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Abstract: In the hybrid laser-arc welding process, a laser beam and an electric arc are coupled 

in order to combine the advantages of both processes: high welding speed, low thermal load 

and high depth penetration thanks to the laser; less demanding on joint preparation/fit-up, 

typical of arc welding. So the hybrid laser-MIG/MAG (Metal Inert or Active Gas) arc welding 

has very interesting properties: the improvement of productivity results in higher welding 

speeds, thicker welded materials, joint fit-up allowance, better stability of molten pool, and 
improvement of joint metallurgical quality. The understanding of the main relevant involved 

physical processes are therefore necessary if one wants for example elaborate adequate 

simulations of this process. Also, for an efficient use of this process, it is necessary to precisely 

understand the complex physical phenomena that govern this welding technique. This paper 

investigates the analysis of the effect of the main operating parameters for the laser alone, 

MAG alone and hybrid Laser/MAG welding processes. The use of a high speed video camera 

allows us to precisely characterize the melt pool 3-D geometry such as the measurements of its 

depression and its length and the phenomena occurring inside the melt pool through keyhole-
melt pool-droplet interaction. These experimental results will form a database that is used for 

the validation of a three-dimensional thermal model of hybrid welding process for a rather 

wide range of operating parameters where the 3-D geometry of the melt pool is taken into 

account.  

 

Keywords:  Hybrid, Laser, Arc, welding, 3D modelling, melt pool depression, high speed 

video camera 

 
 PACS Numbers: 42.62.b, 81.20.Vj  

Nomenclature 

C Lagrange multiplier 

f frequency, Hz 
g gravity, m.s

-2
 

I current, A 

md mean mass of a droplet, kg 
Parc   arc power, W 

Psurf arc pressure, Pa 

Pd  droplet pressure, Pa 
Plaser laser power, W 

Rd mean droplet radius, m
 

rw radius of the filler wire, m 
r0 radius of surface heat flux, m 

r1 radius of arc pressure, m 

Sreinf weld reinforcement surface, m
2
 

T temperature, K 

U voltage, V 
U0 welding speed, m.s

-1
 

Vd  droplet speed, m.s
-1

 

Vw filler wire speed, m.s
-1 

 

Greek symbols  mass density, kg.m
-3 

 coefficient of surface tension, N.m
-1 

 arc efficiency  droplet frequency, Hz surf surface heat flux, W.m
-2

  reinforcement height, m 

 

1. Introduction 

 
Hybrid welding, which combines the techniques of laser welding and arc welding, was originally 

invented for combined laser-TIG (Tungsten Inert Gas) welding [1]. During hybrid welding, the laser 
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beam creates a vapour capillary, the keyhole, where the beam energy is deposited throughout the work 

piece depth which enables a deep penetration welding effect. The feeding wire is melted by the 

electric arc created between the MIG/MAG-wire and the work piece. Both the arc and the keyhole 
create a plasma, thus producing a highly complex physical situation. As two techniques are combined, 

the number of process parameters is rather large and therefore difficult to optimize in order to achieve 

the desired weld. A general review and a complete bibliography of hybrid processes can be obtained in 
the paper of Bagger and Olsen [2]. 

Once the mutual interaction between the two energy sources is optimized, the combination of the two 

processes opens large areas of applications and increases its capabilities : the arc welding process, 
characterized by relatively lower power density and wider process zone, gives a wide bead, thus 

enhancing the joint’s root bridging ability and enlarging the manufacturing tolerances for joint 

preparation. The laser beam process, characterized by higher localized power density, leads to a 
deeper penetration. Thus in hybrid GMA (Gas Metal Arc)-laser beam welding, a wide and deep bead 

is achieved with higher welding speeds compared with the GMAW (Gas Metal Arc Welding) process 

by its own. As a result, the industrialization of that process become now a real objective, which can be 
facilitated for example, by the development of more efficient hybrid head [3], and/or by a rather 

complete mastering of the process based on its basic understandings.  

Deep penetration allows the welding of rather thick materials even at high welding speeds allowing 
filling of unavoidable gaps of the joints, with possible improved metallurgical properties and 

controlled geometry of the weld seam [2, 4]. It is known that the strength of a weld seam is defined by 

many parameters. Its geometry is one of these crucial parameters that have to be controlled or even 
optimized if one wants to minimize the effect of induced stress field generated during loading cycles 

of these welds. Similarly the metallurgical properties of these welds are also depending of the thermal 

cycles induced by the involved heat sources, the arc and the laser, which are used during this process 
[5]. So far, most of the hybrid laser-MIG/MAG welding research is focusing on how to effectively 

combine a laser welding process with an arc welding process together by experimental methods. These 

studies have the objective to analyse the influence of various operating parameters on the weld joint 
shapes. It has been shown that the bead width is mainly controlled by the arc power and consequently 

the mode of transfer whereas laser power influences the penetration [5, 6, 7]. The distance between the 

arc and the laser as well as the laser beam focal position are also key factors that affect the penetration 
depth and bead shape [6, 8, 9, 10]. In general a distance between the two sources smaller than 5 mm is 

recommended. Kah [11] discussed the choice of the arc–torch direction and the distance between laser 

and arc. This decision should be made case by case and depends on various parameters like laser beam 
properties available, the material, arc source parameters, the function of filler wire (to improve 

metallurgy, to fill up air gap or form weld bead). The weld penetration is deeper when smaller 

inclinations for MIG torch are used. Casalino has observed deeper penetration using a 45° angle rather 
than 60° in MIG-laser CO2 hybrid welding of Al-Mg alloy. The stability and efficiency of the laser-

arc process are influenced by the shielding gas. Tani et al. recommend a 30 up to 40% helium content 

in hybrid CO2 laser-GMAW welding of AISI 304 stainless steel [12]. A pulsed/spray transfer mode 
should be preferred in order to achieve a stable and repeatable process [6]. Other authors have also 

studied the hybrid laser-arc welding of dissimilar metals [13] and the hybrid welding of aluminum 
[14].  
It should be mentioned that most of these works are essentially based on macrograph analysis. 

