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On the stability of large-scale streaks in turbulent Couette and Poiseulle flows Sur la stabilité des streaks à grande échelle dans les écoulements de Couette et Poiseuille turbulents
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ABSTRACT

The linear secondary stability of large-scale optimal streaks in turbulent Couette flow at Re, = 52 and Poiseulle flow at Re, = 300 is investigated. The streaks are computed by solving the nonlinear two-dimensional Reynolds-averaged Navier-Stokes equations using an eddy-viscosity model. Optimal initial conditions leading the largest linear transient growth are used, and as the amplitude of the initial vortices increases, the amplitude of streaks gradually increases. Instabilities of the streaks appear when their amplitude exceeds approximately 18% of the velocity difference between walls in turbulent Couette flow and 21% of the centerline velocity in turbulent Poiseuille flow. When the amplitude of the streaks is sufficiently large, the instabilities attain significant growth rates in a finite range of streamwise wavenumbers that shows good agreement with the typical streamwise wavenumbers of the large-scale motions in the outer region. RÉSUMÉ L'instabilité linéaire secondaire des streaks à grande échelle est étudiée dans les écoulements de Couette turbulent à Re, = 52 et Poiseuille turbulent à Re, = 300. Les streaks sont calculés en résolvant les équations de Navier-Stokes moyennées selon Reynolds en utilisant un modèle de viscosité turbulente. Les conditions initiales optimales, induisant la plus grande croissance transitoire, sont utilisées; quand l'amplitude des tourbillons optimaux initiaux est augmentée, l'amplitude des streaks augmente aussi. Les streaks deviennent instables quand leur amplitude est supérieure à environ 18% de la différence de vitesse entre les deux parois dans l'écoulement de Couette turbulent et 21% de la vitesse au centre du canal dans l'écoulement de Poiseuille turbulent. Quand l'amplitude des streaks est suffisamment élevée les instabilités atteignent des taux d'amplification significatifs dans une bande de longueurs d'onde qui est en bon accord avec les longueurs d'onde typiques observées dans les région externe.

Introduction

Understanding the dynamics of coherent motions is a central issue in the research on wall-bounded turbulent flows. In the near-wall region, streaks, i.e. spanwise alternating patterns of high-and low-momentum regions with mean spacing about one hundred wall units, have been found as the most prominent feature [START_REF] Kline | The structure of turbulent boundary layers[END_REF]. These streaks sustain independently of the turbulent motions in the outer region [START_REF] Jjiménez | The autonamous cycle of near-wall turbulence[END_REF], and the corresponding process bas been understood as a cycle involving amplification of streaks by vortices, breakdown of the streaks via instability and the subsequent nonlinear process generating new vortices [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF]4]. Streaky motions, however, have been also found in the outer region, and they carry a significant fraction of turbulent kinetic energy and Reynolds stress [START_REF] M_ Guala | I.arge-scale and very-large-scale motions in turbulent pipe flow[END_REF][START_REF] Hutchlns | Marosie, Evidence of very lang meandering features in the logarlthmlc region of turbulent baundary layers[END_REF]. The origin of these large-scale streaky motions is not clear yet, but nonmodal stability theory bas predicted that they can be significantly amplified by lift-up mechanism [START_REF] Del Alamo | ünear energy amplification in turbulent channels[END_REF][START_REF] Pujals | A note on optimal transient growth in turbulent challllel flows[END_REF][START_REF] Hwang | Amplification of coherent streaks in the turbulent Couette How: an input-output analysis at law Reynolds number[END_REF]. This encouraging result suggests that a self-sustaining process similar to the buffer-layer cycle presumably exists in the outer region, as confirmed by recent results [START_REF] Hwang | On a self-sustained process at large scales in the turbulent channel flow[END_REF]. However, streaks maximally amplified are found to be uniform in the streamwise direction, whereas the streaky motions observed in experiments have the finite streamwise wavelengths and meander with vortex packets (also called large-scale motions) coherently aligned to them [START_REF] M_ Guala | I.arge-scale and very-large-scale motions in turbulent pipe flow[END_REF][START_REF] Hutchlns | Marosie, Evidence of very lang meandering features in the logarlthmlc region of turbulent baundary layers[END_REF]. Currently, there is no sound explanation for these features, and only recently it bas been conjectured that the vortex packets may be related to the instability of large-scale streaks [START_REF] M_ Guala | I.arge-scale and very-large-scale motions in turbulent pipe flow[END_REF]. The goal of the present study is to analyze the stability of large-scale streaks and to seek a relationship between the streamwise wavelengths of the instability and the length-scales of the coherent structures in the outer region. In order to theoretically track this issue, we consider an eddy-viscosity mode! for the organized waves [START_REF] Reynolds | The mechanics of an arganized wave in turbulent shear flow. Part 3. Thearetical madels and comparisons with experiments[END_REF] successfully used to study the transient growth of large-scale streaks [START_REF] Del Alamo | ünear energy amplification in turbulent channels[END_REF][START_REF] Pujals | A note on optimal transient growth in turbulent challllel flows[END_REF][START_REF] Hwang | Amplification of coherent streaks in the turbulent Couette How: an input-output analysis at law Reynolds number[END_REF], and conduct a secondary stability analysis of the most amplified streaks in the turbulent Couette flow and in the turbulent Poiseulle flow.

