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) can be understood as a natural generalization of the s-cobordism theorem for cohomology classes u ∈ H 1 (M ; R). The s-cobordism theorem becomes a special degenerate case when u = 0.

1 The s-cobordism theorem: the exact case Two connected, closed and oriented manifolds N n 0 , N n 1 are cobordant if there exists a compact oriented manifold W n+1 such that ∂W n+1 = (-N n 0 ) ⊔ (N n 1 ). Superscripts denote dimension while (-N ) represents the manifold N with reversed orientation. Such a triad (W ; N 0 , N 1 ) is said to be an h-cobordism if both inclusions N 0 i 0 ֒-→ W i 1 ←-֓ N 1 are homotopy equivalences. Let π be the fundamental group of W ; we denote by Λ := Z[π] its group ring. To each hcobordism we can associate its torsion τ (W, N 0 ) which lives in the Whitehead group Wh(π) := K 1 (Λ) ±π (see [START_REF] Cohen | A course in simple-homotopy theory[END_REF] for a definition).

The s-cobordism theorem, which can be found in [START_REF] Kervaire | Le théorème de Barden-Mazur-Stallings[END_REF], states that τ (W, N 0 ) = 0 is a sufficient condition 1 for W being diffeomorphic to N 0 × [0, 1], provided n ≥ 5.

We can reformulate this theorem into a statement about non triviality of some functional space: consider F the space of C ∞ -functions f : W → [0, 1] such that f -1 (i) = N i , i = 0, 1 with the C ∞ -topology. Its subspace E consisting of functions without critical points is non-empty if and only if W ∼ = N 0 × [0, 1], as it suffices to pick some f ∈ E and to integrate the vector field ∇f ∇f relative to some Riemannian metric on W in order to find a diffeomorphism from N 0 × [0, 1] to W . We obtain so: Theorem 1 (Functional formulation of the s-cobordism theorem). Let n ≥ 5,

E = ∅ ⇔ τ (W, N 0 ) = 0 1 Trivially, the condition τ (W, N0) = 0 is also necessary for W ∼ = N0 × [0, 1].
1 Remark 2. The relative homology H * (W, N 0 ) vanishes since i 0 is a homotopy equivalence. This is indeed a necessary condition for E = ∅, since the Morse complex C * (f ) of a Morse function f ∈ E is zero in every degree, and the homology of C * (f ) is isomorphic to H * (W, N 0 ) (see [START_REF] Milnor | Morse theory[END_REF]). By Lefschetz duality, we deduce that H 1 (W, N 1 ) ≈ H n (W, N 0 ) vanishes. The same holds for H 1 (W, N 0 ) ≈ H n (W, N 1 ) by using the fact that i 1 is also a homotopy equivalence.

We are going to consider the s-cobordism theorem and the one from Latour as statements about the relative cohomologies H 1 (X; Y ) and H 1 (X; Z) of a triad (X; Y, Z). Since the only relative cohomology class of degree 1 to consider in the case of an h-cobordism is u = 0, we will talk about the exact case to refer to the context of this section.

The theorem of Latour

Consider now a closed manifold M n+1 . We ask M to fiber over the circle S 1 , which is equivalent by Tischler's theorem [START_REF] Tischler | On fibering certain foliated manifolds over S 1[END_REF] to the existence of a non-singular closed 1-form on M .

We say that a cohomology class is non-singular if it is representable by a non-singular closed 1-form. It is clear that there is no chance for u = 0 ∈ H 1 (M ; R) to be non-singular since M is closed. Latour's theorem characterizes degree one de Rham cohomology classes 0 = u that are non-singular. Within the context of this section, here is the statement:

Theorem 3 ([Lat94]
). Let n ≥ 5, and let Ω u N S denote the space of non-singular closed 1-forms representing u. We have:

Ω u N S = ∅ ⇔    H * (M, -u) = 0, τ (-u) = 0, u and -u are stable.
Notice that a α ∈ Ω u N S determines a whole ray ru = [rα], r ∈ R * of non-singular cohomology classes. These form so a cone into H 1 (M ; R). In particular