However observations of the melt pool hydrodynamics using high speed video camera in the visible 

range for the melt pool surface analysis [15, 16] or by X-ray radiography [17] for the internal melt 
pool behaviour give very interesting insights on the physical phenomena and help in understanding the 

complex interaction between the many parameters involved in this process.  

A numerical approach of the hybrid welding was given by Zhou [18] and Wouters [19]. GMA welding 
process alone has also been previously studied by using a 3-D heat and fluid flow model of melt pool 

[20]. We will use a similar approach for our hybrid welding description. Cho [21] presents a whole 

modelling of hybrid welding where he uses the VOF method to track the movement of free surfaces. 
The Navier-Stokes equation, heat and species conservation are solved for melt pool description. For 

the behaviour of the capillary, surface tension and recoil pressure are taken into account. The effects of 

multiple reflections on the walls of the capillary function of time are also taken into account in 
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calculating the melt flow. However this work was only numerical, no comparison with the resulting 

experimental is presented. 

In a first part of this paper, we will present the different experimental results we obtained on the study 
of hybrid welding, mainly by an extensive use of a high speed video camera that allowed a better 

understanding of the phenomena induced during laser, MAG and hybrid laser-MAG processes. These 

new experimental results complete some previous experimental results and give a complete set of data 
that must be taken into account and reproduced in the corresponding simulations. The numerical 

approach will be described in the second part of this paper with corresponding results. We use a 

numerical modelling of hybrid laser-GMA welding in order to reproduce the 3-D geometry of the 
weld reinforcement observed at the top and the melt pool surface depression observed under the arc. 

Our final goal here is to define a numerical tool that is rather easy to run and enough precise in order 

to reproduce these geometrical observations that appear to be decisive for a correct determination of 
the induced thermal field, once the main operating parameters are defined. These simulations should 

allow us to determine in a second step the thermal cycles induced inside the material for estimating the 

resulting metallurgical transformations. So these simulations that are validated with a set of 
experimental observations will be discussed in the last part of this paper and will allow us to define the 

corresponding parameters related to arc and laser energy deposition and resulting applied pressures at 

the melt pool surface.  

 
2. Experimental set-up 

 

Figure 1. Scheme of hybrid laser – MIG/MAG 

process. 

Figure 2. Schematic representation of the high 

speed camera disposition. 

Experiments were carried out with a CW Nd:Yag 4006D TRUMPF Laser, with a maximum power of 

4 kW. The laser beam was delivered through a 600 µm optical fibre. The welding head images the exit 
of the optical fibre by using a collimating and focusing lens that generates a focal spot of 600 µm 

diameter. The focal spot intensity distribution, which was analysed by using a PROMETEC beam 

analyser, can be considered as uniform. 
The arc torch is a DIGI WAVE 400 model from SAFT PRO (Air Liquide Welding France). It delivers 

up to 400 A current for different configurations of control of current and tension of the arc. Welding 

current and arc voltage traces were recorded via a transient recorder. Arcal21 shielding gas flowing at 
20 L/min was used (92% Ar and 8% of CO2). Of course, it is possible to vary all the geometric 

parameters of the torch such as the position and the wire angle with the vertical laser beam (see figure 

1).  
The dynamics of the melt pool was analysed with a CMOS high speed camera (PHOTRON IMAGER 

FASTCAM APX RS 3000) with a maximum frame rate of 100 kHz. However, 10 kHz was sufficient 

for these configurations. Lateral observations of the melt pool geometry were realized by locating this 
camera on the side, perpendicularly to the welding displacement, with the optical axis of the camera at 

an angle of 45° with the vertical of the incident laser beam (see figure 2).  

The work piece studied here consists in a steel S355 plate of 20 mm thick (S355 composition 1.1% 

Mn, 0.003% Si, 0.014% P, 0.004% S, 0.03% Cu, 0.076% C and 0.005% N). Fusion lines were 

carried with a G4 Si1 filler wire of 1.2 mm diameter (1.5% Mn, 1% Si 0.1% C). After welding, 
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cross sections of the weld beads were ground, polished and etched according to the standard 

procedures. All these sections were cut midway from the welded specimen. The bead dimensions 

corresponding to each welding parameter were measured using a stereo microscope. Partial 
penetration welds were made using the following operating parameters:  Maximum incident laser power was 4 kW.  Welding speed was progressively increased from 0.5 m/min to few m/min until the visual 

aspect of weld seam was irregular.  Wire speed (from 2 m/min to 12 m/min) and current and voltage were imposed by the synergy 

of welding machine (figure 3). One must recall that this synergy (U-I relation as a function 

of wire speed) does not depend of the welding speed.  Arc torch inclination of 30° from the vertical laser beam was fixed.  Laser beam was positioned behind the MAG torch.  Distance between filler wire (MAG) and laser beam was set to 2 mm. 

 

Figure 3. Voltage and current synergy obtained with the parameters of our study (S355 steel, 1.2 mm 
diameter wire, shielding gas: 92% Ar - 8% CO2). 

 

3. Experimental observations 

 

3.1 Metal transfer modes 

 
It is well known that the wire transfer mode is determined by the heat input and the used shielding gas. 

In our case, the short-circuiting transfer occurs between 100 to 200 A, the globular mode between 200 

to 250 A and the spray mode from 250 to 400 A. The observations using fast video camera confirm the 
3 metal transfer modes according to the used current (figure 4). 

