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SPECTRAL APPROACH FOR KERNEL-BASED

INTERPOLATION

Bertrand Gauthier & Xavier Bay

Abstract. — We describe how the resolution of a kernel-based interpolation problem
can be associated with a spectral problem. An integral operator is defined from
the embedding of the considered Hilbert subspace into an auxiliary Hilbert space
of square-integrable functions. We finally obtain a spectral representation of the
interpolating elements which allows their approximation by spectral truncation. As
an illustration, we show how this approach can be used to enforce boundary conditions
in kernel-based interpolation models and in what it offers an interesting alternative
for dimension reduction.

Résumé (Approche spectrale pour l’interpolation à noyaux). — Nous décri-
vons comment la résolution d’un problème d’interpolation à noyaux peut être associée
à un problème spectral. Un opérateur intégral est défini à partir d’un plongement
du sous-espace hilbertien considéré dans un espace de Hilbert auxiliaire composé
de fonctions de carré intégrable. On obtient une représentation spectrale des élé-
ments interpolants permettant leur approximation par troncature du spectre. À titre
d’exemple, nous montrons comment cette approche peut être utilisée afin d’intégrer
des informations de type conditions aux limites dans un modèle d’interpolation et en
quoi elle offre une alternative intéressante pour la réduction de dimension.
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1. Introduction

This work is devoted to the study of kernel-based interpolation methods (see for
instance and among others [Wah90, Ste99, BTA04, RW06]). In order to cover a
relatively wide class of problems, we consider the general framework of interpolation
in a separated topological real vector space E. We denote by E′ the topological dual
of E and by 〈·, ·〉E,E′ the associated duality bracket. For a linear subspace M of E′

and e ∈ E, we say that f ∈ E is an interpolator of e for M (or on M) if

∀e′ ∈ M, 〈f, e′〉E,E′ = 〈e, e′〉E,E′ .

In this context, we focus on the two linked kernel-based methods that are optimal
interpolation in Hilbert subspaces of E (see e.g., [Att92]) and Gaussian process models
based on the conditioning of zero-mean Gaussian processes with sample paths in E.
We consider interpolation problems associated with general sets M , including more
particularly the case where M is infinite dimensional (infinite data set). Such a situ-
ation may for instance occur when one aims at enforcing boundary values conditions
in an interpolating functions problem.

We propose and analyze an overall process which associates the resolution of a
kernel-based interpolation problem with the spectral decomposition of an integral
operator. This leads to a spectral representation of the solutions of the considered
interpolation problem (Theorem 4.1). By applying spectral truncations, we obtain ap-
proximations of the interpolating elements which are optimal in a given sense (Propo-
sition 6.4).

From a theoretical point of view, the spectral properties used in this article are
well-known and related to extensions of the Mercer’s Theorem and Karhunen-Loève’s
Theorem. From an applied point of view, the use of spectral methods in approxima-
tion and learning is not new either. We can for instance quote the article of F. Cucker
and S. Smale [CS02], where recalls and discussions concerning Mercer kernels and
their applications in learning theory can be found. One can also refer to the works
of E. Parzen [Par62] (also mentioned in [BTA04, Section 2.4]), or among others, to
the articles [Wal67, Kue71, Raj72]. Also, remark that our approach is based on
the embedding of the considered Hilbert subspace into an auxiliary Hilbert space of
square-integrable real-valued functions. The various applications and structures we
consider can in this sense be compared with the ones appearing in the work of M.Z.
Nashed and G. Wahba [NW74]. The main objective of the present article is to give
a theoretical description, in the general context of topological vector spaces, of the
processes involved in the association of a kernel-based interpolation problem with a
spectral problem. We also aim at showing the potential interests of such an approach.
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The first part of this article (Section 2) is devoted to the description of optimal
interpolation in Hilbert subspaces. In Section 3, we define the notion of regular embed-
ding adapted to an interpolation problem. We also show how this embedding defines
an integral operator, which is referred to as problem-adapted. In Section 4, we use
the spectral decomposition of this operator in order to study the initial interpolation
problem and its approximation by spectral truncation.

In Section 5, we consider the case where M is finite-dimensional. Explicit calcu-
lations are carried out in order to illustrate the use of spectral considerations in this
particular case. Section 6 is next devoted to Gaussian process models. The spectral
representations considered in the previous sections are extended to the conditioning
problem. In particular, we show the IMSE-optimal character of the approximation
by truncation in this context.

We finally develop (Section 7) a theoretical example of application involving a
Hilbert subspace of continuously differentiable real-valued functions on R2. We con-
sider a particular class of kernels and show how to enforce Cauchy-type constraints on
a circle (conditions on both values and normal derivatives) in the associated interpola-
tion models. The difference between approximation by truncation and discretization
is illustrated.

2. Optimal interpolation in Hilbert subspaces

2.1. Hilbert subspace and RKHS. — The L. Schwartz theory of Hilbert sub-
spaces [Sch64] (or Hilbertian subspaces) is an equivalent formalism for the more
widespread theory of reproducing kernel Hilbert spaces (RKHS), introduced by N.
Aronszajn in [Aro50], this equivalence is for instance discussed in Remark 2.1. The
abstract formalism of L. Schwartz is adapted to the framework of topological vec-
tor spaces; it also draws interesting parallels with operator theory (see for instance
Proposition 3.7).

2.1.1. Hilbert subspace. — The general framework of the Hilbert subspaces of E

requires the (real) topological vector space E to be also locally convex and quasi-
complete (see for instance [Rud95, Sch64]), what we assume thereafter. Remark
that these properties are verified by most of the classical functions spaces and in
particular by all Fréchet and Banach spaces. We denote by E′ the topological dual
space of E.

A Hilbert subspace H of E is a linear subspace of E endowed with a Hilbert structure
such that the inclusion of the Hilbert space H into E is continuous. We use the
notation H ∈ Hilb(E). We then denote by TH the Hilbert kernel naturally associated
with H ∈ Hilb(E). We remind that TH : E′ → H ⊂ E is a linear, symmetric and
positive application,

i.e. ∀e′ and f ′ ∈ E′, 〈THe′, f ′〉E,E′ = 〈THf ′, e′〉E,E′ and 〈THe′, e′〉E,E′ > 0.

The kernel TH is in particular characterized by the representation property,

(2.1) ∀h ∈ H, ∀e′ ∈ E′, 〈h, e′〉E,E′ = (h|THe′)H ,
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where (·|·)H is the inner product of H. If {hj : j ∈ J} is an orthonormal basis of
H ∈ Hilb(E), the Hilbert kernel TH can be written under the form

(2.2) TH =
∑

j∈J

hj ⊗ hj , i.e. ∀e′ ∈ E′, THe′ =
∑

j∈J

〈hj , e
′〉
E,E′ hj .

2.1.2. Reproducing kernel Hilbert space. — A RKHS H of real-valued functions on
a set X is a Hilbert subspace of RX (space of real-valued functions on X ) endowed
with the topology of the pointwise convergence (see [Aro50, Sch64, BTA04]).

The reproducing kernel K(·, ·) of H is then linked with the Hilbert kernel TH by
the relation, for all x and y ∈ X ,

(2.3) K(x, y) = 〈THδx, δy〉E,E′ ,

where δx is the evaluation functional for x ∈ X , that is 〈f, δx〉E,E′ = f(x) for all
f ∈ E = RX . This definition for a RKHS (as Hilbert subspace) is therefore exactly
equivalent to the more common definition, namely that H is a Hilbert space of real-
valued functions on X such that, for all x ∈ X , the linear map Lx : H → R, h 7→ h(x),
is continuous.

Remark 2.1. — The RKHS theory can first appear to be a particular case of the
Hilbert subspaces one. In reality, this two theory are equivalent and only differ by
their formalism (see [Sch64, Gau11]). Indeed, one can for instance consider E as a
linear subspace of RE′

(since E ⊂ E′′) and then assimilate a Hilbert subspace of E
with a RKHS of real-valued functions on E′.

2.2. Optimal interpolation. — Let H ∈ Hilb(E) and M be a linear subspace of
E′. For a given ϕ ∈ H, the set of the elements of H which interpolate ϕ on M can be
easily described thanks to the Hilbert subspace structure of H. In what follows, we
resume some of the main results concerning such a study. Throughout this article,
we will frequently refer to the interpolation problem associated with H ∈ Hilb(E) and
M , without necessarily mention the element of H which has to be interpolated.

Let us introduce the set

M0 =
{
e ∈ E : ∀e′ ∈ M, 〈e, e′〉E,E′ = 0

}
.

We define H0 = M0 ∩ H = TH (M)
⊥, where TH (M)

⊥ denotes the orthogonal, in H,
of TH (M) = {THe′ : e′ ∈ M}. Then, for a fixed ϕ ∈ H,

ϕ+
(
M0 ∩H

)

is the set of all interpolators, in H, of ϕ for M .
ϕ+

(
M0 ∩H

)
is a non-empty closed affine subspace of H and is therefore also con-

vex. Thus ϕ+
(
M0 ∩H

)
admits a minimal norm element, which we denote hϕ,M and

call minimal norm interpolator, or optimal interpolator. hϕ,M is then the orthogonal
projection of 0 onto ϕ+

(
M0 ∩H

)
. Let us remark that this first characterization of

the optimal interpolator is essentially non-constructive, in the sense that it does not
allow the construction of hϕ,M from the only knowledge of the values of ϕ on M .
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By definition of the orthogonal projection, hϕ,M − 0 is orthogonal to H0,

i.e. hϕ,M ∈ H⊥
0 =

(
TH (M)

⊥
)⊥

= TH (M)
H

= HM ,

with HM the closure, in H, of the linear space spanned by the THe′, for e′ ∈ M . This
introduces the orthogonal decomposition H = H0 + HM and implies in particular
that hϕ,M is the only interpolator, in HM , of ϕ for M .

