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ABSTRACT 

The linear secondary stability of large-scale optimal streaks in turbulent Couette flow at 
Re, = 52 and Poiseulle flow at Re, = 300 is investigated. The streaks are computed by 
solving the nonlinear two-dimensional Reynolds-averaged Navier-Stokes equations using 
an eddy-viscosity model. Optimal initial conditions leading the largest linear transient 
growth are used, and as the amplitude of the initial vortices increases, the amplitude 
of streaks gradually increases. Instabilities of the streaks appear when their amplitude 
exceeds approximately 18% of the velocity difference between walls in turbulent Couette 
flow and 21% of the centerline velocity in turbulent Poiseuille flow. When the amplitude 
of the streaks is sufficiently large, the instabilities attain significant growth rates in a finite 
range of streamwise wavenumbers that shows good agreement with the typical streamwise 
wavenumbers of the large-scale motions in the outer region. 

RÉSUMÉ 

L'instabilité linéaire secondaire des streaks à grande échelle est étudiée dans les écoule-
ments de Couette turbulent à Re, = 52 et Poiseuille turbulent à Re, = 300. Les streaks sont 
calculés en résolvant les équations de Navier-Stokes moyennées selon Reynolds en utilisant 
un modèle de viscosité turbulente. Les conditions initiales optimales, induisant la plus 
grande croissance transitoire, sont utilisées; quand l'amplitude des tourbillons optimaux 
initiaux est augmentée, l'amplitude des streaks augmente aussi. Les streaks deviennent 
instables quand leur amplitude est supérieure à environ 18% de la différence de vitesse 
entre les deux parois dans l'écoulement de Couette turbulent et 21% de la vitesse au 
centre du canal dans l'écoulement de Poiseuille turbulent. Quand l'amplitude des streaks 
est suffisamment élevée les instabilités atteignent des taux d'amplification significatifs dans 
une bande de longueurs d'onde qui est en bon accord avec les longueurs d'onde typiques 
observées dans les région externe. 
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1. Introduction 

Understanding the dynamics of coherent motions is a central issue in the research on wall-bounded turbulent flows. 
In the near-wall region, streaks, i.e. spanwise alternating patterns of high- and low-momentum regions with mean spacing 
about one hundred wall units, have been found as the most prominent feature [1]. These streaks sustain independently 
of the turbulent motions in the outer region [2], and the corresponding process bas been understood as a cycle involving 
amplification of streaks by vortices, breakdown of the streaks via instability and the subsequent nonlinear process gener-
ating new vortices [3,4]. Streaky motions, however, have been also found in the outer region, and they carry a significant 
fraction of turbulent kinetic energy and Reynolds stress [5,6]. The origin of these large-scale streaky motions is not clear 
yet, but nonmodal stability theory bas predicted that they can be significantly amplified by lift-up mechanism [7-9]. This 
encouraging result suggests that a self-sustaining process similar to the buffer-layer cycle presumably exists in the outer re-
gion, as confirmed by recent results [10]. However, streaks maximally amplified are found to be uniform in the streamwise 
direction, whereas the streaky motions observed in experiments have the finite streamwise wavelengths and meander with 
vortex packets (also called large-scale motions) coherently aligned to them [5,6]. Currently, there is no sound explanation 
for these features, and only recently it bas been conjectured that the vortex packets may be related to the instability of 
large-scale streaks [5]. The goal of the present study is to analyze the stability of large-scale streaks and to seek a relation-
ship between the streamwise wavelengths of the instability and the length-scales of the coherent structures in the outer 
region. In order to theoretically track this issue, we consider an eddy-viscosity mode! for the organized waves [11] success-
fully used to study the transient growth of large-scale streaks [7-9], and conduct a secondary stability analysis of the most 
amplified streaks in the turbulent Couette flow and in the turbulent Poiseulle flow. 

2. Background 

We consider the turbulent flow of an incompressible fluid with the density p and kinematic viscosity v in a channel 
with walls located at ±h. Here, the streamwise, wall-normal and spanwise directions are denoted as x, y and z respectively. 
For Couette flow, the upper and the lower walls move in opposite directions with the same velocity Uw. The Poiseulle flow 
is driven by a constant pressure gradient across the channel and bas centerline velocity Uc1. For both cases, the equation for 
organized waves in perturbation form around the mean flow (Ui = (U(y, z), 0, 0)) is written as [11,7-9] 

aui aui aui aui 1 ap a [ (aui aui)] 
-+u·-+U·-+u·-=---+- vr(Y) -+-at 1 axi 1 axi 1 axi p axi axi axi axi (1) 