 

   

 

Figure 4.  Metal transfer in MAG process: a - short-circuiting (Vw = 3 m/min), b - globular (Vw = 6 
m/min), c - spray (Vw = 11 m/min). 

 

3.2 Geometry 

 
Examples of typical cross sections of weld seams for laser, MAG and Hybrid conditions are shown in 

Figure 5. Moreover, Figure 6 shows the corresponding views of the melt pool observed using the high 

speed video camera. Because of the rather low welding speeds used here (typically less than 5 m/min) 
the cross section of a weld with the laser alone shows the well-known nail head shape and the surface 

melt pool shows the characteristic humps observed around the keyhole rim for these welding 

conditions. 
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These effects result of the induced melt flow that is dragged upwards along the keyhole wall by the 

friction forces due to vapour expansion out of the keyhole [22]. MAG cross section shows the 

characteristic height seam reinforcement, with a penetration depth that is much lower than in a laser 

case.  
The weld bead shows a rather complex structure where the depressed zone, resulting from the 

impingement of the droplets flow and the arc pressure area (bright zone), is followed by the weld 

reinforcement that is melted along a rather large distance. Finally for the hybrid process, one can 
observe a greater keyhole penetration compared to the laser alone and the geometry of the 

reinforcement similar to the one obtained with the MAG process alone. 
In that case the keyhole aperture is located inside the melt pool surface just behind the arc centreline in 
agreement with the arc trailing position. 

 

               
 

Figure 5. Weld bead obtained for: 

(a) Laser alone : Welding speed 1 m/min, Laser power 4 kW 

(b) MAG alone : Welding speed 1 m/min , Wire speed 5m/min, current 200 A, voltage 17.6 V. 

(c) Hybrid Laser-MAG :  Welding speed 1 m/min, Laser power 4 kW, wire speed 5m/min, current 
200 A, voltage 17.6 V. 

 

 

   
 

Figure 6. Examples of images extracted from high speed video movies: 
(a) Laser alone : Welding speed 1 m/min, Laser power 4 kW. 

(b) MAG alone : welding speed 1 m/min , wire speed 5 m/min, current 200 A, voltage 17.6 V. 

(c) Hybrid Laser-MAG :  Welding speed 1 m/min, Laser power 4 kW, wire speed 5m/min, current 
200 A, voltage 17.6 V. 

 

Measurements carried out on macrographs (figure 7) show that the penetration depth is greater in 

hybrid process than in MAG process. More precisely, the penetration depth ranges from 2 to 10 mm in 
hybrid and from 1 to 7 mm in MAG. The weld pool length is also longer in hybrid process than in 

MAG process. It varies from 14 to 43 mm in hybrid process compared to 10 to 38 mm in MAG. 

Beside, the melt pool width is larger in MAG process than in hybrid process. In MAG, the width 
ranges from 2.5 to 15.5 mm, whereas in hybrid, it varies from 2.5 to 12.5 mm. As expected, the width 

and penetration depth decrease when the welding speed increases, and the three characteristic melt 

pool dimensions (width, length and deep penetration) increase when the wire feeding rate increases. 
The weld pool length does not seem to vary with the welding speed. 
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Another point concerns the bead surface reinforcement Sreinf  defined by the feeding wire, which 

should depend on the filler wire speed Vw, its wire radius rw and the welding speed U0 with the 

following relation: 

 

U0Sreinf = Vwr
2

w (1) 

 

In fact, one observe that the average difference between the calculated (equation 1) and the measured 

value of the reinforcement is about 13% and 19% for MAG alone and hybrid laser-MAG respectively. 
The experimental bead surface reinforcements are always larger than the calculated one and this 

difference is larger for the hybrid process than for the MAG one. This difference can be explained by 

the presence of reinforcement that is always observed even during laser welding alone, although there 

is no material addition in that case. The origin of this reinforcement is likely the effect of the obvious 
macroscopic deformation of the welded part resulting from the depth gradient of energy deposition 

inside the material. This effect is particularly important in case of the hybrid process, because of the 

difference of level and location of the energy input between the two processes (at the surface for MAG 
compared to surface and volume for the hybrid process). 

 

 

 

 
 

Figure 7. Width, penetration and length of the melt pool obtained with hybrid Laser- MAG (a-b-c) 

and MAG alone (d-e-f) as a function of welding speed, for different wire speeds. 
 

 

 

a  

b 

c 

d 

e 

f 
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3.3 Melt pool depression 
 

Figure 8 shows an enlarged view of the depressed zone below the arc during MAG processing. One 

can clearly see that under the arc centreline the melt pool surface is depressed below the initial work 
piece surface by more than three millimetres. The level of this depression depends on the intensity of 

the arc current and begins to become significant for currents above 150 A. This depression results 

from the arc pressure due to the induced hydrodynamic gas flow and of course of the impingement of 

melt droplets. It is clear that thermal field induced inside the work piece by the arc from this depressed 
surface has to be very different from the one obtained if the arc is deposited on a flat surface. The 

characterization of this depression is therefore very important for its comparison with corresponding 

simulations. The evolution of the depression “h” along the welding direction, in the symmetry plane of 
the weld seam, can be very easily determined from the video images by taking into account the video 

perspective and the inclination angle of the camera axis with the solid surface of the sample by using 

the simple relation h = h’/cos(45°), where h’ is the projected value of the depression measured on the 
recorded image plane (see an example on figure 8). The uncertainty in the measurement of the 

depression h’ is ± 0.2 mm. This uncertainty is obtained by making several measurements of depression 

on the same video. An error of ± 0.2 mm on the measurement of depression leads a numerical error on 

the maximum arc pressure of only ± 50 Pa. Figure 9 shows the variation of these maximum obtained 
depressions, as a function of the welding speed U0, for different wire feeding rates. One must also add 

that the depressions determined by this method are in good agreement with those observed directly on 

the work piece after welding, at the end of the weld seam. One can easily understand that the 
depression increases for higher wire feeding rates, due to higher arc current, and for lower welding 

speeds U0, due to resulting larger melt pool widths. It is important to note that this rather high value of 

the induced depression is typically half of the final obtained melt pool penetration; therefore the effect 

of surface depression must be taken into account for a correct simulation of the experimental melt pool 
geometries. We also note that the hybrid depressions are slightly larger than the depressions obtained 

with MAG alone. 
 