Finally, let PHM
be the orthogonal projection of H onto HM . We know that

ϕ− PHM
[ϕ] is orthogonal to HM , thus ϕ− PHM

[ϕ] ∈ H0, i.e. PHM
[ϕ] interpolates

ϕ for M . We finally obtain
hϕ,M = PHM

[ϕ]

and this second characterization is suitable for the construction of hϕ,M from the only
knowledge of 〈ϕ, e′〉E,E′ , for e′ ∈ M .

H0

ϕ +H0

ϕ
hϕ,M

HMH

0

Figure 1. Schematic representation of optimal interpolation in a Hilbert subspace.

The Hilbert kernel THM
of the Hilbert subspace HM , (·|·)H, is linked with TH by

the relation
THM

= PHM
TH.

Hence, the knowledge of THM
defines the orthogonal projection PHM

and reciprocally,
this result staying true for any closed linear subspace of H. This implies in particular
that the Hilbert kernel TH0

of H0, (·|·)H, is given by TH0
= TH − THM

.

3. Problem-adapted integral operators

Let H ∈ Hilb(E) and let M be a linear subspace of E′. Throughout this section,
we consider the interpolation problem associated with H and M . We use the same
notations and definitions as Section 2. Let us in particular remind the orthogonal
decomposition H = H0 +HM .

In what follows, we introduce the notion of regular embeddings associated with an
interpolation problem and study the integral operators they naturally define. This
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leads to the construction of specific orthonormal bases of HM which are (in the sense
of equation (3.14)) suitable for the resolution of the considered interpolation problem.

The results of Sections 3 and 4 hold for any Hilbert subspace H of E, separable or
non-separable. However, if H is non-separable, the existence of a regular embedding
requires HM to be separable (see Remark 3.4). Let us mention that complementary
considerations concerning Section 3 can be found in [Gau11].

3.1. Regular embedding and parameterization. — Let (S,A, ν) be a general
measured set with ν a σ-finite measure. We denote by L2(S, ν) the Hilbert space of
square-integrable real-valued functions on S with respect to ν. Let us remind that
L2(S, ν) is in fact a quotient space. Nevertheless, we make the widespread abuse
of notation which consists in assimilating elements of L2(S, ν) with functions on S
(instead of considering equivalence classes of ν-almost everywhere equal functions).
We will sometime refer to L2(S, ν) as the auxiliary Hilbert space.

Let (·|·)L2 and ‖·‖L2 be respectively the inner product and the norm of L2(S, ν).
We recall that

∀f and g ∈ L2(S, ν), (f |g)L2 =

∫

S
f(s)g(s)dν(s).

Let us consider an application γ : S → E′. For all h ∈ H, we then define the
function

(3.1) Fh : S → R with Fh(s) = 〈h, γs〉E,E′ for all s ∈ S.

We now introduce conditions concerning L2(S, ν), γ and H, namely:

C-i. for all h ∈ H, the function Fh : S → R is measurable,
C-ii. the function (s, t) ∈ S × S 7→ 〈THγs, γt〉E,E′ = (THγs|THγt)H is measurable,

C-iii. τ =

∫

S
‖THγs‖2H dν(s) < +∞.

Proposition 3.1. — Under Conditions C-i, C-ii and C-iii, we have Fh ∈ L2(S, ν)
for all h ∈ H and

(3.2) ‖Fh‖2L2 6 τ ‖h‖2H .

Hence, the linear application F : H → L2(S, ν), h 7→ Fh is continuous.

Proof. — Representation property (2.1), Cauchy-Schwarz inequality applied to (·|·)H
and finally Condition C-iii give

(3.3)
∫

S
〈h, γs〉2E,E′ dν(s) =

∫

S
(h|THγs)

2
H dν(s) 6 τ ‖h‖2H ,

each integral being well-defined thanks to Conditions C-i and C-ii.

We now consider the orthogonal decomposition H = H0+HM and add the following
condition on the application F : H → L2(S, ν),
C-iv. for all h ∈ H, ‖Fh‖L2 = 0 if and only if h ∈ H0.



SPECTRAL APPROACH FOR KERNEL-BASED INTERPOLATION 7

Definition 3.2. — We call regular embedding of HM into L2(S, ν) adapted to the
interpolation problem associated with H and M an application F : H → L2(S, ν)
defined from a parameterization γ : S → E′ via equation (3.1) and which verifies
Conditions C-i, C-ii, C-iii and C-iv.

Let F : H → L2(S, ν) be a regular embedding of HM into L2(S, ν). We consider
the linear subspace F(H) of L2(S, ν) given by F(H) = {Fh : h ∈ H} (the image of H
through F). From C-iv, F(H0) = 0, hence F(H) = F(HM ). We endow this space of
the following inner-product,

(3.4) ∀h and g ∈ HM , (Fh|Fg)
F(H) = (h|g)H .

Proposition 3.3. — Let F : H → L2(S, ν) be a regular embedding of HM into
L2(S, ν), then F(HM ), (·|·)

F(H) is a Hilbert space. It is isometric to HM , (·|·)H,

the isometry being the restriction to HM of the regular embedding F.
In addition, the inclusion of the Hilbert space F(HM ), (·|·)

F(H) into L2(S, ν) is

continuous. In other words, F (HM ) ∈ Hilb
(
L2(S, ν)

)
.

Proof. — The fact that F(HM ) is a Hilbert space isometric to HM directly follows
from its construction. Further, from Proposition 3.1, we have for all h ∈ HM ,

‖Fh‖2L2 6 τ ‖h‖2H = τ ‖Fh‖2
F(H) ,

thus F (HM ) ∈ Hilb
(
L2(S, ν)

)
.

Remark 3.4. — One can for instance consult [For85] for a discussion about the
conditions appearing in Definition 3.2. The ones we use here are of similar type but
specially adapted to the study of the interpolation problem associated with H and
M . Indeed, let F be a regular embedding of HM into L2(S, ν) and consider

(3.5)
∫

S
f(s) 〈h, γs〉E,E′ dν(s) = (f |Fh)L2 ,

where f is a fixed element of L2(S, ν) and h ∈ H. From Condition C-iv, the value of
expression (3.5) does not vary if we replace h by h+h0, with h0 ∈ H0. This quantity
thus only depends of the values of h on M (i.e. of 〈h, e′〉E,E′ for e′ ∈ M), which are
the only available informations when considering an interpolation problem associated
with M and an element h of H.

When S is a topological space (endowed with its Borel σ-algebra) and Conditions
C-i, C-ii and C-iii are already verified, C-iv will for instance be realized if for all
h ∈ H, the functions Fh are continuous and if M = span {γ(supp(ν))} (i.e. M is the
linear subspace of E′ spanned by γ(supp(ν)), with supp(ν) the support of ν).

Finally, note that the existence of a regular embedding F associated with the
interpolation problem defined by H and M implies in particular that HM is separable,
see for instance Proposition 3.8.

Example 3.5. — Let us consider a RKHS H of continuous real-valued functions on
a topological space X and the problem consisting in the interpolation of an element
ϕ of H at given points x1, · · · , xn of X (i.e. M = span {δx1

, · · · , δxn
}).
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One can for instance define a regular embedding for this problem by introducing
the measure ν =

∑n
i=1 wiδxi

(with wi > 0) on S = X (endowed with its Borel σ-
algebra) and the parameterization γ : x 7→ δx (another possible parameterization for
this problem is given in Section 5).

More generally, if we suppose that the values of ϕ are known on a closed subset
D of X (i.e. M = span {δx, x ∈ D}) while keeping the same parameterization γ, one
just has to consider a measure ν on X whom support is D and such that Conditions
C-iii is also verified.

Note that in this particular example, if one identifies elements of L2(S, ν) with
functions on S = X , then the application F is in fact the identity operator on H, with
Fh(x) = h(x), for all h ∈ H and x ∈ X .

Proposition 3.6. — Let F : H → L2(S, ν) be a regular embedding of HM into
L2(S, ν) and consider its adjoint operator tF : L2(S, ν) → H defined by equation
(3.7) hereafter. Then, for all f ∈ L2(S, ν), tFf ∈ HM and we have the following
integral representation,

(3.6) ∀f ∈ L2(S, ν), tFf =

∫

S
f(s)THγs dν(s),

this expression having to be understood in the sense of equation (3.8).

Proof. — We remind that tF : L2(S, ν) → H is defined by

(3.7) ∀h ∈ H, ∀f ∈ L2(S, ν),
(
h|tFf

)
H = (Fh|f)L2 .

From C-iv, we directly deduce that tFf ∈ HM for all f ∈ L2(S, ν). Next, by applying
the preceding equation to h = THe′ with e′ ∈ E′, we obtain

〈
tFf, e′

〉
E,E′ =

∫

S
f(s) 〈THe′, γs〉E,E′ dν(s)

=

∫

S
f(s) 〈THγs, e′〉E,E′ dν(s),(3.8)

which corresponds to equation (3.6) (one can refer to [Bou59] for details concerning
the notion of vectorial integral).

3.2. Integral operator defined by a regular embedding. — We still consider
the same interpolation problem associated with H and M . Thanks to Proposition 3.3,
we know that a regular embedding F of HM into L2(S, ν) defines a Hilbert subspace
F(HM ), (·|·)

F(H) of L2(S, ν). Hence, from the Hilbert subspaces theory, it admits a
unique associated Hilbert kernel. If we identify the continuous dual of L2(S, ν) with
itself (Riesz-Fréchet representation Theorem), the Hilbert kernel of F(HM ) relatively
to L2(S, ν) is the unique linear application

Lγ,ν :
(
L2(S, ν)

)′
= L2(S, ν) → F (HM ) ⊂ L2(S, ν)

which verifies the representation property, for all h ∈ H and f ∈ L2(S, ν),
(3.9) (Fh|f)L2 = (Fh|Lγ,ν [f ])F(H) .
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Proposition 3.7. — Let F : H → L2(S, ν) be a regular embedding of HM into
L2(S, ν) and let Lγ,ν be the kernel of the Hilbert subspace F (HM ) of L2(S, ν), then
Lγ,ν = F tF, i.e. for all t ∈ S and f ∈ L2(S, ν),

(3.10) Lγ,ν [f ](t) =

∫

S
(THγs|THγt)H f(s)dν(s).