Here, Uï = (u, v, w) is the velocity of the organized wave and vr(Y) =v+ vr(Y), where vr(Y) is the turbulent eddy viscosity. 
The streaky base flow is computed using a mean profile U (y) issued from ONS for the Couette flow as in [9] and the 
Reynolds-Tiederman profile for the Poiseulle flow as in [8]. vr(Y) is the total eddy viscosity in equilibrium with U(y) 
and the solutions are assumed uniform in the streamwise direction. Once the streaky base flow Us (y, z) is computed, the 
secondary base flow is defined as Ub(y,z) = U(y) + u5 (y,z). The stability of Ub(y,z) is then studied by linearizing (1) 
with the secondary perturbations uj(x, y, z, t). Under the assomption that the base flow Ub(Y, z) is periodic in the spanwise 
direction, the Floquet theory allows the linearized equation to have the following normal-mode solution: 

00 

uj(x, y, z, t) = eiax-iwt L ûr(y)ei<n+E)floz +c.e. (2) 
n=-oo 

where a is the streamwise wavenumber, w the complex frequency, /Jo the spanwise wavenumber related to the fondamental 
period of the base flow, and 0::::; E ::::; 1/2 is the detuning parameter. According to the values of E, the solutions (2) are 
classified into 'fondamental' (E = 0) and 'subharmonic' (E = 1/2) modes. Also, the modes with even and odd symmetries 
about base flows are called 'sinuous' and 'varicose' respectively. For further details on the classification of the modes, the 
readers are referred to [12]. In the present study, we focus only on the fondamental sinuous mode, found as the most 
unstable one for ali the cases considered. 

Eq. (1) is discretized using Chebyshev polynomials and Fourier series in the wall-normal and spanwise directions re-
spectively. The time integration used to compute Ub(Y, z) is conducted using the Runge-Kutta third-order method. For the 
Floquet analysis, the same spatial discretization is applied to the linear operators. The resulting numerical eigenvalue prob-
lem is then solved using the implicitly restarted Arnoldi method (for further details, see [12]). Ali the computations here 
are carried out with Ny x Nz = 65 x 32. 

3. Results 

We consider a turbulent Couette flow at Re-r = 52 and a Poiseulle flow at Re-r = 300. The computation of the streaky 
base flows is carried out by using the optimal initial conditions, that consist of pairs of the counter-rotating streamwise 
vortices computed in [8,9] (see also Fig. 2). The spanwise spacing is chosen as Àz = 4h (fJoh = 1r /2), which is very near 
the optimal value [8,9]. The spanwise size of computational box is set to as Lz = Àz, so that a single pair of optimal initial 
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Fig. 1. Evolution of the streak amplitude intime: (a) Couette flow with Av = 0.08, 0.11, 0.12, 0.16; (b) Poiseulle flow with Av= 0.06, 0.078, 0.09, 0.1. Here, 
• denotes the maximum of As at t = tmax· 
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Fig. 2. Cross-stream (y-z) view of streaky base flow extracted at t = tmax and optimal initial vortices: (a) Couette flow with As= 26% and (b) Poiseulle flow 
with As = 25%. Here, the solid and dashed contour lines respectively denote positive and negative parts of the streaky base flow with the increment 0.1 of 
its maximum, and the vectors represent the initial vortices. 
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Fig. 3. Growth rate of fundamental sinuous mode with the streamwise wavenumber œ for streaky base flows corresponding to • in Fig. 1: (a) Couette flow 
with As= 13, 18, 20, 26%; (b) Poiseulle flow with As= 18, 21, 23,25%. Here, • indicates the location of maximum w; of the largest amplitude of streaks 
considered. 

vortices is driven. The amplitude of the initial vortices is defined as Av= [(2/V) fv (u2 + v2 + w2)dV] 112. The amplitude of 
the streaks induced by these vortices is defined [14] as 

As= [maxy,z ｾｕＨｹＬ＠ z)- miny,z ｾｕＨｹＬ＠ z)] 

2 Uref 

where ｾｕＨｹＬ＠ z) = Us(Y, z). Here, Uref = 2Uw and Uref = Uc1 for Couette and Poiseulle flows respectively. 

(3) 

Fig. 1 shows the temporal evolution of the streak amplitude for several amplitudes Av of the optimal initial vortices. 
Both Couette and Poiseulle flows exhibit large transient amplifications of the streaks through the coherent lift-up effect. 
As Av increases, the amplitude of the streaks also increases. However, the ratio of the amplification slightly decays with 
increasing Av. and the time for As to reach its maximum (tmax) also becomes shorter. Typical cross-stream views of the 
initial vortices and streaks at t = tmax are reported in Fig. 2. It is seen that the low-momentum regions where the fluid 
is ejected from the wall by the vortices ((y> 0, z::::: ±2h) and (y< 0, z::::: 0) in Fig. 2) are narrow and intense, and this 
tendency generally becomes stronger for larger streak amplitudes. 