Background

We consider the turbulent flow of an incompressible fluid with the density p and kinematic viscosity v in a channel with walls located at ±h. Here, the streamwise, wall-normal and spanwise directions are denoted as x, y and z respectively.

For Couette flow, the upper and the lower walls move in opposite directions with the same velocity Uw. The Poiseulle flow is driven by a constant pressure gradient across the channel and bas centerline velocity Uc1. For both cases, the equation for organized waves in perturbation form around the mean flow (Ui = (U(y, z), 0, 0)) is written as [START_REF] Reynolds | The mechanics of an arganized wave in turbulent shear flow. Part 3. Thearetical madels and comparisons with experiments[END_REF][START_REF] Del Alamo | ünear energy amplification in turbulent channels[END_REF][START_REF] Pujals | A note on optimal transient growth in turbulent challllel flows[END_REF][START_REF] Hwang | Amplification of coherent streaks in the turbulent Couette How: an input-output analysis at law Reynolds number[END_REF] aui aui aui aui
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Here, Uï = (u, v, w) is the velocity of the organized wave and vr(Y) =v+ vr(Y), where vr(Y) is the turbulent eddy viscosity.

The streaky base flow is computed using a mean profile U (y) issued from ONS for the Couette flow as in [START_REF] Hwang | Amplification of coherent streaks in the turbulent Couette How: an input-output analysis at law Reynolds number[END_REF] and the Reynolds-Tiederman profile for the Poiseulle flow as in [START_REF] Pujals | A note on optimal transient growth in turbulent challllel flows[END_REF]. vr(Y) is the total eddy viscosity in equilibrium with U(y) and the solutions are assumed uniform in the streamwise direction. Once the streaky base flow Us (y, z) is computed, the secondary base flow is defined as Ub(y,z) = U(y) + u 5 (y,z). The stability of Ub(y,z) is then studied by linearizing [START_REF] Kline | The structure of turbulent boundary layers[END_REF] with the secondary perturbations uj(x, y, z, t). Under the assomption that the base flow Ub(Y, z) is periodic in the spanwise direction, the Floquet theory allows the linearized equation to have the following normal-mode solution:
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where a is the streamwise wavenumber, w the complex frequency, /Jo the spanwise wavenumber related to the fondamental period of the base flow, and 0::::; E ::::; 1/2 is the detuning parameter. According to the values of E, the solutions (2) are classified into 'fondamental' (E = 0) and 'subharmonic' (E = 1/2) modes. Also, the modes with even and odd symmetries about base flows are called 'sinuous' and 'varicose' respectively. For further details on the classification of the modes, the readers are referred to [START_REF] Cossu | On Tollmien-Schlichting waves in streaky boundary layers[END_REF]. In the present study, we focus only on the fondamental sinuous mode, found as the most unstable one for ali the cases considered. Eq. ( 1) is discretized using Chebyshev polynomials and Fourier series in the wall-normal and spanwise directions respectively. The time integration used to compute Ub(Y, z) is conducted using the Runge-Kutta third-order method. For the Floquet analysis, the same spatial discretization is applied to the linear operators. The resulting numerical eigenvalue problem is then solved using the implicitly restarted Arnoldi method (for further details, see [START_REF] Cossu | On Tollmien-Schlichting waves in streaky boundary layers[END_REF]). Ali the computations here are carried out with Ny x Nz = 65 x 32.