 
 

Figure 8. Visualization of depression below the arc for MAG process (Incident arc power UI=8kW). 

The dotted line shows the symmetry line of the weld seam located on the flat surface of the sample 

and the continuous line shows the profile of the depressed zone. Dimension h’ is the projection of the 
real depression on the observation plane, which is perpendicular to the video camera axis. 
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Figure 9. Maximum surface depression below the solid surface for MAG and Hybrid processes, as a 
function of welding speed for different wire feeding rates Vw (Hybrid parameters: Plaser : 4 kW, wire 

diameter : 1.2 mm, distance wire/beam: 2 mm). 

 
3.4 Droplets pressure measurements 
 

In the spray mode, which is the main metal transfer mode of our experiments, the droplets impinging 

at rather high velocity the melt pool surface must have also a non-negligible contribution to the melt 

pool surface depression. If one considers that md is the mean mass of a droplet, Vd its velocity, and Rd 
its mean radius (about 0.4 mm), the resulting pressure Pd obtained during an impact of droplets emitted 

with a frequency  is given by:  

2

d

dd
d

R

Vm
P 

     (2) 

In equation 2, we have considered that there is no spreading of the droplet during its impact onto the 

surface. These different parameters can be easily measured from video movies. 

Figure 10 (a to c) shows respectively the droplet velocity, droplet frequency and the resulting induced 
pressure (given by equation 2) for hybrid process, as a function of the welding speed and for different 

wire feeding rates. As there is some acceleration of the droplet due to the drag force of the plasma 

flow, the droplet velocity reported on figure 10-a is an average velocity along its trajectory. As the 
wire feeding rate increases, it is expected that the droplet velocity and the frequency of detachment 

increase (as shown by the experimental tendency). There is no clear effect of the welding speed and 

the frequency of detachment  which varies in the range from about 400 to 1000 Hz (Figure 10-b). 
These values of frequencies are in good agreement with previous values observed by Valensi [23]. He 

studied the influence of oxygen in the shielding gas on the droplet frequency. For a wire with high 
content of silicium, as in our case, this frequency increases from 0 to 750 Hz when the oxygen level 

decreases from 70 to 0% and is equal to 700 Hz at 8% oxygen as in our study. Measurements of size, 

velocity and frequency of the droplets are also in agreement with the work of Lin [24]. Indeed, droplet 
diameters were found around 2-3 mm in globular and 1 mm in spray. The droplet frequency increases 

from 50 to 500 Hz when the wire speed (or arc intensity) increases from 7 to 12 m/min for a wire 

diameter of 0.9 mm. The droplet velocity in this work increases by 0.5 to 1.4 m/s when the current 

increases from 160 to 150 A for a wire diameter of 1.2 mm. 
 



9 

 

 

 
 

Figure 10. For Hybrid laser-MAG process, (a) droplet velocity, frequency (b) and (c) induced 
pressure (given by equation 1), as a function of the wire feeding rates. 

 

The induced droplet pressure varies from 2 to 8 kPa; as expected, it increases with the wire feeding 

rate that controls the arc current. These pressures are in agreement with the results of Xu [25] which 
predicts zero droplet pressure at low intensity (low wire feeding rate) and pressures up to 5 kPa for the 

high intensity. Even in taking into account some increase of the impact diameter due to local spreading 

during the impact, it appears that these values are not negligible compared to arc pressure that we will 
determine in § 4.2. Therefore, the droplet impact must be taken into account as a very local 

contribution of pressure on the melt pool surface. This impact induces a localized penetration that can 

be observed, at high wire feeding rates, by a pronounced penetration on some macrographs or deep 

deformation of melt pool surface observed on videos (see section 4.2.1.).  
 

3.5 Melt pool surface speed 

 
From video movies, one can see that these melt pools have complex hydrodynamic flows. For 

estimating the importance of convection and conduction processes inside these flows for the energy 

transport, it would be necessary to determine the fluid flow field. This will dictate the necessity of 
taking into account, the complete description of the hydrodynamic flow field in the simulations. In 

order to estimate the magnitude of fluid speed at the melt pool surface, tracer particles were deposited 

on the sample surface before welding. During melting, these tracers follow the fluid motion. It is then 

possible to track the motion of particles from the video sequences and deduce fluid velocities by 
assuming that the particles faithfully follow the fluid dynamics. Different tracers were tested, and it 

appeared that small silica grains (about 0.1 mm in diameter) had the best behaviour for MAG and 

hybrid processes and could be easily followed on the video movies. 
Figure 11 (a and b) show 2 images extracted from a video sequence where the displacement of the 

tracer is observable during the corresponding elapsed time between these 2 images. 

 

b 

c 

a 
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Figure 11. (a and b): Two images extracted from a video sequence showing the displacement of a 

tracer (indicated by an arrow) between a time interval of 2ms (MAG process: Welding speed U0: 2 

m/min; Wire speed Vw: 9 m/min).General trend of the melt flow surface is also indicated by curved 

arrows on figure 11-a. 
 

