

the nonlinear interactions of the endmembers into account, 

when these endmembers are assumed to be a priori known. It 

solves the optimization problem 

 ,min y m,p

L
2

1

2

H
H} n }- +

,

,
!}

i m i

=

,

i

^ h6 @/  (12)

where mm,  is the vector of the endmember signatures at the  

, th frequency band, particularly, , , ,m mm , ,R
T

1 f= , ,m, 6 @  with 

H  a given functional space, and n  a positive parameter that con-

trols the tradeoff between regularity of the function ( )$}i  and fit-

ting. Again, i  is a vector containing the abundance coefficients 

as well as any other nonlinearity parameters. It is interesting to 

note that (12) is the functional counterpart to (11), where ( )$}i  

defines the nonlinear interactions between the endmembers 

assumed to be known in [48]. Clearly, this strategy may fail if the 

functional space H  is not chosen appropriately. A successful 

strategy is to define H  as an RKHS to exploit the so-called kernel 

trick. Let ( , )$ $l  be the reproducing kernel of .H  The RKHS H  

must be carefully selected via its kernel to make it flexible enough 

to capture wide classes of nonlinear relationships, and to reliably 

interpret a variety of experimental measurements. To extract the 

mixing ratios of the endmembers, the authors in [48] focus their 

attention on partially linear models, resulting in the so-called 

K-HYPE SU algorithm. More precisely, the function ( )$}i  in (12) 

is defined by an LMM parameterized by the abundance vector ,a  

combined with a nonparametric term, 

 ( ) ( )a mm mnlin} }= +
<

i m mm, , ,  (13)

possibly subject to the constraints in (2), where nlin}  can be 

any real-valued function of an RKHS denoted by .Hnlin  This 

model generalizes the standard LMM, and mimics the PPNM 

when Hnlin  is defined to be the space of polynomial functions 

of degree two. Remember that the latter is induced by the 

polynomial kernel ( , ) ( )m m m m q
l =

<
� � � �, , , ,l l  of degree .q 2=  

More complex interaction mechanisms can be considered by 

simply changing ( , ) .m m� � �, , l  By virtue of the reproducing 

kernel machinery, the problem can still be solved in the 

framework of (12). 

Another strategy introduced in [4] considers a kernel-based 

approach for unsupervised nonlinear SU based on a nonlinear 

dimensionality reduction using a Gaussian process latent vari-

able model (GPLVM). In this work, the authors have used a par-

ticular form of kernel that extends the generalized bilinear 

model in (7). The algorithm proposed in [4] is unsupervised in 

the sense that the endmembers contained in the image and the 

mixing model are not known. Only the number of endmembers 

is assumed to be known. As a consequence, the parameters to be 

estimated are the kernel parameters, the endmember spectra 

and the abundances for all image pixels. The main advantage of 

GPLVMs is their capacity to accurately model many different 

nonlinearities. GPLVMs construct a smooth mapping from the 

space of fractional abundances to the space of observed mixed 

pixels that preserves dissimilarities. This strategy has been also 

considered in [51] by Nguyen et al., who solve the so-called prei-

mage problem [52] studied in the machine-learning commu-

nity. In the SU context, it means that pixels that are spectrally 

different have different latent variables and thus different abun-

dance vectors. However, preserving local distances is also inter-

esting: spectrally close pixels are expected to have similar 

abundance vectors and thus similar latent variables. Several 

approaches have been proposed to preserve similarities, includ-

ing back-constraints and locally linear embedding. 

For illustration, a small set of experiments has been con-

ducted to evaluate some of the model-based and model-free 

algorithms introduced above. First, four synthetic images of 

size 50 × 50 have been generated by mixing R 3=  endmember 

spectra (i.e., green grass, olive green paint, and galvanized steel 

metal) extracted from the spectral libraries provided with the 

ENVI software [53]. These four images have been generated 

according to the standard LMM (1), GBM (7), FM (6), and PPNM 

(9), respectively. For each image, the abundance coefficient vec-

tors , ,a aa , ,p p p1 3f_ 6 @ , , , )(p 1 2 500f=  have been randomly 

and uniformly generated in the admissible set defined by the 

constraints (2). We have also considered the more challenging 

scenario defined by the assumption that there is no pure pixel 

(by imposing . , , ) .a r p0 9,r p 6 61  The nonlinearity coefficients 

are uniformly drawn in the set [ , ]0 1  for the GBM. The PPNM-

parameters ,b p  ,p P1f=  have been generated uniformly in 

the set [ . , . ] .0 3 0 3-  For both scenario (i.e., with or without 

pure pixels), all images have been corrupted by an additive inde-

pendent and identically distributed (i.i.d) Gaussian noise of vari-

ance ,102 4v = -  which corresponds to an average 

signal-to-noise ratio (SNR) of 20 dB (note that the usual SNR 

for most of the spectro-imagers are not below 30 dB). Various 

unmixing strategies have been implemented to recover 



 