Results

We consider a turbulent Couette flow at Re-r = 52 and a Poiseulle flow at Re-r = 300. The computation of the streaky base flows is carried out by using the optimal initial conditions, that consist of pairs of the counter-rotating streamwise vortices computed in [8,9] (see also Fig. 2). The spanwise spacing is chosen as Àz = 4h (fJoh = 1r /2), which is very near the optimal value [START_REF] Pujals | A note on optimal transient growth in turbulent challllel flows[END_REF][START_REF] Hwang | Amplification of coherent streaks in the turbulent Couette How: an input-output analysis at law Reynolds number[END_REF]. The spanwise size of computational box is set to as Lz = Àz, so that a single pair of optimal initial vortices is driven. The amplitude of the initial vortices is defined as Av= [(2/V) fv (u 2 + v 2 + w 2 )dV] 1 1 2 . The amplitude of the streaks induced by these vortices is defined [START_REF] Andersson | On the breakdown of boundary layers streaks[END_REF] as
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Here, Uref = 2Uw and Uref = Uc1 for Couette and Poiseulle flows respectively.

(3)

Fig. 1 shows the temporal evolution of the streak amplitude for several amplitudes Av of the optimal initial vortices. Both Couette and Poiseulle flows exhibit large transient amplifications of the streaks through the coherent lift-up effect. As Av increases, the amplitude of the streaks also increases. However, the ratio of the amplification slightly decays with increasing Av. and the time for As to reach its maximum (tmax) also becomes shorter. Typical cross-stream views of the initial vortices and streaks at t = tmax are reported in Fig. 2. It is seen that the low-momentum regions where the fluid is ejected from the wall by the vortices ((y> 0, z::::: ±2h) and (y< 0, z::::: 0) in Fig. 2) are narrow and intense, and this tendency generally becomes stronger for larger streak amplitudes.

The Floquet stability analysis is performed for the fondamental modes using the streaky base flows extracted at t = tmax• Fig. 3 shows the growth rate Wi of sinuous modes versus the streamwise wavenumber ex for several As. Both Couette and Poiseulle flows are stable for sufficiently low amplitudes of the streaks (wi < 0). As the amplitude of streak As increases, the growth rate gradually increases. Then instability begins to appear (wi > 0) when As reaches the value: As,c = 18% at cxch = 0.3 for Couette flow (Fig. 3a) and As,c = 21% at cxch = 1.2 for Poiseulle flow (Fig. 3b). When As > As,c. a finite interval of the streamwise wavenumbers is unstable with maximum growth at CXmaxh ::::: 0.6 in Couette flow (Fig. 3a) and CXmaxh ::::: 1.4 in Poiseulle flow (Fig. 3b ). We have verified that varicose modes are less unstable than sinuous modes in this range of Av-As. flows. In Couette flow the amplitude of the eigenfunction is appreciable even dose to the opposite wall, whereas in Poiseulle flow it is mainly concentrated on the center of the channel, which is reminiscent of the unstable modes found in the Iaminar case.