Figure 12 shows typical tracers velocities observed at the centre of the melt pool behind the arc, along 

the transition from the arc depression to the weld reinforcement. It is at this position that the surface 
speed appears to be maximum; then, behind that zone, the surface flow is redirected towards the edges 

of the melt pool with a vortex-like structure (see arrows in figure 11-a). This effect is rather similar for 

hybrid and MAG process. The measurements show that the fluid speed increases with wire feeding 
rate. This speed is quite constant with the welding speed and is slightly greater in hybrid than in MAG 

at low currents. The presence of the keyhole modifies the local fluid motion since the fluid has to flow 

around the keyhole. In addition, the vapour ejected from the keyhole modifies the dynamics fluid 

motion [15]. The magnitude of maximum surface velocities results to be rather high, in the range 0.5 -
1 m/s, and so correspondingly the Peclet number (Pe) that can be estimated as Pe ~ 200-300. This 

would indicate that the convective transfer of energy is not negligible compared to the conductive 

process. However, these velocities are measured at the surface of the melt pool, and may largely 
overestimate the real internal flow speed. 

 

 
Figure 12. Tracer speed as a function of welding speed for different wire feeding rates for hybrid and 

MAG processes at a typical welding speed of 1 m/min. 
 

3.6 Analysis of melt pool geometry along the welding direction 
 

The 3-D shape of the melt pool inside the work piece, during the process is also an interesting 
parameter for modelling comparisons. Analysis of longitudinal sections is more sensitive, in order to 

determine the contour of the melt pool, which is not normally visible due to the continuity of the melt 

pool in the solidified zone. For an estimation of the longitudinal shape of the melt zone, we use a small 
amount of contrast material, which is different from the S355 base material and filler wire, which is 

inserted perpendicularly to the work piece. This contrast material is introduced before welding, as a 

wire inside a hole drilled perpendicularly to the work piece, on the symmetry plane of the weld seam 
(see figure 13). If its diameter is small enough, it does not disturb the melt pool hydrodynamics; this 

point is verified through the width and length weld bead measurements. When the melt pool reached 

the contrast material, it is assumed that the contrast material is redistributed very quickly throughout 

the available volume of liquid before its solidification. Then chemical etching can be adapted to reveal 
the contour, as can be seen in longitudinal sections (Figure 14).Different contrast materials and wire 
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diameters have been tested and it appears that a copper alloy (Cu-10% Al) wire with a diameter of 1 

mm, give the best results. 

 
 

Figure 13: Scheme using the tracer implant inside the work piece. 
 

However, this technique has some limitations; it can be used only for configurations with rather low 

MAG filler wire rates; for high power MAG, and so correspondingly high filler wire inputs, the 

contrast with the copper alloy wire is not sufficient. Nevertheless, when this technique can be applied, 
interesting melt pool longitudinal internal profiles can be obtained (see figure 14). They will be 

discussed and compared with corresponding simulations in paragraph 4.2. As expected, for MAG 

process, the internal melt pool has a shape of a rather flat bowl (figure 14-a). But in case of hybrid 
process (figure 14-b), this shape is modified by the localized melt flow occurring around the deeply 

penetrating keyhole. 

 

 
 

 
 

Figure 14. Longitudinal macrographs obtained with copper/aluminium alloy contrast material. The 

dotted line shows the melt pool boundary. Vertical white bar shows the initial position of the contrast 

wire. a- MAG alone (U0= 0,8 m/min, Vw= 5 m/min). b- Hybrid laser/MAG (Plaser = 4kW, U0= 1 m/min, 

Vw= 5 m/min, wire/laser beam distance: 2 mm). 
 

4. Numerical simulation 
 

4.1 3D thermal numerical model 
 

In order to analyze these experimental observations by using simulations, one must take into account 

the addition of the filler wire and the observed depression resulting of the arc pressure and the 
momentum of the droplets flow previously described experimentally. It necessitates describing more 

precisely the interaction zone and it is also intended to estimate the weld reinforcement and root drop 

out for joints with a gap. Despite the rather high value of the characteristic Peclet number inside the 
melt pool we have previously determined in §3.4, the melt pool hydrodynamics was not taken into 

account in these simulations. This is of course a great simplification for these simulations and we will 

a 

Fusion zone 
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Base metal 
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HAZ 
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see in §4.2 that the use of a modified thermal conductivity inside the melt pool allows us to correctly 

reproduce its size. 

For the description of the laser keyhole welding alone and also for describing the laser interaction for 

the hybrid process, we used a previous analysis of Lankalapalli et al. [24] where they consider that the 
keyhole is a vertical cylinder with a uniform temperature along its wall that is slightly above the 

evaporation temperature of the material involved. Because of the rather low welding speeds used here 

for these hybrid welding conditions, we know that the keyhole is almost vertical [15]. However, 
concerning the hypothesis of the keyhole wall temperature close to the evaporation temperature of the 

material, we know, since the study of Semak and Matsunawa [27], that this hypothesis is not 

necessarily verified during laser welding. But nevertheless we have used it, because of its simplified 
consequences in terms of modelling and its ability to easily reproduce the geometry of the longitudinal 

and transverse weld seam (Fig. 15). Based on experimental observations, the keyhole diameter 

corresponds to the focal spot diameter (0.6 mm). The depth of the keyhole can then be defined when 

the integrated heat flux through the entire keyhole walls surface corresponds to the total absorbed laser 
power. An analytical description can also be used for that determination [26]. 

For the arc and hybrid description, the high speed video movies have shown the shape of the 

interaction zone: a depression of the melt pool under the arc followed by weld reinforcement due to 
the filler wire. In that case, the weld pool surface is not flat and its final shape must satisfy an 

equilibrium condition between surface tension, hydrostatic pressure and arc pressure.  