the endmember signatures and then estimate the abundance 

coefficients. For supervised unmixing, the N-FINDR algorithm 

[54] and its nonlinear geodesic-based counterpart [43] have 

been used to extract the endmembers from linear and nonlinear 

mixtures, respectively. Then, dedicated model-based strategies 

were used to recover the abundance fractions. The fully con-

strained least square (FCLS) algorithm [35] was used for linear 

mixtures. Gradient-based algorithms (GBAs) were used for non-

linear mixtures. The GBAs are detailed in [55], [34], and [9] for 

the PPNM, GBM, and FM, respectively. For comparison with 

supervised unmixing, and to evaluate the impact of having no 

pure pixels in these images, joint estimations of endmembers 

and abundances was implemented using the Markov chain 

Monte Carlo techniques detailed in [56] and [39] for the LMM 

and PPNM images, respectively. Finally, the model-free super-

vised K-HYPE algorithm detailed in [48] was also coupled with 

the nonlinear EEA in [43]. The performance of these unmixing 

strategies has been evaluated in term of abundance estimation 

error measured by 

 ,
RP
1RNMSE a ap p

n

N
2

1

= -

=

t/

where a p  is the nth actual abundance vector and a pt  its corre-

sponding estimate. The results are reported in Table 1. These 

results clearly show that the prior knowledge of the actual 

mixing model underlying the observations is a clear advantage 

for abundance estimation. However, in the absence of such 

knowledge, using an inappropriate model-based algorithm 

may lead to poor unmixing results. In such cases, as advocated 

before, PPNM seems to be sufficiently flexible to provide rea-

sonable estimates, whatever the mixing model may be. Other-

wise, one may prefer to resort to model-free-based strategy 

such as K-HYPE. 

DETECTING NONLINEAR MIXTURES

The consideration of nonlinear effects in hyperspectral images 

can provide more accurate results in terms of endmember and 

abundance identification. However, working with nonlinear mod-

els generally requires a higher computational complexity than 

approaches based on the LMM. Thus, unmixing linearly mixed 

pixels using nonlinear models should be avoided. Consequently, it 

is of interest to devise techniques to detect nonlinearities in the 

mixing process before applying any unmixing method. Linearly 

mixed pixels can then be unmixed using linear unmixing tech-

niques, leaving the application of more involved nonlinear 

unmixing methods to situations where they are really necessary. 

This section describes approaches that have been recently pro-

posed to detect nonlinear mixing in hyperspectral images. 

DETECTION USING A PPNM  

One interesting approach for nonlinearity detection is to assume 

a parametric non-LMM that can model different nonlinearities 

between the endmembers and the observations. A model that has 

been successfully applied to this end is the PPNM (9) studied in 

[26] and [55]. PPNM assumes the postnonlinear mixing described 

in (9) with the polynomial nonlinearity gp  defined in (10). Hence, 

the nonlinearity is characterized by the parameter b p  for each 

pixel in the scene. This parameter can be estimated in conjunc-

tion with the abundance vector a p  and the noise variance .2v  

Denote as ( , , )s ba p p
2 2v  the variance of the maximum likelihood 

estimator b pt  of .b  Using the properties of the maximum likeli-

hood estimator, it makes sense to approximate the distribution of 

b pt  by the following Gaussian distribution: 

 ~ , ( , , ) .b b s a bNp p p p
2 2vt ^ h

The nonlinearity detection problem can be formulated as the 

binary hypothesis testing problem 

 
: ( )  

: ( ) . 

1

9

is distributed according to the LMM

is distributed according to the PPNM

y

y

H

H

p

p1

0)  (14)

Hypothesis H0  is characterized by ,b 0p =  whereas nonlinear 

models ( )H1  correspond to .b 0p !  Then, (14) can be rewritten as 

 
:

:

~ ( , )

~ ( , ),

b s

b b s

0N

N

H

H

p

p p1

0
2

1
2

0
t

t)  (15)

where ( , , )s s 0a p0
2 2 2v=  and ( , , )s s ba p p1

2 2 2v=  with .b 0p !  

Detection can be performed using the generalized likelihood ratio 

test. This test accepts H1  (respectively )H0  if the ratio 

 /T b sp
2

0
2

_
t  is greater (respectively lower) than a threshold .h  As 

shown in [55], the statistic T  is approximately normally distrib-

uted under the two hypotheses. Consequently, the threshold h  

[TABLE 1] ABUNDANCE RNMSES ( )10 2
#

-  FOR VARIOUS LINEAR/NONLINEAR UNMIXING SCENARIOS.