Ω u N S = ∅ ⇔ Ω -u N S = ∅.
A degree one cohomology class can be seen as a morphism u : π → R just by integrating representatives of loops in M . The Novikov ring associated to u, denoted by Λ u , is a completion of the group ring Λ. Elements of Λ u are formal sums λ := n i g i , n i ∈ Z such that, for every fixed C ∈ R, there are only finitely many terms g i verifying u(g i ) < C. The homology H * (M ; -u) which appears in Latour's theorem is the Novikov homology, which was first constructed in [START_REF] Novikov | Multivalued functions and functionals. An analogue of the Morse theory[END_REF]. The Novikov complex is the free finite

Λ -u -module N -u
The map (∂ + δ) * : N -u ev → N -u odd is then an isomorphism and we can consider S, the class in K 1 (Λ -u ) of its associated matrix in the fixed basis. This class may depend on the choice of the basis (compare to [START_REF] Milnor | Whitehead torsion[END_REF]§7]); in order to remove this indeterminacy, Latour defined the Whitehead group associated to -u as Wh(-u) :

= K 1 (Λ -u )
T -u , where the class [S] depends only on -u. Here, T -u := ±π • 1 + u < 0 ⊂ Λ × -u is the subgroup of the so-called trivial units. The torsion τ (-u) is defined by [S] ∈ Wh(-u).

An explanation about the stability condition of ±u is postponed to subsection 4.1.

As he pointed out in his introduction, Latour's strategy to prove theorem 3 is similar to that of the s-cobordism theorem; the goal of the present paper is to show that Latour's theorem is indeed a natural generalization of s-cobordism theorem for relative cohomology classes.

A generalization framework

In Latour's theorem, the notion of u-stability is related with unbounded primitives of p * (u) where p : M → M is the abelian cover of u having π 1 ( M ) equal to ker(u). If we try to extend this notion to a null class u = 0, the cover coincides with Id : M → M and we have no unbounded primitives of 0. However, we only want to extend the notion of u-stability for null classes of the relative 1cohomology of an h-cobordism. We replace so the notion of h-cobordism in the most trivially possible way in order to have unbounded primitives in the exact context when u = 0 ∈ H 1 (W, N 0 ) ∪ H 1 (W, N 1 ): Definition 5. From any h-cobordism (W ; N 0 , N 1 ), we construct the triad (W ± ; N -, N + ) by setting:

• N -:= N 0 × (-∞, 0], N + := N 1 × [1, ∞) and • W ± := N - Id N 0 W Id N 1 N + .
We call (W ± ; N -, N + ) the extended triad of (W ; N 0 , N 1 ).

In particular the cohomologies of an h-cobordism and of its extended triad are the same and W is trivial if and only if W ± is diffeomorphic to N 0 × R. We can so state the s-cobordism theorem in terms of extended triads.

Remark 6. Of course, the extended triad is not strictly an h-cobordism since W ± has no boundary, but the inclusion i : (W ; N 0 , N 1 ) ֒→ (W ± ; N -, N + ) is nevertheless a simple homotopy equivalence: any cell of, say N -, is of the form ∆ × R -where ∆ is a cell of N 0 and we have a natural collapse c : N -→ N 0 .

Comparison of the two theorems

Let us study how Latour's conditions relative to u ∈ H 1 (M ; R) {0} of closed manifolds M degenerate to the s-cobordism theorem condition for extended triads of h-cobordisms (W ; N 0 , N 1 ) as in section 3.

Firstly, regard the closed manifold M as the triad (M ; ∅ -, ∅ + ) and the cohomology class as living in u ∈ H 1 (M ; R) = H 1 (M, ∅ -; R). Latour's conditions applied to -u should be regarded as a statement about -u ∈ H 1 (W, ∅ + ; R) since in this case, the associated Novikov complex is constructed using Λ u -modules instead of Λ -u -modules.

Secondly, consider the h-cobordism replaced by its extended triad (W ± ; N -, N + ) as in definition 5. We distinguish the null-elements of the relative cohomologies by setting

H 1 (W ± , N -) = {+0} and H 1 (W ± , N + ) = {-0}.
Now we study what happens to Latour's conditions when they are interpreted relatively to the extended triad (W ± ; N -, N + ) for u = +0 ∈ H 1 (W ± , N -):

• The Novikov homology H * (W ± , N -), -0 is computed from the complex N -0 * . This complex is Λ -0 ⊗ Λ S * ( W ± , N -) by definition, but the ring Λ -0 trivially coincides with the group ring Λ and hence the Novikov complex

N -0 * is nothing but S * ( W ± , N -). So H * (W ± , N -), -0 = H * ( W ± , N -) which is isomorphic to H * ( W , N 0 ) = 0 since both pairs are homotopy equivalent.
The first condition of Latour is so trivially true for h-cobordisms as we have noticed on remark 2.