The Floquet stability analysis is performed for the fondamental modes using the streaky base flows extracted at t = tmax· 

Fig. 3 shows the growth rate Wi of sinuous modes versus the streamwise wavenumber ex for several As. Both Couette and 
Poiseulle flows are stable for sufficiently low amplitudes of the streaks (wi < 0). As the amplitude of streak As increases, 
the growth rate gradually increases. Then instability begins to appear (wi > 0) when As reaches the value: As,c = 18% 
at cxch = 0.3 for Couette flow (Fig. 3a) and As,c = 21% at cxch = 1.2 for Poiseulle flow (Fig. 3b). When As > As,c. a finite 
interval of the streamwise wavenumbers is unstable with maximum growth at CXmaxh ::::: 0.6 in Couette flow (Fig. 3a) and 
CXmaxh ::::: 1.4 in Poiseulle flow (Fig. 3b ). We have verified that varicose modes are less unstable than sinuous modes in this 
range of Av-As. 

Fig. 4 shows the spanwise velocity component w of the streak-instability eigenfunction and the line where the mean 
velocity is the same as the phase speed Cr of instability wave (cr= 0 in Couette flow while Cr= 0.87Ucl in Poiseulle flow). 
The w-component of the eigenfunction is concentrated in the lifted low-momentum region for both Couette and Poiseulle 
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Fig. 4. Cross-stream (y-z) view of the absalute value of the spanwise velacity eigenfunctian corresponding to • in Fig. 3: (a) Couette flow; (b) Poiseulle 
flow. Here. the contour is normalized by its maximum and the thick dashed line denotes the velocity of streaky base How which is the same with the 
phase speed of the streak instability. 

flows. In Couette flow the amplitude of the eigenfunction is appreciable even dose to the opposite wall, whereas in Poiseulle 
flow it is mainly concentrated on the center of the channel, which is reminiscent of the unstable modes found in the Iaminar 
case. 

4. Discussion 

We have investigated the instability of finite amplitude strea.ks in the framework of an eddy viscosity of turbulent 
Couette and Poiseulle flows. The nature of the streak instability we find bears sarne similarity the one observed in the 
Iaminar flows: the instability appears for the high amplitude streaks and it is dominated by the fondamental sinuous mode. 
An interesting point is that the critical streak amplitudes in the present madel are lower than those in laminar flows: 
for example, our own computations in laminar Couette and Poiseulle flows at Reh = 500 give As,c ｾ＠ 23% and As,c ｾ＠ 28% 
respectively (see also [13]), whereas for the turbulent Couette and Poiseulle flows it is found As,c ｾ＠ 18% and As,c ｾ＠ 21% 
respectively at Rer = 52 and Rer = 300. However, this does not mean that the streak instability in turbulent flows can be 
more easily triggered than in laminar flows because as the optimal turbulent transient growth is smaller than the larninar 
one [8,9], initial vortices in turbulent flows should be more energetic to drive streak instability than those in larninar flows. 
For exarnple, in the laminar Poiseulle flow, Av,c"' 0(10-3) is required to trigger streak instability [13], but the amplitude 
of initial vortices in the present madel of Poiseulle flow is almost two arder of magnitude larger (i.e. Av,c ｾ＠ 0.08). 

In the outer region of the turbulent Poiseulle flow, the strearnwise length scale of the large-scale motions has been 
associated with the peak near the high wavenumber boundary of the a-1 regime in the spectra of the outer region at ah= 
1 "'2 (}..x= 3.1 "'6.3h), and that is clearly visible for 0 < IYI < 0.6h [15,16]. The range of unstable streamwise wavenumbers 
in the present study is also obtained at ah= 0.8"" 1.8 (J..x = 3.5 ""7.9h; see Fig. 3b), showing good agreement with the 
location of the peak in the strearnwise spectra. Moreover, the eigenfunctions obtained here have significant values in 0 < 
IYI < 0.6h, also comparable to the spectra. For the turbulent Couette flow, the strearnwise wavenumber having the maximum 
growth rate Ｈ｡ｨｾ＠ 0.6; J..x ｾ＠ 10.5h; see Fig. 3a) also corresponds weil to the location of the peak in the streamwise spectra at 
the channel center Ｈ｡ｨｾ＠ 0_63; J..x ｾ＠ 10h) (17]. This good correlation in the length-scale comparison implies that the large-
scale motion could be formed by instability of much longer streaky motions in the outer region. However, as the Reynolds 
numbers considered here are fairly low, this conclusion remains to be confirmed at larger Re. Also, alternative scenario 
based on the secondary transient growth as in [181 may also be relevant, and is currently under active investigation. 
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