Discussion

We have investigated the instability of finite amplitude strea.ks in the framework of an eddy viscosity of turbulent Couette and Poiseulle flows. The nature of the streak instability we find bears sarne similarity the one observed in the Iaminar flows: the instability appears for the high amplitude streaks and it is dominated by the fondamental sinuous mode. An interesting point is that the critical streak amplitudes in the present madel are lower than those in laminar flows: for example, our own computations in laminar Couette and Poiseulle flows at Reh = 500 give As,c セ @ 23% and As,c セ @ 28% respectively (see also [START_REF] Reddy | On the stability of streamwise streaks and transition thresholds in plane channel flows[END_REF]), whereas for the turbulent Couette and Poiseulle flows it is found As,c セ @ 18% and As,c セ @ 21% respectively at Rer = 52 and Rer = 300. However, this does not mean that the streak instability in turbulent flows can be more easily triggered than in laminar flows because as the optimal turbulent transient growth is smaller than the larninar one [START_REF] Pujals | A note on optimal transient growth in turbulent challllel flows[END_REF][START_REF] Hwang | Amplification of coherent streaks in the turbulent Couette How: an input-output analysis at law Reynolds number[END_REF], initial vortices in turbulent flows should be more energetic to drive streak instability than those in larninar flows. For exarnple, in the laminar Poiseulle flow, Av,c"' 0(10-3 ) is required to trigger streak instability [START_REF] Reddy | On the stability of streamwise streaks and transition thresholds in plane channel flows[END_REF], but the amplitude of initial vortices in the present madel of Poiseulle flow is almost two arder of magnitude larger (i.e. Av,c セ @ 0.08).

In the outer region of the turbulent Poiseulle flow, the strearnwise length scale of the large-scale motions has been associated with the peak near the high wavenumber boundary of the a-1 regime in the spectra of the outer region at ah= 1 "'2 (}..x= 3.1 "'6.3h), and that is clearly visible for 0 < IYI < 0.6h [START_REF] Bj | Large-and very-large-scale motions in channel and boundary layer flows[END_REF][START_REF] Monty | A comparison of turbulent pipe, channel and boundary layer flows[END_REF]. The range of unstable streamwise wavenumbers in the present study is also obtained at ah= 0.8"" 1.8 (J..x = 3.5 ""7.9h; see Fig. 3b), showing good agreement with the location of the peak in the strearnwise spectra. Moreover, the eigenfunctions obtained here have significant values in 0 < IYI < 0.6h, also comparable to the spectra. For the turbulent Couette flow, the strearnwise wavenumber having the maximum growth rate H 。 ィ セ @ 0.6; J..x セ @ 10.5h; see Fig. 3a) also corresponds weil to the location of the peak in the streamwise spectra at the channel center H 。 ィ セ @ 0_63; J..x セ @ 10h) [START_REF] Tsukahara | ONS of turbulent Couette flow with emphasis on the large-scale structure in the core region[END_REF]. This good correlation in the length-scale comparison implies that the largescale motion could be formed by instability of much longer streaky motions in the outer region. However, as the Reynolds numbers considered here are fairly low, this conclusion remains to be confirmed at larger Re. Also, alternative scenario based on the secondary transient growth as in [181 may also be relevant, and is currently under active investigation.
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 122 Fig. 1. Evolution of the streak amplitude intime: (a) Couette flow with Av = 0.08, 0.11, 0.12, 0.16; (b) Poiseulle flow with Av= 0.06, 0.078, 0.09, 0.1. Here, • denotes the maximum of As at t = tmax•
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 23 Fig. 3. Growth rate of fundamental sinuous mode with the streamwise wavenumber oe for streaky base flows corresponding to • in Fig. 1: (a) Couette flow with As= 13, 18, 20, 26%; (b) Poiseulle flow with As= 18, 21, 23,25%. Here, • indicates the location of maximum w; of the largest amplitude of streaks considered.
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 44 Fig. 4. Cross-stream (y-z) view of the absalute value of the spanwise velacity eigenfunctian corresponding to • in Fig. 3: (a) Couette flow; (b) Poiseulle flow.Here. the contour is normalized by its maximum and the thick dashed line denotes the velocity of streaky base How which is the same with the phase speed of the streak instability.