• Since the set of trivial units T -0 = ±π, the group Wh(-0) defined by Latour reduces to the usual Whitehead group Wh(π). The torsion τ (-0) is τ (W ± , N -), since N -0 * = S * ( W ± , N -). But the latter torsion coincides with the Milnor torsion τ (W, N 0 ) since the pairs (W ± , N -) and (W, N 0 ) are simply homotopy equivalent by remark 6. The condition τ (-0) = 0 of Latour is so the equivalent condition of theorem 1 for an h-cobordism to be trivial.

Remark 7. The corresponding statements about u = -0 ∈ H 1 (W ± , N + ) yield the vanishing of the relative homology H * ( W , N 1 ) and associated torsion τ (W, N 1 ), which is an equivalent formulation of the s-cobordism theorem.

Note that the previous observations do not need the notion of extended triad and can be applied to the h-cobordism (W ; N 0 , N 1 ) directly. We have established so far that the first two conditions of Latour's theorem reduce to theorem 1 when applied to an h-cobordism or to its extended triad. We need so to prove that the third condition relative to stability holds trivially when reducing to u = ±0. This will be proved below in proposition 9, where the convenience of the concept of extended triad will become more apparent.

The stability condition

To prove his theorem, Latour showed that every Morse closed 1-form α representing u gives raise to a complex C * (α) of Λ -u -modules which is simply equivalent to the Novikov complex N -u * . The two first conditions that we have analized allow one to proceed as in the s-cobordism theorem in order to recurrently eliminate zeros of index/coindex i by eventually adding zeroes of index/coindex i + 2, apart from the case i = 2 which is special. Adding ±u-stability, Latour obtained a sufficient condition to handle with this special case (compare with [START_REF] Damian | Formes fermées non singulières et propriétés de finitude des groupes[END_REF]). Since critical points of index/coindex 2 do not represent a natural obstruction in the exact case, ±0stability should hold trivially. Let us recall what u-stability means, as in [Lat94, §5.4]:

Consider p : M → M the covering whose fundamental group is ker u. Its transformation group is π ker u ≈ Z irr(u) . Since the class p * (u) vanishes, any closed 1-form α representing u admits a primitive: The next proposition shows how u-stability reduces to a condition which holds trivially for extended triads of h-cobordisms.

a function f : M → R verifying d f = p * (α) and f (g • x) = u(g) + f (x) for every pair (g, x) in Z irr(u) × M . It is easy to see that for every t ∈ R, f -1 [t,
Proposition 9. The extended triad (W ± ; N -, N + ) of any h-cobordism is ±0-stable.

Proof. Let us deal with (-0)-stability. Here {-0} = H 1 (W ± , N + ). In this situation ker(-0) is identified with the whole π 1 (W ± , N + ), and the covering pair ( W ± , N + ) to consider coincides with the pair (W ± , N + ) itself. By relative de Rham theory (see [BT82, Ch.1, §6] for example), the class -0 is represented by the pair (df, f | N + ) with f : W ± → R. We are free to choose f verifying f (x, t) = t for every (x, t) ∈ N + ∪ N -; since W ֒→ W ± is compact, there exists some 1 ≤ t 0 ∈ R such that for every t ≥ t 0 , the unique unbounded component W t of f -1 [t, ∞) equals N 1 × [t, ∞). The projective system π 1 (W t ) is constantly π 1 (N 1 ) with inclusions inducing the identity if t ≥ t 0 . By choosing any increasing sequence (t n ) starting at t 0 , stability for the class -0 holds.

  ∞) has only one connected component where f is not bounded; denote it by M t . The inclusions M s Latour showed that this system does not depend on the choice of f but only on u, up to projective isomorphism (see [Lat94, Lemme 5.7]). The u-stability is a condition about P(u). A cohomology class u ∈ H 1 (M ; R) is stable if there exists an increasing sequence (t n ) n∈N → ∞ where the restrictions to the images of P(u) are isomorphisms. More precisely, if we set I n := Im (π 1 ) * (i I n+1 , then j n : I n+1 → I n are isomorphisms for every n ∈ N.

		i s t ֒→ M t s>t
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