Proof. — By combining equations (3.9), (3.7) and (3.4), we obtain that, for h ∈ H
and f ∈ L2(S, ν),

(Fh|f)L2 =
(
h|tFf

)
H =

(
Fh|F tFf

)
F(H)

= (Fh|Lγ,ν [f ])F(H) .

We finally deduce equation (3.10) from the integral expression of tF given in Propo-
sition 3.6 (more precisely, equation (3.6)) by applying the preceding relation to
h = THγt ∈ H, with t ∈ S.

Let us remark that the Hilbert subspace F (HM ) of L2(S, ν) can be assimilated to
the RKHS of real-valued functions on S associated with the reproducing kernel

(3.11) ∀(s, t) ∈ S × S,K (s, t) = (THγt|THγs)H .

Hence, Lγ,ν can be seen as a classic integral operator on L2(S, ν) defined by the
symmetric and positive kernel K(·, ·) on S × S (see for instance [Sch79, §10] and
[For85])

We deduce from the theory of integral operators that Lγ,ν is a Hilbert-Schmidt
operator and therefore a compact operator. So Lγ,ν : L2(S, ν) → L2(S, ν) is diagonal-
izable and its eigenvalues are positive. We denote by λi those eigenvalues (repeated
according to their algebraic multiplicity) and by φ̃i ∈ L2(S, ν) the associated eigen-

functions, with i ∈ I (and where I is a general index set). We remind that
{
φ̃i : i ∈ I

}

forms a orthonormal basis of L2(S, ν) and that the set of all strictly positive eigen-
values is at most countable.

Proposition 3.8. — Let F : H → L2(S, ν) be a regular embedding of HM into
L2(S, ν) and consider its associated integral operator

Lγ,ν = F tF : L2(S, ν) → F (HM ) ⊂ L2(S, ν).
Denote by {λn : n ∈ I+} the at most countable set (i.e. I+ ⊂ N) of its strictly positive

eigenvalues (repeated according to their multiplicity) and let φ̃n ∈ L2(S, ν) be their
associated eigenfunctions. For all n ∈ I+, we define

(3.12) φn =
1

λn

tFφ̃n =
1

λn

∫

S
φ̃n(s)THγs dν(s) ∈ HM .

Then
{√

λnφn : n ∈ I+

}
is an orthonormal basis of the Hilbert space HM endowed

with the inner product (·|·)H.

Proof. — First remark that from Proposition 3.6, the elements φn of HM are well-
defined. By definition, we have that, for all n ∈ I+ and for all h ∈ H,

(3.13)
(
φn

∣∣h
)
H =

1

λn

(
tFφ̃n

∣∣∣h
)

H
=

1

λn

(
φ̃n

∣∣∣Fh
)

L2
.
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As for all m ∈ I+, Fφm = φ̃m, the preceding equation (3.13) applied to h = φm, gives
that

{√
λnφn : n ∈ I+

}
is an orthonormal system of HM .

From Proposition 3.7 and the properties of Hilbert kernels, we know that the linear
subspace spanned by the Lγ,ν [f ], f ∈ L2(S, ν), is dense in F (HM ), (·|·)

F(H) (and in

particular
{√

λnφ̃n : n ∈ I+

}
is one of its orthonormal bases). Hence, by isometry

between F (HM ), (·|·)
F(H) and HM , (·|·)H, the linear space span

{√
λnφn : n ∈ I+

}
is

dense in F(H), which concludes the proof.

In our context of interpolation, the main interest of the elements φn of H, n ∈ I+,
appearing in Proposition 3.8 is that (see equation (3.13)),

(3.14) ∀h ∈ H, (φn|h)H =
1

λn

∫

S
φ̃n(s) 〈h, γs〉E,E′ dν(s).

So, as for equation (3.5) of Remark 3.4, the evaluation of the inner product (φn|h)H
can be directly obtained from the only knowledge of the values of h on M .

We are now able to formulate our representation Theorem 4.1, which simply con-
sists in the use of this particular orthonormal basis and of equation (3.14) in order to
describe the orthogonal projection of H onto HM .

Before this, we conclude this section by some additional remarks concerning the
structures and applications we have introduced. This will be useful for the rest of our
study.

3.3. Some important remarks. — The definition of a regular embedding F of
HM into L2(S, ν) allows the construction of various applications and structures in
addition to the ones studied until now. This section aims at introducing a few of
them. Let us mention the article [NW74], where a similar framework is studied.

3.3.1. Operator on H defined by a regular embedding. — In the same way as an
embedding F : H → L2(S, ν) defines an integral operator Lγ,ν = F tF on L2(S, ν) (see
Proposition 3.7), it also defines an operator on H.

Proposition 3.9. — Let F : H → L2(S, ν) be a regular embedding of HM into
L2(S, ν) and consider the framework of Proposition 3.8. We define the following
linear operator on H,

(3.15) ∀h ∈ H, Lγ,ν [h] =
tFFh =

∫

S
〈h, γs〉E,E′ THγs dν(s).

Lγ,ν is a continuous symmetric and positive Hilbert-Schmidt operator on the Hilbert
space H, (·|·)H. It is diagonalizable, the eigenspace associated with the null eigenvalues

is H0 and
√
λnφn, n ∈ I+, are the eigenvectors (with

∥∥√λnφn

∥∥
H = 1) associated with

the eigenvalues λn, n ∈ I+.

Proof. — The properties of symmetry and positivity of Lγ,ν are obvious. Let us give
a direct proof of the fact that it is a Hilbert-Schmidt operator. Let {hj : j ∈ J} be an
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orthonormal basis of H. Using equation (2.2) and Fubini’s Theorem, we obtain,

(3.16)
∑

j∈J

∥∥Lγ,ν [hj ]
∥∥2
H =

∫

S

∫

S
(THγs|THγt)

2
H dν(s)dν(t) 6 τ2,

the last inequality being a consequence of the Cauchy-Schwarz inequality applied to
the inner product of H and of Condition C-iii.

For all h0 ∈ H0, we obviously have tFFh0 = 0. In addition, for h ∈ H and n ∈ I+,

(3.17)
(
tFFφn

∣∣h
)
H = λn

(
1

λn

tFφ̃n

∣∣∣∣h
)

H
= (λnφn|h)H .

This equation combined with Proposition 3.8 completes the spectral decomposition
of Lγ,ν and also proves its continuity.

3.3.2. Two additional Hilbert structures. — We introduce two Hilbert spaces F(H)
L2

and HM
γ,ν

which naturally appear when considering a regular embedding F of HM .
Note that these two structures will be useful to us for the application of our approach
to Gaussian processes conditioning in Section 6.2.

F(H)
L2

is the closure in L2(S, ν) of the linear subspace F(H). Let us notice that{
φ̃n, n ∈ I+

}
is obviously one of its orthonormal bases for the inner product (·|·)L2 .

Let us now define HM
γ,ν

. We start by introducing the following symmetric and
positive bilinear form on H, for all h and g ∈ H,

(3.18) (h|g)γ,ν =
(
Fh
∣∣Fg
)
L2 =

∫

S
〈h, γs〉E,E′ 〈g, γs〉E,E′ dν(s).

We also set ‖h‖2γ,ν = (h|h)γ,ν . Condition C-iv implies that the nullspace of (·|·)γ,ν is
H0 (i.e. for h ∈ H, ‖h‖γ,ν = 0 if and only if h ∈ H0) and HM endowed with (·|·)γ,ν is

hence a pre-Hilbert space. We then denote by HM
γ,ν

the completed of HM for ‖·‖γ,ν .
Remark that the operator Lγ,ν (considered as an operator on HM ) can be naturally

extended to HM
γ,ν

by continuity. Lγ,ν is then a Hilbert-Schmidt operator on HM
γ,ν

,
(·|·)γ,ν . It is symmetric and positive definite, its eigenvalues are λn, n ∈ I+ and each
one is associated with the eigenvector φn (and ‖φn‖γ,ν = 1).

3.3.3. Isometries. — We are finally in presence of four isometric Hilbert spaces,

HM ,F(H),F(H)
L2

and HM
γ,ν

.

As we have seen in Proposition 3.3, the isometry between HM , (·|·)H and F(H),
(·|·)

F(H) is the restriction of F to HM . The continuous extension of this first isometry

defines the isometry between HM
γ,ν

, (·|·)γ,ν and F(H)
L2

, (·|·)L2 .

The isometry between F(H)
L2

, (·|·)L2 and F(H), (·|·)
F(H) is given by

∀n ∈ I+, φ̃n →
√

λnφ̃n.
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It is in fact the restriction of the square-root of Lγ,ν to F(H)
L2

, with

L
1
2
γ,ν

[
∑

i∈I

αiφ̃i

]
=
∑

i∈I

αi

√
λiφ̃i,

where
∑

i∈I
αiφ̃i ∈ L2(S, ν). We obviously have Lγ,ν = L

1
2
γ,ν ◦ L

1
2
γ,ν .

3.3.4. Pseudoinverse of a regular embedding. — Let us consider the framework of
Proposition 3.8. We can define the pseudoinverse (or generalized inverse) F† of F by

(3.19) ∀n ∈ I+,F
†φ̃n = φn =

1

λn

tFφ̃n

and, for i ∈ I\I+ (i.e. λi = 0), F†φ̃i = 0. Then, F† is well-defined from L2(S, ν) onto
HM

γ,ν
and

(3.20) ∀f ∈ L2(S, ν),F†f =
∑

n∈I+

(
f
∣∣∣φ̃n

)

L2
φn ∈ HM

γ,ν
.

The restriction of F† to F(H)
L2

defines the inverse of the isometry between HM
γ,ν

and F(H)
L2

. In the same way, its restriction to HM gives the inverse of the isometry
between HM and F(H). We have in particular

(3.21) PHM
= F†F,

which is in fact an equivalent formulation of Theorem 4.1.