Ushio and Wu [20] have already proposed a solution for solving this problem taking into account these 
constraints, on the basis of an approach that minimizes the total energy of the melt pool, by adding the 

constraints that the melt pool has a constant volume and the weld reinforcement geometry is equal to 

the filler wire mass flow. This total energy of the melt pool taken into account concerns the variation 

of surface energy with a corresponding change of its area, the total potential energy inside the 
gravitational field, and the work performed during that change of area by the arc pressure and droplets 

flow momentum. The resulting equation describing the height of the surface profile (x, y) is given by 
equation (3) where x and y correspond respectively to longitudinal (or welding) and transverse 

direction, in the laser beam frame: 
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where  is the surface tension,  the mass density, g the gravity, Psurf(x,y) the applied pressure 
distribution at the melt pool surface, where Pmax is the maximum pressure with a characteristic radius 

r1 For the sake of simplicity, we have combined in equation (4) the effect of arc and droplets. The 

index x and y are the respective derivative of profile (x, y) with x and y variables. C is a Lagrange 
Multiplier adjusted by the mass conservation constraint of the feeding wire that defines the transverse 

profile shape (x, y) of the solidified weld seam that must fulfil the following equation:    dyzrw )(UV 00w

2   (5) 

where rw and Vw are the wire radius and feeding speed, U0 the welding speed and z0 the height of the 

initial work piece flat surface. 
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Equation 6 defines the heat flux surf(x, y) deposited by the MAG on the melt pool surface. The arc 

efficiency of the process  and the characteristic radius r0 are adjusted in order to reproduce the 
experimental results concerning the melt pool geometry (width, depth). A Gaussian distribution was 
chosen to describe the arc power. This kind of distribution is widely used in the literature [20, 28, 29, 

30, 31]. However, Xu [32] recently highlighted that the heat distribution is far from being 

symmetrical. He directly calculated the physical processes inside the plasma arc and showed that the 

arc pressure and energy distribution are not Gaussian. Indeed, the distribution is altered by the effect 
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of droplet detachment. In our study, as we do not take into account the description of the arc plasma 

and the interaction of droplets with the melt pool, a simplified Gaussian distribution for the power 

deposition flux was chosen. Arc pressure distribution defined by the equation 4 and the maximum 

pressure are adjusted in order to reproduce the melt pool depression determined experimentally from 
high speed video movies. More detailed description concerning the heat equation and the algorithm 

used for solving the complete set of equations by using the Comsol software [33] will be given in a 

companion paper [34].  
 

4.2 Results and discussion 

 
Using the previous procedure, we have simulated 28 experimental tests: 4 tests concerned laser alone, 

12 the MAG alone and 12 the hybrid process. These experiments concerned only fusion lines, 

however, we found that these configurations are similar to assemblies with a gap of less than 200 

microns width. For these experimental tests, the welding speed and the filler wire rate were the main 

parameters that have been varied. Only four unknown parameters of equations 4 and 6 (Pmax, , r0 and 
modified thermal conductivity) have been determined by comparison with experimental data given by 

weld seam cross section and melt pool (geometry and depression) analysis.  In the following sections, 

we will discuss the methodology used for deriving these parameters and the physical mechanisms that 

can inferred from these analysis. 
 

4.2.1 Arc efficiency and intensity distribution; Heat conductivity modification.   Figure 15 shows the 

comparisons between experimental and numerical results concerning the weld seam cross section, for 
the 3 processes. Generally, a rather good agreement is obtained between numerical and experimental 

cross sections. However, these comparisons show some limits of our approach: Indeed, in the case of 

MAG welding, at high filler wire speed (11 m/min) and low welding speed (0.4 m/min), the observed 
complex geometry, similar to that observed in hybrid welding and probably resulting of very localized 

intense droplets impingement, cannot be correctly reproduced using this purely conductive model. 

However, the model reproduces a wide operating range corresponding to the configurations currently 

used in industry. 
It is important to note that another parameter, the liquid thermal conductivity, had to be modified in 

order to correctly reproduce the melt pool length (see figure 16). In fact, this liquid heat conductivity 

had to be increased by a factor K, depending on the experimental conditions that point out some 
physical processes occurring inside the melt pool. For example, in order to reproduce the melt pool 

length in MAG alone process (otherwise it was twice longer), the factor K had to be set to about 3. 

This isotropic increase of liquid thermal conductivity has the effect of homogenizing the temperature 
field that is what would be expected by a hydrodynamic flow inside the melt pool, which is not taken 

into account here. Moreover, this increased liquid thermal conductivity has also the effect of reducing 

the maximum surface temperature to a level near the evaporation temperature of the material. 

Otherwise, for these input surface intensities, and welding speeds, the obtained temperatures would 
have been much higher, which is not physically possible. For similar approach in the case of the laser 

process alone, an anisotropic conductivity in the welding direction has to be introduced. This 

conductivity in the welding x-direction had to be multiplied by a typical factor K of 5 to 6 compared to 
the transverse one in order to reproduce the experimental weld pool length . Without this increase, the 

simulated weld pool was much shorter compared to experimental one. The high value of this 

anisotropic K used here, reflects probably the strong flow field obtained in laser welding compared to 

MAG conditions.  
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Figure 15. Comparison between measured and calculated cross section weld seam for MAG, laser and 
hybrid processes.  

 

Finally for hybrid welding, the K factor used had to be varied from 3 (this increase being in that case 
isotropic) for high filler wire rates (corresponding to large melt pools) to an anisotropic K of about 5-

6, at low filler wire rates, when the arc power was less important. This K variation is consistent with 

the expected evolution of the hydrodynamic melt pool flow as a function of the operating parameters. 
An example of longitudinal melt pool shape for the hybrid welding case is shown in Figure 16. The 

melt flow localized around the penetrating keyhole below the melt pool generated by the arc is not 

correctly reproduced because only the thermal field is simulated here, without taking into account the 
hydrodynamics of melt pool. Table 1 shows a summary of thermal conductivity modifications with the 

various welding configurations. 