MIXING MODELS: WITH PURE PIXELS MIXING MODELS: WITHOUT PURE PIXELS

LMM PPNM GBM FM LMM PPNM GBM FM 

M
O

D
E
L-

B
A

S
E
D

 
A

LG
O

R
IT

H
M

LMM N-FINDR + FCLS 1.42 14.1 7.71 13.4 3.78 13.2 6.83 9.53

UNSUPERVISED MCMC 0.64 12.4 5.71 8.14 0.66 10.9 4.21 3.92

PPNM GEODESIC + GBA 1.52 10.3 6.04 12.1 4.18 6.04 4.13 3.74

UNSUPERVISED MCMC 0.39 0.73 1.32 2.14 0.37 0.81 1.38 2.25

GBM GEODESIC + GBA 2.78 14.3 6.01 13.0 4.18 11.1 5.02 1.45

FM GEODESIC + GBA 13.4 21.8 9.90 3.40 12.2 18.1 7.17 4.97

GEODESIC + K-HYPE 2.43 9.71 5.23 11.3 2.44 5.92 3.18 2.58



 

can be explicitly related to the probability of false alarm (PFA) and 

the probability of detection (PD), i.e., the power of the test. How-

ever, this detection strategy assumes the prior knowledge of the 

variances s0
2  and .s1

2  In practical applications, Altmann et al. have 

proposed to modify the previous test strategy as follows [55]: 

 ,T
s

b *p

0
2

2 H

H

1

0

U h=
t

t

t

 (16)

where s0
2t  can be calculated as 

 ( ; , ) .s 0CCRLB a p0
2 2v=t t t  (17)

In (17), CCRLB  is the constrained Cramér–Rao lower-bound [57] 

on estimates of the parameter vector [ , , ]ba p
T

p
T2i v=  under ,H0   

and ,a p
2vt t^ h is the MLE of , .a p

2v^ h  The performance of the 

resulting test is illustrated in Figure 4, which shows the pixels 

detected as linear (red crosses) and nonlinear (blue dots) when 

generated according to various mixing models (LMM, FM, GBM, 

and PPNM). 

ROBUST MODEL-FREE DETECTION

The detector discussed in the previous section assumes a spe-

cific non-LMM under the alternative hypothesis. However, there 

are situations where the actual mixing does not obey any avail-

able model. It is also possible that there is insufficient informa-

tion to opt for any existing nonlinearity model. In these cases, it 

is interesting to address the problem of determining whether an 

observed pixel is a linear function of endmembers or results 

from a generic nonlinear mixing. 

One may consider the LMM (1) and the hyperplane P  

defined by 

 : | , .z z a 1MaP ,p p p r p

r

R

1

= =

=

) 3/  (18)

In the noise-free case, the hyperplane P  lies in an ( )R 1- -dimen-

sional subspace embedding all observations distributed according 

to the LMM. On the other hand, consider the general non-LMM 

 ,y Ma np p p pn= + +  (19)

where pn  is an L 1#  deterministic vector that does not belong 

to ,P  i.e., Pp "n  and a p  satisfies the constraints (2). Note 

that a similar non-LMM coupled with a group-sparse constraint 

on pn  has been explicitly adopted in [58] and [59] to make 

more robust the unmixing of hyperspectral pixels. In (19), pn  

can be a nonlinear function of the endmember matrix M  and/or 

the abundance vector a p  and should be denoted as ( , )M ap pn  

[60]. However, the arguments M  and a p  are omitted here for 

brevity. Given an observation vector ,y p  the detection of nonlin-

ear mixtures can be formulated as the following binary hypothe-

sis testing problem: 

 
:

:

( )

( ) .

1

19

is distributed according to the LMM

is distributed according to the model

y

y

H

H

p

p1

0'

[FIG4] Pixels detected as linear (red crosses) and nonlinear (blue dotted) for the four subimages generated according the (a) LMM, (b)
FM, (c) GBM, and (d) PPNM. Black lines depict the simplex corresponding to the noise-free case LMM.
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Using the statistical properties of the noise ,n p  we obtain 

[ | ] ,E y MaH Pp p0 !=  whereas [ | .]E y MaH Pp p p1 "n= +  

As a consequence, it makes sense to consider the squared 

Euclidean distance 

 ( ) min zy y
z

p p p
2 2

Pp

d = -
!

 (20)

between the observed pixel y p  and the hyperplane P  to decide 

which hypothesis (H0  or )H1  is true. 