4. Representation and approximation of the optimal interpolator

For H ∈ Hilb(E), we consider the optimal interpolation problem in H defined by
ϕ ∈ H and a linear subspace M of E′. In order to apply Section 3 results, we suppose
M such that HM is separable (thus, M can be an arbitrary linear subspace of E′ if
H is itself separable).

4.1. Spectral representation for optimal interpolation. — Once an orthonor-
mal basis of HM known, one can easily express the orthogonal projection of H onto
HM . Then, in order to compute the optimal interpolator of ϕ ∈ H for M (see Sec-
tion 2), we need to be able to evaluate the inner-product in H between ϕ and each
elements of the considered basis of HM , and this from the only knowledge of the
values of ϕ on M (which are, in our context of interpolation, the only available infor-
mations concerning ϕ). This is precisely the property of the orthonormal basis of HM

associated with a regular embedding F, its elements indeed verify equation (3.14).
Remark that in order to be applied to a given interpolation problem (associated

with H and M), our approach requires the preliminary choice of a measurable space
(S,A, ν) and of a parameterization γ : S → E′ allowing the definition of a regular
embedding F of HM into the auxiliary space L2(S, ν). Some considerations concerning
this choice are discussed in Section 4.3.
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Theorem 4.1. — Let F be a regular embedding of HM into L2(S, ν) and consider
the orthonormal basis

{√
λnφn : n ∈ I+

}
of HM associated with F. Then, for ϕ ∈ H,

we have

(4.1) PHM
[ϕ] =

∑

n∈I+

φn

∫

S
〈φn, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s).

Proof. — We just have to consider Proposition 3.8 and equation (3.13),

PHM
[ϕ] =

∑

n∈I+

√
λnφn

(√
λnφn

∣∣∣ϕ
)

H
=
∑

n∈I+

λnφn

(
φ̃n

∣∣∣Fϕ
)

F(H)

=
∑

n∈I+

φn

(
φ̃n

∣∣∣Fϕ
)

L2
.

See also equation (3.21) for an equivalent formulation of this result.

Let us remark that the sum appearing in equation (4.1) converges by construction
in H. Since H ∈ Hilb(E), it also converges for the initial topology of E and for its
weak topology σ(E,E′). Then, in particular, for all e′ ∈ E′,

〈PHM
[ϕ] , e′〉E,E′ =

∑

n∈I+

〈φn, e
′〉E,E′

∫

S
〈φn, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s).

Finally, because of the continuous inclusion of HM , (·|·)H into HM
γ,ν

, the considered
sum also converges for ‖·‖γ,ν .

4.2. Truncated approach and approximation. — In practice, even if the spec-
tral decomposition of the operator Lγ,ν = F tF is known, it is not always possible,
for instance for numerical reasons, to consider all the terms appearing in the Mercer
decomposition of THM

,

∀e′ ∈ E′, THM
e′ =

∑

n∈I+

λn 〈φn, e
′〉E,E′ φn.

A classic alternative simply consists in not considering all the terms that appear in
the previous sum. In this case, one currently speaks about spectral truncation and
these are usually the largest eigenvalues which are conserved. The following section
aims at illustrating the use of this alternative in our context. Note that additional
considerations concerning the optimal character of the approximation by truncation
based on the largest eigenvalues are developed in Section 6.4.

Remark that we have to keep in mind that, in the most part of applications, the
true analytical spectral decomposition of Lγ,ν would be unknown. So, the study of
the behavior of the proposed approach when dealing with approximated eigenpairs is
of importance in regards of such applications.
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4.2.1. Spectral truncation. — Assume that we dispose of an approximated kernel
defined from a subset Itrc of I+, that is, for all e′ ∈ E′,

THtrc
M

e′ =
∑

n∈Itrc

λn 〈φn, e
′〉E,E′ φn.

For ϕ ∈ H, we then obtain an approximation of the optimal interpolator PHM
[ϕ] that

we denote by PHtrc
M

[ϕ]. We have

∀e′ ∈ E′,
〈
PHtrc

M
[ϕ] , e′

〉

E,E′
=

(
ϕ
∣∣∣THtrc

M
e′
)

H

=
∑

n∈Itrc

〈φn, e
′〉E,E′

∫

S
φ̃n(s) 〈ϕ, γs〉E,E′ dν(s),(4.2)

where Htrc
M is the closure in H of the subspace spanned by the φn, for n ∈ Itrc.

Theorem 4.2. — Consider the general framework of Section 4.2 and introduce the
set Ierr = I+\Itrc, then

(4.3) ∀e′ ∈ E′,
〈
PHM

[ϕ]− PHtrc
M

[ϕ] , e′
〉2
E,E′

6 ‖ϕ‖2H
∑

n∈Ierr

λn 〈φn, e
′〉2E,E′

(4.4) and
∥∥∥ϕ− PHtrc

M
[ϕ]
∥∥∥
2

γ,ν
6 ‖ϕ‖2H

∑

n∈Ierr

λn.

Proof. — By definition, we have for all e′ ∈ E′,

(4.5)
〈
PHM

[ϕ]− PHtrc
M

[ϕ] , e′
〉

E,E′
=
(
ϕ
∣∣∣
∑

n∈Ierr

λn 〈φn, e
′〉E,E′ φn

)

H
.

To obtain expression (4.3), we just have to remark that the Cauchy-Schwarz inequality
applied to equation (4.5) gives

〈
PHM

[ϕ]− PHtrc
M

[ϕ] , e′
〉2
E,E′

6 ‖ϕ‖2H
∥∥∥
∑

n∈Ierr

λn 〈φn, e
′〉E,E′ φn

∥∥∥
2

H

and that, from Proposition 3.8,
∥∥∥
∑

n∈Ierr

λn 〈φn, e
′〉E,E′ φn

∥∥∥
2

H
=
∑

n∈Ierr

λn 〈φn, e
′〉2E,E′ .

Next, from equation (4.3) and the definition of ‖·‖2γ,ν (see section 3.3.2), we have,
∫

S

〈
PHM

[ϕ]− PHtrc
M

[ϕ] , γs
〉2
E,E′

dν(s) 6 ‖ϕ‖2H
∑

n∈Ierr

λn

∫

S
〈φn, γs〉2E,E′ dν(s).

Since ‖φn‖2γ,ν = 1 for all n ∈ I+, we obtain
∥∥∥PHM

[ϕ]− PHtrc
M

[ϕ]
∥∥∥
2

γ,ν
6 ‖ϕ‖2H

∑

n∈Ierr

λn,

which concludes the proof.
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Let us remark that, by definition of ‖·‖γ,ν ,

(4.6) ∀ϕ ∈ H,
∥∥∥PHM

[ϕ]− PHtrc
M

[ϕ]
∥∥∥
2

γ,ν
=
∥∥∥ϕ− PHtrc

M
[ϕ]
∥∥∥
2

γ,ν
.

We call
∑

n∈Ierr
λn the spectral error term. It will be in practice evaluated by

considering
∑

n∈Ierr

λn =
∑

n∈I+

λn −
∑

n∈Itrc

λn

=

∫

S
‖THγs‖2H dν(s)−

∑

n∈Itrc

λn.(4.7)

A good indicator (see also Section 6.4) of the overall quality of the obtained approxi-
mation can classically be found in the ratios

∑
n∈Itrc

λn∑
n∈I+

λn

= 1−
∑

n∈Ierr
λn∑

n∈I+
λn

.

4.3. About the choice of the parameterization. — In this section, we men-
tion some general considerations concerning the choice of the parameterization. By
parameterization, we mean here the overall process leading to the construction of a
regular embedding of HM into an auxiliary Hilbert space.

4.3.1. Computational aspects. — In the interpolation context of Theorem 4.1, the
parameterization can just appear as a tool allowing to obtain the representation for-
mula (4.1). No matter its choice from the moment it allows the definition of a regular
embedding F of HM .

Nevertheless, if one envisages the computation of the elements constituting the
orthonormal basis of HM associated with the considered embedding (Proposition
3.8), this choice takes importance. Indeed, it in part determines the operator which
has to be diagonalized. It then appears reasonable to try to make a choice that defines
a simplest as possible spectral problem. One will for instance try to be in a position
allowing an analytical resolution, or the use of a particular numerical method.

In such a context, an illustration of what appears to us as relatively judicious
choices of parameterizations can be found in [Gau11, Section 3.3]. In this particu-
lar example, appropriate choices allow to obtain analytical expressions for many of
the involved quantities and prediction formulae concerning the conditioning of a two
parameters Brownian sheet are, in so doing, obtained in an original way.

4.3.2. The approximation case. — In addition of this first consideration, the
parametrization choice has a direct influence on the behavior of the optimal inter-
polator approximation obtained by spectral truncation in equation (4.2). Indeed,
different choices of parameterization for a same problem lead to different approxima-
tions of the optimal interpolator, and this even if the spectral ratios of the considered
truncations are equal.

The parameterization directly influences the way PHtrc
M

[ϕ] approximates PHM
[ϕ]

on M . So, it offers a way to modulate the accuracy of the approximation in function
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of the elements of M . This characteristic of tunable precision could offer interesting
possibilities in regards of applications.

5. Finite Case

5.1. Context and notations. — We suppose that M is of finite dimension, i.e.
M = span {µ1, · · · , µn}, with n ∈ N∗. Let us define the matrix T ∈ Rn×n by,

(5.1) for 1 6 i, j 6 n,Ti,j = (THµi|THµj)H .

For simplicity and without loss of generality, we assume that the µi ∈ E′ are such
that the symmetric and positive matrix T is invertible. For convenience, we introduce
the following matrix notations,

µ = (µ1, · · · , µn)
T and T =

(
THµ|THµ

T
)
H =

〈
THµ,µT

〉
=
〈
µ, THµ

T
〉
,

where THµ = (THµ1, · · · , THµn)
T is a column vector. Hence, for ϕ ∈ H, the optimal

interpolator of ϕ for M can be written under the form

(5.2) hϕ,M = THµ
TT−1 〈µ, ϕ〉 ,

with 〈µ, ϕ〉 =
(
〈ϕ, µ1〉E,E′ , · · · , 〈ϕ, µn〉E,E′

)T
. Remark for instance that with our

notations, 〈µ, ϕ〉T =
〈
ϕ,µT

〉
and, for e ∈ E and e′ ∈ E′, 〈e, e′〉E,E′ = 〈e, e′〉 = 〈e′, e〉.