It is also important to add that during this procedure of identification of these unknown parameters, we 

have observed that the determination of the couple of unknown parameters such as the arc efficiency  
and the radius r0 of power deposition cannot be unique if one only analyzes a weld seam cross section. 

It is only when the melt pool length is also considered that a unique determination of the couple ( and 
r0) is possible. 

 

laser Anisotropic, along welding direction : × 6 

 2 m/min < Vw < 7 m/min 7 m/min < Vw < 12 m/min 

MAG No modification Isotropic : × 3 

Hybrid laser/MAG Anisotropic, along welding 

direction : × 6 

Isotropic : × 3 

 
Table 1. Summary of liquid thermal conductivity adjustments used for the various configurations 
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Figure 16. Comparison of experimental and calculated longitudinal weld pool shape for: 

MAG alone: welding speed: 1 m/min, wire speed: 9 m/min, current: 200 A, voltage: 17.6 V 

Hybrid Laser-MAG:  Welding speed: 1 m/min, Laser power: 4 kW, wire speed: 5m/min, current: 200 
A, voltage: 17.6 V, distance wire/beam 2 mm. 

 

The arc efficiencies  determined by using these simulations have been reported in figure 17-a as a 
function of welding speed for different filler wire speeds. We recall that the efficiency we defined here 

corresponds to the fraction of arc power UI that is used for reproducing the observed geometry of melt 
pool and final weld seam cross section. For these simulations, the only loss mechanisms used were the 

standard losses from convective exchange with ambient air and from grey body emissivity. One can 

see that this arc efficiency is quite not depending of the welding speed but it increases from 30% in 
spray regime (high arc power, about 8-10 kW) to 70 % in short-circuit regime (low arc power, about 

3-4 kW). The high efficiency for short-circuit regimes can be easily understood. For high arc current 

regime (spray mode), radiation losses from the arc is a possible reason for such reduced efficiency. 

This tendency was also observed in TIG welding by Niles & Jackson [35]. Their measurements have 
indicated that the arc efficiency decreased from 60 to 30% when the intensity increased from 125 to 

225 A. We may also add that evaporation losses were not taken into account here. At high arc current 

it is experimentally observed a high level of evaporation from the melt pool surface due the high 
resulting surface temperature. Moreover, considerable spattering was observed for these high arc 

current regimes. 

The precise estimation of these evaporation losses is difficult because the level of re-condensation of 
ejected metallic vapours occurring at atmospheric pressure is not known. If one uses the evaporation 

rate given by the Langmuir law [36-37], we observe that losses are largely overestimated and cannot 

be included at this level. DebRoy [37] has pointed out that this law can be used for evaporation rates at 

low pressure environment when no significant re-condensation occurs. His experiments indicate that 
evaporation rates in usual welding conditions would be 5 to 10 times lower than those predicted by the 

Langmuir law. So, for these reasons, we did not take into account these evaporation mechanisms in the 

simulations, because of these too large uncertainties on these mechanisms. One must also add that 
even if evaporation losses are efficient for reducing surface temperature to levels near evaporation 

temperature, they were not able to reproduce experimental melt pool lengths, as the increased liquid 

heat conductivity did, with similar effect on surface temperature. The radius r0 used in equation 6 for 

characterizing the profile of deposited arc power has been reported in figure 17-b. As expected, this 
radius increases with the arc current, and as for arc efficiency, this parameter is not sensitive to the 

welding speed. 

 

    
 

a b 
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Figure 17. Parameters used in the simulation to reproduce the weld pool characteristics determined 

from macrographs and melt pool length measured using videos: arc efficiency (a), arc power radius 

(b), arc pressure (c) and laser power (d), obtained with hybrid Laser-MAG for different wire speeds. 
 

 

4.2.2. Laser efficiency.    Figure 17-d shows the laser power that must be used in the simulations in 
order to reproduce the experimentally obtained keyhole depths, as the function of the operating 

parameters. There is a singular point at Vw = 11 m/min and U0 = 1 m/min, which is not consistent with 

the other results that show a general tendency of an increase of the useful laser power with the welding 

speed. In fact, for MAG welding alone, at high filler wire speeds and low welding speed, we have 
already seen on figure 15 a similar deviation, with a rather deep penetration already observed. So for 

corresponding hybrid welding conditions, a crude analysis considering that this observed deep 

penetration results only from the laser keyhole is not correct and thus this point has to be discarded.  
As the incident laser power was set to 4 kW, one can see that maximum necessary useful fraction 

reaches about 75 % and in spite of some dispertion of the data, it is clear that the laser efficiency 

decreases when the welding speed decreases. This behaviour has already been analysed for laser 

welding alone [22]. In fact this result can be explained if one considers that low welding velocities 
induce deep keyholes, with large depth/diameter ratios, so the keyhole geometry becomes unstable due 

to Rayleigh-Taylor instability [22]. As a consequence of these internal fluctuating closures, the 

keyhole is non-stationary and so a stationary thermal model is not appropriate for this description: as 
the resulting penetration depth is limited by this instability, the corresponding laser power necessary 

for reproducing this penetration depth is of course reduced. As this behaviour becomes dominant at 

low welding speeds, the effective laser efficiency can be much lower than the usual 80 to 90% 
observed laser efficiency resulting from the geometrical trapping of laser beam inside the keyhole. So 

the laser efficiency is a rather sensitive function of the welding speed, particularly in case of hybrid 

welding where the keyhole can be easily perturbed by the rather large surrounding melt pool generated 

by the arc. 
 

4.2.3. Arc pressure determination.    The induced pressure applied at the melt pool surface is given by 

equation 4 by defining the two parameters Pmax and r1. In fact, unlike to the determination of the arc 
power parameters, it is not possible to show the uniqueness of the couple (Pmax, r1) using only the 

maximum depression measurement, because several couples (Pmax, r1) can give the same maximum 

depression, but with significantly different profiles. So again in order to simplify the analysis by 
minimizing the number of parameters to determine, we have chosen to use the radius of pressure 

distribution r1 that is equal to the radius distribution r0. Thus, the maximum pressure has been adjusted 

to obtain the maximum observed depression. 