As shown in [60], the test statistic ( )y p
2d  is distributed 

according to 2|  distribution under the two hypotheses H0  

and .H1  The parameters of this distribution depend on the 

known matrix ,M  the noise variance 2v  and the nonlinearity 

vector .pn  If 2v  is known, the distribution of ( )y p
2d  is per-

fectly known under H0  and partially known under .H1  In this 

case, one may employ a statistical test that does not depend on 

.pn  This test accepts H1  (respectively )H0  if the ratio 

( ) /T y p
2 2

_ d �  is greater (respectively lower) than a threshold 

.h  As in the PPNM-based detection procedure, the threshold 

h  can be related to the PFA and PD through closed-form 

expressions. In particular, it is interesting to note that the PD 

is intrinsically related to a non-Euclidean norm of the residual 

component pn  (see [60, Eq. (11)]), which is unfortunately 

unknown in most practical applications. If the noise variance 
2v  is unknown, which is the case in most practical applica-

tions, one can replace 2v  with an estimate ,2vt  leading to 
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H

1

0
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t
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where h  is the threshold computed as previously indicated. 

The PFA and PD of the test (21) are then explicitly obtained 

using cumulative distribution functions of the 2|  distribu-

tion. It was shown in [60] that the better the estimation of ,2v  

the closer the distributions of T  and T*  and thus the closer 

the performances of the two corresponding tests. Several tech-

niques can be used to estimate .2v  For instance, 2vt  has been 

estimated in [60] through an eigenanalysis of the sample cova-

riance matrix of a set of pixels assumed to share the same vari-

ance. The value of 2vt  was determined as the average of the 

smallest eigenvalues of the sample covariance matrix. The 

accuracy of the estimator is a function of the number of eigen-

values considered. It was shown in [60] that a PFA smaller 

(respectively larger) than P*
FA  is obtained if 2 2

2v vt  (respec-

tively ) .2 2
1v vt  

CONCLUSIONS AND OPEN CHALLENGES

To overcome the intrinsic limitations of the LMM, several 

recent contributions have been made for modeling of the phys-

ical processes that underlie hyperspectral observations. Some 

models attempt to account for between-material interactions 

affecting photons before they reach the spectro-imager. Based 

on these models, several parametric algorithms have been pro-

posed to solve the resulting nonlinear unmixing problem. 

Another class of unmixing algorithms attempts to avoid the 

use of any rigid nonlinear model by using nonparametric 

machine-learning-inspired techniques. The price to pay for 

handling nonlinear interactions induced by multiple scattering 

effects or intimate mixtures is the computational complexity 

and a possible degradation of unmixing performance when pro-

cessing large hyperspectral images. To overcome these difficul-

ties, one possible strategy consists of detecting pixels subjected 

to nonlinear mixtures in a preprocessing step. The pixels 

detected as linearly mixed can then benefit from the huge and 

reliable literature dedicated to the linear unmixing problem. 

The remaining pixels (detected as nonlinear) can then be the 

subject of particular attention. 

This article has described development methods in nonlin-

ear mixing for hyperspectral imaging. Several important chal-

lenges remain. First of all, better integration of algorithmic 

approaches and physical models have the potential to greatly 

improve nonlinear unmixing performance. By fully accounting 

for complex RT effects, such as scattering, dispersion, and beam 

interaction depth, a physical model can guide the choice of sim-

plified mathematical and statistical models. Preliminary results 

have been recently communicated in [61], based on in situ mea-

surements coupled with simulation tools (e.g., ray-tracing tech-

niques). A second challenge is to develop unmixing models that 

take heterogeneity of the medium into account. Heterogeneous 

regions consist of combinations of linear, weakly nonlinear, and 

strongly nonlinear pixels. The detection strategies detailed 

above might be one solution to tackle this problem since they 

are able to locate the areas where a nonlinear model may out-

perform a linear model and vice versa. Another approach 

adopted in [58] and [59], which works well when there are only 

a few nonlinear subregions, consists of using a statistical outlier 

approach to identify the nonlinear pixels. Moreover, as any non-

linear blind source separation problem, deriving flexible unsu-

pervised unmixing algorithms is still a major challenge, 

especially if one wants to go one step further than a crude pixel-

by-pixel analysis by exploiting spatial information inherent to 

these images. Finally, we observe that the presence of nonlin-

earity in the observed spectra is closely related to the number R  

of endmembers, which is usually unknown. For example, in 

analogy to kernelization in machine learning, after nonlinear 

transformation, a nonlinear mixture of R  components can 

often be represented as a linear mixture of Ru  endmembers, with 

.R R2u  Recent advances in manifold learning and dimensional-

ity estimation are promising approaches to the nonlinear 

unmixing problem. 
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