So, we will write, for e′ ∈ E′, 〈hϕ,M , e′〉
E,E′ =

〈
e′, THµ

T
〉
T−1 〈µ, ϕ〉.

The aim of this section is to prove, by explicit calculations, that the expression of
the minimal norm interpolator given in equation (5.2) is equal to the one given in
equation (4.1) of Theorem 4.1.

5.2. Parameterization. — We first introduce a trivial parameterization of this
problem. Let S = {1, · · · , n} and consider the measure ν on S which assigns a weight
wi > 0 to each i ∈ S = {1, · · · , n}. The auxiliary space L2(S, ν) can then be identified
to the space Rn endowed with the inner-product (x|y)W = xTWy, where x and y

are two column vectors of Rn and where W is the matrix

W = diag (w1, · · · , wn) .

Notice that we identify a vector of Rn with the column vector of its coefficients in the
canonical basis of Rn.

We next consider the application γ : S → E′, given by γi = µi, for all i ∈
{1, · · · , n}. The associated application F is trivially a regular embedding associated
with our problem. It verifies, for all h ∈ H, Fh = 〈µ, h〉 ∈ Rn (and Fh(i) = 〈h, µi〉E,E′ ,
for all i ∈ {1, · · · , n} = S). If we identify L2(S, ν) with Rn, then for α ∈ Rn,

(5.3) tFα = THµ
TWα ∈ HM .

We finally obtain that Lγ,ν = F tF is given by

(5.4) F tFα = TWα.



SPECTRAL APPROACH FOR KERNEL-BASED INTERPOLATION 17

In the same way, we have (see Proposition 3.9),

∀h ∈ H, Lγ,ν [h] = tFFh =

∫

S
〈h, γs〉E,E′ THγs dν(s)

=

n∑

i=1

wi 〈h, µi〉E,E′ THµi = THµ
TW 〈µ, h〉 .(5.5)

The symmetric and positive bilinear form (·|·)γ,ν on H, associated with F via equation
(3.18), is given by, for h and g ∈ H,

(h|g)γ,ν =

n∑

i=1

wi 〈h, µi〉E,E′ 〈g, µi〉E,E′ =
〈
h,µT

〉
W 〈µ, g〉 .

5.3. Spectral decomposition. — Let λ1 > 0, · · · , λn > 0 be the eigenvalues of
TW and let v1, · · · ,vn be their associated eigenvectors, i.e. TW = PΛP−1 with

Λ = diag (λ1, · · · , λn) and P = (v1| · · · |vn) .

Note that {v1, · · · ,vn} forms an orthonormal basis of Rn, (·|·)W, i.e.

(5.6) PTWP = Idn×n, where Idn×n is the n× n identity matrix.

For k ∈ {1, · · · , n}, we define

(5.7) φk =
1

λk

tFvk =
1

λk

THµ
TWvk ∈ HM .

Proposition 5.1. — Under the assumptions of Section 5, we have, for all ϕ ∈ H,

THµ
TT−1 〈µ, ϕ〉 =

n∑

k=1

φk

∫

S
〈φk, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s).

Proof. — We have

THµ
TT−1 〈µ, ϕ〉 = THµ

TWW−1T−1 〈µ, ϕ〉
= THµ

TWPΛ−1P−1 〈µ, ϕ〉 .
Let us study the terms appearing in this last expression. First, from equation (5.7),

THµ
TWPΛ−1 = (φ1, · · · , φn) .

Next, using equation (5.6), we find

P−1 〈µ, ϕ〉 =
(
PTWP

)−1
PTW 〈µ, ϕ〉 = PTW 〈µ, ϕ〉 .

To conclude, we remark that, for k ∈ {1, · · · , n}, the term
∫

S
〈φk, γs〉E,E′ 〈ϕ, γs〉E,E′ dν(s) =

n∑

i=1

wi 〈ϕ, µi〉E,E′ 〈φk, µi〉E,E′

is the k-th component of the vector PTW 〈µ, ϕ〉.
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6. Application to Gaussian process models

Optimal interpolation in Hilbert subspaces and Gaussian process models are in-
trinsically linked. In this section, we recall some of the main properties concerning
the conditioning of Gaussian processes in the framework of topological vector spaces.
We also apply the spectral approach developed in Sections 3 and 4 to the conditioning
problem. The IMSE-optimal character of the approximation by truncation is finally
addressed in Section 6.4.

6.1. Notations an recalls. — Let H be a separable Hilbert subspace of E.
Throughout Section 6, we assume that H is the Cameron-Martin space of a centered
Gaussian process Y defined on a probability space (Ω,F ,P). We denote by H the
Gaussian Hilbert space associated with Y (see [Jan97]). We remind that H is a
closed linear subspace of the Hilbert space L2 (Ω,F ,P) of second order real random
variables (r.v.) on (Ω,F ,P) (we identify random variables that are equal P-almost
surely).

For the sake of simplicity, we assume that E is a Banach space (see [DFLC71,

Tal83] for more general frameworks). We also consider that Y takes its values in E

with P-probability 1 (i.e. the triplet
(
j,H,HE

)
is an abstract Wiener space, where

HE
is the completed of H in E and where j is the continuous inclusion of H into HE

,
see [Gro67]).

We denote by I : H → H the isometry between H and H, it verifies

E (IhIg) = (h|g)H ,

where E (IhIg) represents the inner-product in L2 (Ω,F ,P) between the two centered
random variables Ih and Ig ∈ H. Let us also add, for e′ ∈ E′,

〈Y, e′〉E,E′

(notation)
= Ye′ = I (THe′) .

One can consult, among others, [Bax76, TV07, Gau11] for more details about the
previous notions.

For a linear subspace M of E′, PHM
denotes the orthogonal projection of H onto

HM . We then introduce the orthogonal projection PHM
of H onto HM = I (HM ).

We have the commutative diagram

(6.1) H I
//

PHM

��

H

PHM

��

HM
I

// HM

The application THM
= PHM

TH is the Hilbert kernel of HM , hence, by isometry,

(6.2) ∀e′ ∈ E′, I (THM
e′) = PHM

[Ye′ ]
(notation)

= E (Ye′ |Yf ′ , f ′ ∈ M) .

For all e′ ∈ E′, the r.v. PHM
[Ye′ ] is called the conditional mean of Ye′ knowing Yf ′

for f ′ ∈ M and TH0
is the associated conditional covariance kernel. The notion of

conditional law of the process Y is addressed in Section 6.3.
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6.2. Spectral approach for conditioning. — We now consider the general frame-
work of Section 3.

Proposition 6.1. — Let us consider the centered Gaussian process (Yγs)s∈S . Under

the assumptions of Theorem 4.1, the sample paths of (Yγs)s∈S are in L2(S, ν) with
P-probability 1. In addition,

E

[ ∫

S
(Yγs)

2
dν(s)

]
=
∑

n∈I+

λn

(
= τ

)
.

Proof. — For s ∈ S, we remind that Yγs = I (THγs). Let {hj : j ∈ J} be an or-
thonormal basis of H. As in equation (2.2), (Yγs)s∈S admits the Karhunen-Loève
expansion

(6.3) ∀s ∈ S, Yγs =
∑

j∈J

〈hj , γs〉E,E′ I (hj) ,

where the I (hj) = ζj , j ∈ J, form by isometry an orthonormal basis of H (such
independent N (0, 1) r.v. are sometime called orthogaussian, see [Dud10]). We then
deduce from Condition C-i that the sample paths of (Yγs)s∈S are measurable (as
real-valued functions on S) with P-probability 1.

One can obviously choose the orthonormal basis {hj : j ∈ J} of H such that it
coincides on HM with the orthonormal basis

{√
λnφn : n ∈ I+

}
associated with the

considered regular embedding F (Proposition 3.8). Then, from C-iii and C-iv,
∑

j∈J

∫

S
E

[(
Fhj(s)ζj

)2]
dν(s) =

∑

j∈J

‖Fhj‖2L2

=
∑

n∈I+

∥∥∥
√

λnφ̃n

∥∥∥
2

L2
=
∑

n∈I+

λn < +∞.

Thus, the sum
∑

j∈J
‖Fhjζj‖2L2(ν⊗P) is convergent, which, form Tonelli’s Theorem,

implies the convergence in L2(ν ⊗ P) of

(s, ω) 7→
∑

j∈J

Fhj(s)ζj(ω), with s ∈ S and ω ∈ Ω

and finally completes the proof.

Theorem 6.2. — Let Y be a centered Gaussian process with values in E and co-
variance kernel TH. Let M be a linear subspace of E′. Under the assumptions of
Theorem 4.1, we have, for all e′ ∈ E′,

(6.4) E (Ye′ |Yf ′ , f ′ ∈ M) =
∑

n∈I+

〈φn, e
′〉E,E′

∫

S
φ̃n(s)Yγs dν(s).

In addition, the centered Gaussian process with covariance kernel THM
(that is the

process corresponding to E (Ye′ |Yf ′ , f ′ ∈ M), with e′ ∈ E′) takes its values in HM
γ,ν

with P-probability 1.
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Proof. — We have to verify that the right member of equation (6.4) is well-defined.
From Proposition 3.8, we know that, for all e′ ∈ E′,

THM
e′ =

∑

n∈I+

λn 〈φn, e
′〉E,E′ φn,

this series being convergent in H, so, by isometry,

(6.5) I (THM
e′) =

∑

n∈I+

λn 〈φn, e
′〉E,E′ I (φn) .

For n ∈ I+, we have, thanks to equation (3.12),

φn =
1

λn

∫

S
φ̃n(s)THγs dν(s).