 
The arc pressure evolution for hybrid conditions is reported in figure 17-c. The uncertainty on the arc 

pressure of about 100 Pa, results from the accuracy on depression measurements which is about 0.3 

mm. The maximum pressure Pmax (equation 4) clearly increases from the short circuit regime with 
pressures about 800 Pa to the spray regime with pressures about 2300 Pa. We have also observed that 

pressures for hybrid conditions are about 30 % higher than for MAG process. These results can be 

d c 
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understood if one considers that the arc pressure is directly related to the arc current. Finally, one can 

notice that these pressures determined by this indirect method, are in agreement with those determined 

by Lin and Eager [38]. 

 

5. Summary of the experimental results and corresponding numerical parameters 

 

The large amount of the experimental data presented in section 3, and the corresponding analysis of 
determined parameters for reproducing them by using our numerical approach, discussed in section 4, 

has allowed us to obtain rather precise analytical expressions of these different parameters as a 

function of the 2 main operating parameters that were used in these experiments, which are the 
welding speed U0 and the arc power Parc (Parc is defined by giving the filler wire speed Vw used, and 

the corresponding arc synergy defined on figure 3). These analytical expressions have been obtained 

by determining a best fit of a polynomial expression of the 3
rd

 degree with the variables U0 and Parc, 

with the corresponding results. We used the following functions: 
 

Y(U0, Parc) = a1 U0
3
 + a2 U0

2
Parc +a3U0

2
+a4U0Parc

2
+a5U0Parc+a6U0+a7Parc

3
+a8Parc

2
+a9Parc+a10      (7) 

 
where the constants a1 to a10 are given in tables 2 and 3 for the different data. The mean accuracy of 

this polynomial fit with the corresponding results, given in the last column in these two tables, is 

rather correct. These determinations are valid on our range of the operating parameters used: from 0.4 
to 4 m/min for the welding speed U0, and from 2 to 11 kW for the arc power Parc. These analytical 

functions are very useful because for any set of operating parameters U0 and Parc given in the previous 

validity range, one can obtain with the Table 2 the corresponding experimental geometrical parameters 

of the resulting melt pool, and with the Table 3, the numerical parameters necessary to use in order to 
reproduce this melt pool with our simulations. 

 

Parameter : a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 (%) 

Melt pool width (mm) -0,16 0,07 1,5 0,0017 -0,51 -4,23 -0,0024 -0,01 1,41 5,37 11 

Penetration depth (mm) 0 0 0,14 0 -0,078 -1,45 0 -0,0079 0,52 5,65 7 

Weld seam height (mm) -0,2 -0,0091 0,31 -0,0032 0,064 -1,47 0,0044 -0,06 0,36 2,07 12 

Melt pool depression (mm) 0 0 0,12 0 -0,10 -0,47 0 0,0039 0,63 -0,72 24 

Melt pool length (mm) 0 0 0,19 0 -0,13 -1,11 0 -0,0661 3,70 11,9 8 

Table 2: For hybrid welding conditions, polynomial expressions for several experimental 

geometrical melt pool parameters (U0 is expressed in m/min and Parc in kW). 

 

Parameter: a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 (%) 

Arc pressure (Pa) 35,3 -22,4 -169,2 -5,5 172,3 125,3 -11 209,6 -1128 2330,2 2 

Arc efficiency (%) -2,78 -0,16 22,289 -0,41 7,27 -79,5 -0,1 2,62 -26,054 156,8 7 

Arc radius (mm) -0,019 -0,004 0,1708 -0,0011 0,05 -0,65 -0,0033 0,5 -0,14 1,79 2,5 

Laser efficiency (%) -7,778 3,6 21,47 -1,45 3,28 -14,4 0,51 -7,0 34,75 -7,1 10 

 

Table 3: For hybrid conditions, polynomial expressions for the parameters used in the numerical 

simulations, (U0 is expressed in m/min and Parc in kW). 

 
6. Conclusion 

A set of experimental observations has been realized for a wide range of the main operating 
parameters concerning the hybrid laser-MAG process. The main geometrical characteristics of the 

melt pools have been determined and we have seen the importance of melt pool depressions as a result 

of applied pressure at the surface of the melt pool due to arc interaction. By using numerical 
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simulations, we have reproduced the final cross section of the weld seams and the 3-D shapes of these 

melt pools. For the last point, we have shown the interest of increasing the liquid thermal heat 

conductivity in order to simulate heat hydrodynamic flow inside the melt pool. This procedure has 
allowed us to determine the corresponding parameters related to arc and laser energy deposition and 

also the resulting applied pressures at the melt pool surface, as a function of the used operating 

parameters. This approach can be applied to an industrial configuration (with a groove, or for full 
penetration). This paper presents encouraging results concerning the modelling of the hybrid laser-

MIG/MAG process obtained by using rather simple approaches and hypothesis that allowed us to 

reproduce realistic melt pool geometries.  
 

7. Future work 

With these simulations, we should be able now to estimate any temperature profile inside the work 
piece. Future experiments will concern direct measurements of temperature profiles (by using 

embedded thermocouples or thermal camera) in order to validate the temperature profiles predicted by 

these simulations and to estimate the corresponding metallurgical transformations. New steps of this 
program should also consist in describing hydrodynamic flow of the melt pool and thermocapillary 

effects, for studying their consequences on geometry and energy transport inside the melt pool order to 

reproduce the melt pool in MAG welding for extreme configurations (high wire speed and low 
welding speed). This much more complex task should be possible by using the same Comsol software.  
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