Now, Proposition 6.1 assures that the expression

(6.6) I (φn) =
1

λn

∫

S
φ̃n(s)I (THγs) dν(s) =

1

λn

∫

S
φ̃n(s)Yγsdν(s)

keeps sense under our working hypotheses. At last, from expansion (6.4), Proposi-

tion 6.1 and the isometry between F(H)
L2

and HM
γ,ν

, we deduce that the process
E (Ye′ |Yf ′ , f ′ ∈ M) takes its values in HM

γ,ν
with P-probability 1.

6.3. A note on regular conditional probabilities. — We now study the con-
ditional laws of the process Y relatively to the knowledge of the values take by its
sample paths on M . Because, in our study, HM can be infinite dimensional, the con-
struction of a regular conditional probability requires some precautions. We consider
a case where such a conditional probability exists (see for instance [TV07], this is for
instance always true if HM is finite dimensional). We finally introduce an additional
assumption which assures the existence of a spectral representation for the mean of
the conditional laws, this representation corresponding to a natural extension of the
one obtained in equation (4.1).

Let us assume that

(6.7) HE
= HM

E ⊕H0
E
,

which means that HE
= HM

E
+H0

E
with HM

E ∩H0
E
= {0}.

Condition (6.7) assures the existence of the linear continuous projection P of HE

onto HM
E

parallel to H0
E

(i.e. Ph0 = 0 for all h0 ∈ H0
E

).

We then consider the family of Gaussian measures on HE
with mean P[Ψ] ∈ HM

E
,

for Ψ ∈ HE
and covariance kernel TH0

. From [TV07, Theorem 3.11], such a family

defines a regular conditional probability over HE
relative to the knowledge of Y on

M . In such case, the following notation is often used:

(6.8) P[Ψ] = E
(
Ye′
∣∣Yf ′ = 〈Ψ, f ′〉E,E′ , f

′ ∈ M
)
.

Note that if we denote by µY the Gaussian measure on HE
associated with Y , the

preceding regular conditional probability corresponds to the disintegration of µY re-
latively to P.
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Now, let us also suppose that HM
E

can be continuously injected into HM
γ,ν

, what
we write

(6.9) HM
E
�

�

// HM
γ,ν

.

We next consider the extension F̌ of F to HE
defines by F̌h0 = 0, for all h0 ∈ H0

E

and, on HM
E

, by the continuous extension of the restriction of F to HM . From

Section 3.3.3 and condition (6.9), F̌ is well-defined from HE
onto F(H)

L2

.
Then, as for PHM

= F†F, we have P = F†F̌ (remark that this last expression is
well-defined in regards of the definition of F† given in Section 3.3.4). We finally obtain
the spectral representation formula,

(6.10) ∀Ψ ∈ HE
,P[Ψ] =

∑

n∈I+

〈φn, e
′〉E,E′

∫

S
φ̃n(s) 〈Ψ, γs〉E,E′ dν(s).

Remark 6.3. — We have the well-known equality, for ϕ ∈ H and e′ ∈ E′,

(6.11) 〈PHM
[ϕ] , e′〉E,E′ = E

(
Ye′
∣∣Yf ′ = 〈ϕ, f ′〉E,E′ , f

′ ∈ M
)
.

6.4. Optimal approximation. — The results and considerations of Section 4.2
can also be extended to the Gaussian processes case. In this section, we discuss the
optimal character of the approximation by truncation.

Let Y be a centered Gaussian process with values in E and covariance TH. Under
the assumptions of Theorem 6.2, we consider a subset Itrc of I+ composed of the
largest eigenvalues of Lγ,ν , in the sense that,

(6.12) if i ∈ Ierr = I+\Itrc and n ∈ Itrc, then λi 6 λn.

Proposition 6.4. — Let Happ
M be any closed linear subspace of HM and denote by

THapp

M
the associated Hilbert kernel. For e′ ∈ E′, we introduce the two approximations

of Ze′ = E
(
Ye′
∣∣Yf ′ = 〈ϕ, f ′〉E,E′ , f ′ ∈ M

)
,

(6.13) Ztrc
e′ = I

(
THtrc

M
e′
)

and Z
app
e′ = I

(
THapp

M
e′
)
.

If Htrc
M and Happ

M have the same finite dimension N ∈ N∗, then under equation (6.12),

(6.14) E
( ∥∥Y − Ztrc

∥∥2
γ,ν

)
6 E

(
‖Y − Zapp‖2γ,ν

)
.

Proof. — From Theorem 4.2 and Proposition 6.1, we have

E
( ∥∥Ztrc

∥∥2
γ,ν

)
= E

(∫

S

(
Ztrc
γs

)2
dν(s)

)
=

∫

S

∥∥∥THtrc
M

γs
∥∥∥
2

H
dν(s) =

∑

n∈Itrc

λn

(6.15) and E
( ∥∥Y − Ztrc

∥∥2
γ,ν

)
= E

(
‖Y ‖2γ,ν

)
− E

( ∥∥Ztrc
∥∥2
γ,ν

)
.

Let f1, · · · , fN be an orthonormal basis of Happ
M and consider its decomposition in the

orthonormal basis associated with the considered regular embedding, that is

∀i ∈ {1, · · · , N} , fi =
∑

k∈I+

αi,k

√
λkφk, with αi,k ∈ R
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and where, for i and j ∈ {1, · · · , N}, ∑k∈I+
αi,kαj,k = δi,j (Kronecker delta). Thus,

we easily obtain that

E
(
‖Zapp‖2γ,ν

)
=

N∑

i=1

∑

k∈I+

α2
i,kλk.

Next, using for instance convex combinations arguments, we remark that

(6.16)
∑

n∈Itrc

λn >

N∑

i=1

∑

k∈I+

α2
i,kλk.

We finally conclude thanks to equation (6.15).

In the same way as in equation (4.6), one can remark that

(6.17) E
(
‖Y − Zapp‖2γ,ν

)
= E

(
‖Z − Zapp‖2γ,ν

)
.

Thus, in regards of ‖·‖γ,ν (i.e. in the sense of equation (6.14)), for all e′ ∈ E′, Ztrc
e′

is the best approximation, based on N elements of HM , of the conditional mean
E
(
Ye′
∣∣Yf ′ = 〈ϕ, f ′〉E,E′ , f ′ ∈ M

)
. One can hence speak about a certain IMSE-

optimality (Integrated Mean Square Error) of the approximation by truncation. This
point is illustrated in Section 7.5.3.

7. Example of application

7.1. The problem. — Let X = R2 and H be the RKHS of real-valued functions
on X (see Section 2.1.2) associated with the kernel (squared exponential or Gaussian
kernel, see for instance [RW06]), for x and y ∈ X ,

K(x, y) = e−
‖x−y‖2

σ2 , with σ > 0 and ‖ · ‖ the euclidean norm.

For m ∈ N, let Em ⊂ RX be the subspace of functions of class Cm endowed with
the topology of the uniform convergence on the compact subsets of X for all the
derivatives of order 6 m (of general order if m = +∞). From [Sch64, Proposition
25], for all m ∈ N (and also for m = +∞), H is a Hilbert subspace of Em. In what
follows, we will consider H as a Hilbert subspace of E = E1.

Let x = (x1, x2) ∈ X , we will use polar coordinates, i.e. x = (rx cosαx, rx sinαx)
with rx ∈ R+ and αx ∈ [0, 2π). For x ∈ X , we define δx ∈ E′ and ηx ∈ E′ by

∀f ∈ E, 〈f, δx〉E,E′ = f(x) and 〈f, ηx〉E,E′ =
∂f

∂rx
(x),

δx is the Dirac measure centered on x and ηx corresponds to the evaluation of the
radial derivative at x.

Let C ⊂ R2 be the circle of center 0 and radius R > 0. We consider the linear
subspaces of E′

MD = span {δt, t ∈ C} and MN = span {ηt, t ∈ C}
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and MC = MD + MN (D and N stand for Dirichlet and Neumann conditions, C

for Cauchy). The aim of this example is to approximate the kernel K0C (·, ·) of the
subspace H0C of functions h ∈ H such that,

∀t ∈ C, 〈h, δt〉E,E′ = 0 and 〈h, ηt〉E,E′ = 0.

Nevertheless, let us remark that what follows contains all the necessary informations
to tackle the general interpolation problem associated with H, an element ϕ ∈ H and
MC (see [Gau11]).

We present a two steps methodology. The first step (Section 7.2) consists in con-
sidering independently the interpolation problems in H associated with MN and MD.
Thanks to the study of a third operator (Section 7.3), we finally combine our re-
sults in Section 7.4 and obtain a model in which both values and radial derivatives
are controlled on the circle (Cauchy condition). Numerical computations are finally
presented in Section 7.5.

7.2. The two independent problems. — Let us introduce the linear subspaces
of H naturally associated with MD and MN ,

HMD
= H⊥

0D = span {K(t, ·), t ∈ C}H and

HMN
= H⊥

0N = span

{
∂K

∂rt
(t, ·), t ∈ C

}H

.

We denote by THMD
and KMD

(·, ·) the Hilbert kernel and the reproducing kernel of
HMD

respectively. We use similar notations for the kernels associated with MN .

7.2.1. Parameterization. — Let S = [0, 2π) endowed with its natural Lebesgue mea-
sure (up to the multiplicative constant R) and consider the Hilbert space L2([0, 2π))
of square-integrable real-valued functions (with respect to the Lebesgue measure) on
[0, 2π), endowed with the norm

∀f ∈ L2([0, 2π)), ‖f‖2L2 =

∫ 2π

0

f(θ)2Rdθ,

L2([0, 2π)) plays the role of the auxiliary Hilbert space defined in Section 3.
We pose sR,θ = (R cos θ,R sin θ) ∈ C and introduce

γD : [0, 2π) → MD, θ 7→ δsR,θ
and γN : [0, 2π) → MN , θ 7→ ηsR,θ

.

We easily verify that γD and γN define two regular embeddings FD and FN of HMD

and HMN
into L2([0, 2π)) (see also Remark 7.2) and which are given by, for h ∈ H

and θ ∈ [0, 2π),

FDh(θ) = 〈h, γDθ〉E,E′ and FNh(θ) = 〈h, γNθ〉E,E′ .

The associated integral operators LD = FD
tFD and LN = FN

tFN are defined on
L2([0, 2π)) and

(7.1) LD[f ](α) =

∫ 2π

0

K (xR,α, sR,θ) f(θ)Rdθ,
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(7.2) LN [f ](α) =

∫ 2π

0

∂2K

∂rs∂rx
(xR,α, sR,θ) f(θ)Rdθ,

where xR,α = (R cosα,R sinα) ∈ C, α ∈ [0, 2π) and f ∈ L2 ([0, 2π)).

Remark 7.1. — Let x = (rx cosαx, rx sinαx) and y = (ry cosαy, ry sinαy) be two
points of X , we have

K(x, y) = exp

{
− 1

σ2

(
r2x + r2y − 2rxry cos(αx − αy)

)}
,

∂K

∂rx
(x, y) = − 2

σ2

(
rx − ry cos(αx − αy)

)
K(x, y) and

∂2K

∂ry∂rx
(x, y) =

2

σ2
cos(αx − αy)K(x, y)

+
4

σ4

(
rx − ry cos(αx − αy)

)(
ry − rx cos(αx − αy)

)
K(x, y).

7.2.2. Spectral decomposition. — Using parity arguments, we obtain that the eigen-
values of LD are, for n > 0,

λD
n = Re−

2R2

σ2

∫ 2π

0

e
2R2

σ2 cos θ cos(nθ)dθ.

The ones of LN are, for n > 0,

λN
n =

∫ 2π

0

[
A cos θ +B(1 + cos2 θ)

]
e−

2R2

σ2 (1−cos θ) cos(nθ)Rdθ,

with A = 2
σ2 − 8R2

σ4 and B = 4R2

σ4 .
The two operators LD and LN admit the same eigenfunctions. λD

0 and λN
0 are of

multiplicity 1 and associated with

(7.3)
φ̃0 : [0, 2π) −→ R

α 7−→ 1√
2πR

For n > 1, λD
n and λN

n are of multiplicity 2 and associated with, for α ∈ [0, 2π),

(7.4) φ̃c
n(α) =

1√
πR

cosnα and φ̃s
n(α) =

1√
πR

sinnα.

Remark 7.2. — The two spaces FD(H)
L2

and FN (H)
L2

are the same and corre-
spond to the linear subspace of 2π-periodic functions of L2

loc(R) (restricted to [0, 2π)).
As the set of all eigenfunctions of each operator LD and LN coincides with the classical
discrete Fourier basis, LD and LN do not admit other non-null eigenvalue.

Concerning the operator LD, one can for instance consult [MNY06] where similar
spectral problems are studied (see also Remark 7.5).
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We are now able to express the orthonormal bases of HMD
and HMN

, associated
with FD and FN respectively (see Proposition 3.8). For FD, we introduce the elements
φD
0 , φcD

n and φsD
n ∈ HMD

, n > 1, with for instance

(7.5) ∀n > 1, ∀x ∈ X , φsD
n (x) =

1

λD
n

∫ 2π

0

K(sR,θ, x)
sin(nθ)√

πR
Rdθ.

For FN , we introduce φN
0 , φcN

n and φsN
n ∈ HMN

, n > 1, with

(7.6) ∀n > 1, ∀x ∈ X , φcN
n (x) =

1

λN
n

∫ 2π

0

∂K

∂rs
(sR,θ, x)

cos(nθ)√
πR

Rdθ.

Examples of numerical computations are presented in Section 7.5. We are now going
to study the behavior on the circle C of this two families of functions.

7.3. An interesting operator. — For xR,α ∈ C, let us consider the values
〈
φN
0 , δxR,α

〉
E,E′ ,

〈
φcN
n , δxR,α

〉
E,E′ and

〈
φsN
n , δxR,α

〉
E,E′ for n > 1,

〈
φD
0 , ηxR,α

〉
E,E′ ,

〈
φcD
n , ηxR,α

〉
E,E′ and

〈
φsD
n , ηxR,α

〉
E,E′ for n > 1.

It appears that those ones are all linked with an operator Jν given by,

(7.7) ∀f ∈ L2 ([0, 2π)) , Jν [f ](α) =

∫ 2π

0

∂K

∂rs
(xR,α, sR,θ) f(θ)Rdθ.

Indeed, we have for instance, for n > 1,

〈
φcN
n , δxR,α

〉
E,E′ =

1

λN
n

∫ 2π

0

∂K

∂rs
(sR,θ, xR,α)

cos(nθ)√
πR

Rdθ,

〈
φcD
n , ηxR,α

〉
E,E′ =

1

λD
n

∫ 2π

0

∂K

∂rx
(sR,θ, xR,α)

cos(nθ)√
πR

Rdθ

and
∂K

∂rs
(sR,θ, xR,α) =

∂K

∂rx
(sR,θ, xR,α). The operator Jν is self-adjoint but not posi-

tive. For, n > 0, its eigenvalues are

ρn =

∫ 2π

0

−2R

σ2
(1− cos θ)e−

2R2

σ2 (1−cos θ) cos(nθ)Rdθ.

We remark in particular that ρ0 < 0. The eigenvalue ρ0 is of multiplicity 1 and is
associated with the same eigenfunction φ̃0 than λD

0 and λN
0 . For n > 1, the ρn are of

multiplicity 2 and are also associated with the same eigenfunctions φ̃c
n and φ̃s

n than
λD
n and λN

n . The same argument than the one used in Remark 7.2 assures that Jν
does not admit other non-null eigenvalue.

The spectrum of the operator Jν has a particular behavior since the number of
its negative eigenvalues depends of the ratio between R and σ2. The values of ρn,
0 6 n 6 30, for R = 3 and σ2 = 2 are presented in Figure 2.
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Concerning the orthonormal basis of HMN
associated with FN , we finally obtain,

for xR,α = (R cosα,R sinα) ∈ C,

(7.8)

〈
φN
0 , δxR,α

〉
E,E′ =

ρ0

λN
0

φ̃0(α) and, for all n > 1,
〈
φcN
n , δxR,α

〉
E,E′ =

ρn

λN
n

φ̃c
n(α) and

〈
φsN
n , δxR,α

〉
E,E′ =

ρn

λN
n

φ̃s
n(α).

For the one of HMN
associated with FN , we find

(7.9)

〈
φD
0 , ηxR,α

〉
E,E′ =

ρ0

λD
0

φ̃0(α) and, for all n > 1,
〈
φcD
n , ηxR,α

〉
E,E′ =

ρn

λD
n

φ̃c
n(α) and

〈
φsD
n , ηxR,α

〉
E,E′ =

ρn

λD
n

φ̃s
n(α).

7.4. Double Constraint. — We combine the results of the two preceding sections
in order to obtain a model that both takes account of the values of the function and of
its radial derivative on C. We present an original way to express the kernel K0C (·, ·)
of the subspace H0C of functions h ∈ H such that,

∀t ∈ C, 〈h, ηt〉E,E′ = 0 and 〈h, δt〉E,E′ = 0.

We use Section 7.2 in order to describe the kernels TH0N
of H0N and TH0D

of H0D .
We next consider the interpolation problem associated with TH0N

and MD (arbitrary
choice, we could equivalently consider the problem associated with TH0D

and MN ,
see Remark 7.4).

Remark 7.3. — This two approaches consist in considering the two decompositions
PH0C

= PH0D
PH0N

or PH0C
= PH0N

PH0D
, where PH0C

, PH0D
and PH0N

are the
orthogonal projections of H onto H0C , H0D and H0N respectively.

We consider the kernel K0N (·, ·) of H0N , the subspace of functions h ∈ H such that
∂h
∂rt

(t) = 0, for all t ∈ C. We recall that

K0N (x, y) = K(x, y)−KMN
(x, y) with

KMN
(x, y) = λN

0 φN
0 (x)φN

0 (y) +
∑

n>1

λN
n

[
φcN
n (x)φcN

n (y) + φsN
n (x)φsN

n (y)
]
.

Thanks to the parameterization γD and the kernel K0N (·, ·), we define a regular
embedding of HMN

∩ H0N into L2([0, 2π)). We finally obtain the integral operator
LC1 defined by, for f ∈ L2([0, 2π)) and α ∈ [0, 2π),

LC1[f ](α) =

∫ 2π

0

K0N (xR,α, sR,θ) f(θ)Rdθ.

From the study of the operator Jν (see Section 7.3), we obtain that the eigenvalues
λC1
n , n ∈ N, of LC1 are given by

(7.10) λC1
n = λD

n − ρ2n
λN
n

.

The eigenvalue λC1
0 is associated with the eigenfunction φ̃0 of equation (7.3). For

n > 1, λC1
n is of multiplicity 2 and associated with φ̃c

n and φ̃s
n (equation (7.4)).
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We finally introduce the elements φC1
0 , φcC1

n and φsC1
n , n > 1, which are associated

with LC1
ν via Proposition 3.8. Straightforward calculations give

(7.11)
φC1
0 =

1

λC1
0

(
λD
0 φD

0 − ρ0φ
N
0

)
and, for n > 1,

φcC1
n =

1

λC1
n

(
λD
n φcD

n − ρnφ
cN
n

)
and φsC1

n =
1

λC1
n

(
λD
n φsD

n − ρnφ
sN
n

)
.

Remark 7.4. — Instead of first considering MN and next MD, one can operate in
an inverse way. This leads to the study of the operator

LC2[f ](α) =

∫ 2π

0

∂2K0D

∂rs∂rx
(xR,α, sR,θ) f(θ)Rdθ,

which is associated with K0D (·, ·) and MN via the parameterization γN . Using the
results of Section 7.3, we find that the eigenvalues λC2

n , n ∈ N, of LC2 are

(7.12) λC2
n = λN

n − ρ2n
λD
n

.

λC2
0 is of multiplicity 1 and is associated with φ̃0. In a same way λC2

n , for n > 1, is of
multiplicity 2 and is associated with φ̃c

n and φ̃s
n. We finally obtain

(7.13)
φC2
0 =

1

λC2
0

(
λN
0 φN

0 − ρ0φ
D
0

)
and for n > 1,

φcC2
n =

1

λC2
n

(
λN
n φcN

n − ρnφ
cD
n

)
and φsC2

n =
1

λC2
n

(
λN
n φsN

n − ρnφ
sD
n

)
.

Remark 7.5. — If one conserves the same parameterizations γD and γN and the
same auxiliary space L2([0, 2π)), one can in fact obtain similar results for any sta-
tionary covariance kernel with required regularity (in the sense that it defines a Hilbert
subspace of E = E1) and of the type

K(x, y) =

∫

R

e−iξ‖x−y‖dκ(ξ),

with ‖·‖ the euclidean norm of R2 (and i2 = −1) and where κ is a finite symmetric
positive measure on R (see the Bochner’s Theorem, for instance in [CS02]). In
particular, from the same arguments of parity than the ones leading to the spectral
decomposition of the operators LD, LN and Jν of Sections 7.2 and 7.3, we deduce
that the eigenfunctions of the integral operators associated with such a kernel K(·, ·)
are still the same functions φ̃0, φ̃c

n and φ̃s
n, for n > 1, of equations (7.3) and (7.4)

(discrete Fourier basis). Only the eigenvalues change.

7.5. Numerical application. — In this last section, we compute some of the
involved quantities for R = 3 and σ2 = 2. All computations have been performed
with the free software R [R D08]. In particular, the implied integrals have been
evaluated by quadrature (rectangle method).
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7.5.1. Spectral computations. — We first compute the eigenvalues λD
n , λN

n and ρn of
the operators LD, LN and Jν , for 0 6 n 6 30. Using equations (7.10) and (7.12), we
then directly obtain the values of λC1

n and λC2
n . The results are listed in Figure 2 (we

do not represent the eigenvalues λC2
n ).
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Figure 2. Eigenvalues λD
n , λN

n , ρn and λC1

n , for 0 6 n 6 30, R = 3 and
σ2 = 2.

The second step consists in the computation, thanks to expressions (7.5) and (7.6),
of the orthonormal bases of HMD

and HMN
associated with FD and FN respectively.

From equation (7.11) and (7.13), we then directly obtain the elements associated
with the operators LC1 and LC2. Examples are given in Figure 3. As expected, φsC2

1

vanishes on the circle C and the radial derivative of φcC1
8 also vanishes on C.

7.5.2. Approximations by truncation. — We now consider approximation by trun-
cation of the different involved kernels. In each case, we conserve the terms which
are associated with the most important eigenvalues. We use the same notations and
numberings that in Sections 7.2 and 7.4. For l ∈ N∗, we introduce the following
truncated kernels (associated with MD and MN ),

Ktrc
0D (x, y) = K(x, y)−Ktrc

MD
(x, y), where



SPECTRAL APPROACH FOR KERNEL-BASED INTERPOLATION 29

x
1

-4

-2

0

2

4

x 2

-4

-2

0

2

4
0.05

0.10

0.15

0.20

x 7→ φD
0 (x)

x
1

-4

-2

0

2

4

x 2

-4

-2

0

2

4-0.2

-0.1

0.0

0.1

0.2

x 7→ φcN
4 (x)

x
1

-4

-2

0

2

4

x 2

-4

-2

0

2

4

-0.2

-0.1

0.0

0.1

0.2

x 7→ φsC2
1 (x)

x1

-4
-2

0

2

4

x
2

-4

-2

0

2

4

-0.2

0.0

0.2

x 7→ φcC1
8 (x)

Figure 3. Graphs of φD
0 (top-left), φcN

4 (top-right), φsC2

1 (bottom-left)
and φcC1

8 (bottom-right) on [−5, 5]2, for R = 3 and σ2 = 2.

Ktrc
MD

(x, y) = λD
0 φD

0 (x)φD
0 (y) +

l∑

n=1

λD
n

[
φcD
n (x)φcD

n (y) + φsD
n (x)φsD

n (y)
]

and

Ktrc
0N (x, y) = K(x, y)−Ktrc

MN
(x, y), where

Ktrc
MN

(x, y) = λN
0 φN

0 (x)φN
0 (y) +

l∑

n=1

λN
n

[
φcN
n (x)φcN

n (y) + φsN
n (x)φsN

n (y)
]
.

Such a kernel Ktrc
MN

(·, ·) is hence the approximation by truncation of KMN
(·, ·) based

one the Ntrc = 2l + 1 largest eigenvalues of the operator LN . Remark that for each
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eigenvalue (of multiplicity 2) λN
n , 1 6 n 6 l, we have chosen to consider the both

associated eigenvectors φcN
n and φsN

n .
We finally define the approximated kernel Ktrc

0C1
(·, ·) given by,

∀x and y ∈ X , Ktrc
0C1

(x, y) = Ktrc
0N (x, y)− λC1

0 φC1
0 (x)φC1

0 (y)

−
l∑

n=1

λC1
n

[
φcC1
n (x)φC1c

n (y) + φsC1
n (x)φsC1

n (y)
]
.

We fix l = 15 and compute the kernel Ktrc
0C1

(·, ·). This approximated kernel is hence
based on the Ntrc = 31 largest eigenvalues of the operators LN and LC1. Figure 4
shows the sample path of a centered Gaussian process with covariance Ktrc

0C1
(·, ·) and

the graph of the function x 7→ Ktrc
0C1

(x, x).
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Figure 4. Sample path of a centered Gaussian process with covariance
Ktrc

0C1
(·, ·) (left) and Graphical representation of x 7→ Ktrc

0C1
(x, x) on [−4, 4]2

(right), for R = 3, σ2 = 2 and Ntrc = 31.

The kernel K0C (·, ·) = K0C1
(·, ·) vanishes on C (in particular K0C1

(t, t) = 0 for all
t ∈ C). Concerning its approximation Ktrc

0C1
(·, ·), we deduce from Sections 7.3 and 7.4

that, for all t ∈ C, the value of Ktrc
0C1

(t, t) is constant and

Ktrc
0C1

(t, t) = Ktrc
0D (t, t) = Ktrc

0N (t, t)− 1

2πR

(
λC1
0 + 2

l∑

n=0

λC1
n

)

= 1− 1

2πR

(
λD
0 + 2

l∑

n=1

λD
n

)
.

For l = 15, we obtain Ktrc
0C1

(t, t) ≈ 1.402309e-06, for all t ∈ C. Additional consider-
ations concerning this approximation are given in Section 7.5.3.
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For the radial derivative, we also find a constant value, i.e. for all t ∈ C,

∂2Ktrc
0C1

∂rx∂ry
(x, y)

x=y=t

=
∂2Ktrc

0N

∂rx∂ry
(x, y)

x=y=t

=
2

σ2
− 1

2πR

(
λN
0 + 2

l∑

n=1

λN
n

)
.

For l = 15, we obtain
∂2Ktrc

0C1

∂rx∂ry
(x, y)

x=y=t
≈ 1.483913e-05.

7.5.3. Comparison with discretization. — In this last section, we focus on the inter-
polation problem associated with H and MD and compare the approximations obtain
by truncation and discretization.

Hence, we consider a set of Ndis ∈ N∗ points xR,θk = (R cos θk, R sin θk) ∈ C for
k ∈ {0, · · · , N − 1} uniformly distributed on C, that is θk = 2πk

Ndis
. We then introduce

the linear subspace of E′

Mdis
D = span

{
δxR,θk

, k ∈ {0, · · · , Ndis − 1}
}
.

We approximate the interpolation problem associated with MD by replacing it by
Mdis

D (let us signalize that it is, up to a rotation, the optimal way to discretize this
problem in regards of ‖·‖γ,ν). This finally leads to the orthogonal decomposition
H = Hdis

MD
+Hdis

0D and solutions of this new discretized problem can be computed by
the classical approach of Section 5.1. We denote by Kdis

0D (·, ·) the reproducing kernel
of the subspace Hdis

0D .
In order to compare the overall quality of the approximations obtained by trunca-

tion and discretization, we consider the terms

ErrdisD =

∫ 2π

0

Kdis
0D (sR,θ, sR,θ)Rdθ and ErrtrcD =

∫ 2π

0

Ktrc
0D (sR,θ, sR,θ)Rdθ.

We remind that this kind of terms naturally arises when one aims at studying, for
instance in the discretization case, quantities of the type (see Theorem 4.2 and Propo-
sition 6.4)

∥∥∥PHM
[ϕ]− PHdis

M
[ϕ]
∥∥∥
2

γ,ν
, with ϕ ∈ H.

Because of the optimality of Ktrc
0D (·, ·) in regards of ‖·‖γ,ν (see Section 6.4), for

Ndis = Ntrc, we always have ErrtrcD 6 ErrdisD (note that these two terms tend to zero
as Ndis and Ntrc tend to +∞, see also Figure 5). For instance, for R = 3, σ2 = 2 and
Ndis = Ntrc = 31, we obtain

ErrdisD ≈ 4.438046e-05 and ErrtrcD ≈ 2.64329e-05.

Although the gain in considering truncation instead of discretization could in this
case appear numerically negligible, one has to remark that the behavior on C of this
two kinds of approximation is totally different (see Figure 5). It can hence be said
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Figure 5. Graphs of θ 7→ Ktrc
0D

(sR,θ, sR,θ) and θ 7→ Kdis
0D
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θ ∈ [0, 2π)) for Ntrc = Ndis = 31 (left) and values of the terms ErrdisD and
ErrtrcD for 10 6 Ndis, Ntrc 6 24 (right) with R = 3 and σ2 = 2.

that truncation leads to a global approximation on C (with respect to ‖·‖γ,ν) whereas
discretization leads to a local approximation (localized at the discretization points).
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