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Abstract

The knowledge of the actual vehicle speeds on the road network is a very informative component of drivers
behavior and their road usage. This information become available with the generalization of probe vehicles and the
development of GPS-equipped smartphones which has increased the number of "tracers" likely to refer their position
and speed data in real time. In addition, advances in sensors technology enable to collect these data with high sampling
rate which leads to large volume of individual space-speed profiles (i.e. speed as function of space) with increasingly
fine grids measurements, which requires appropriate methods. Indeed, if in practice, data collected are discretized,
and then treated as vectors, the classical multivariate statistical methods become inadequate to analyze such high
dimensional vectors. The originality of the approach presented in the current paper is to propose a functional analysis
of speed profiles, i.e. to treat these objects as functions rather than vectors. This approach takes inspiration from
Functional Data Analysis, a statistical domain that has developed recently, and allows to preserve the functional
nature of such data that initially derive from a continuous underlying process. This functional analysis begins with
a functional modeling of space-speed profiles and the study of mathematical properties of these functions. Then, a
smoothing procedure based on spline smoothing is developed in order to convert the raw data into functional objets
and to filter out the measurement noise as efficiently as possible. It is shown that this smoothing step leads to a
complex nonparametric regression problem that needs to take into account two constraints: the use of the derivative
information, and a monotonicity constraint. This paper also presents a methodology to build an aggregated speed
profile (average or median), and also speed corridors in order to summarize the information contained in a large
set of individual space-speed profiles. This methodology is illustrated on a real data set and is divided in the three
following steps: the smoothing step, the registration of speed profiles by the method of landmarks alignment, and the
construction of speed corridors by an extension of the classical boxplots to functional data.
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1. Introduction

To operate the road network, it is necessary to take into account various criteria such as speed, safety, comfort,
flexibility, energy savings... It is then important to best optimize the use of network in order to increase efficiency,
which requires a detailed knowledge of its actual use. Thus, it becomes essential to have efficient and reliable methods
to measure and evaluate the actual use of the network that take into account the complex links between these criteria.

The tools used to observe and measure the use of the road network evolved recently. They shifted from the
collection of aggregated data obtained through static devices (e.g. magnetic loops, radars) to much finer measurements
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obtained by data recording equipments installed in vehicles, which have contributed to the probe vehicles concept
definition. Until now, probe vehicles, that can be seen as mobile sensors exploring continuously the road network,
were reduced to private fleets (e.g. buses, taxis). But the development of smartphones has increased the number of
digital "traces" left by vehicles, and allows to study the road user’s behavior on the complete network. However,
if probe vehicles can allow to collect a lot of information about the vehicle parameters or the driver actions, the
association of position and speed measurements is already very informative about traffic and driver behavior, and it is
easily available with a GPS.

The knowledge of the actual vehicle speeds on roads is essential from several points of view: to locate blackspot in
the network, to improve the knowledge of travel time and to evaluate the effects of the modification of the infrastruc-
ture (addition of speed bumps, roundabouts, ...). The speed choice of drivers is one of the most important components
of their behavior and also their road usage (Ericsson (2000), Laureshyn (2005)). This continuous information of road
user’s speed, available with the development of smartphones, leads to the obtention of individual speed profiles that
can be analyzed as functions of time (time-speed profiles) or functions of space (space-speed profiles) depending on
the purpose of the study. Speed profiles allow a more detailed analysis of driver behavior and variations between road
users, contrary to aggregated indicators (such as average or median speed), and their study appears in many applica-
tions: travel time forecasting (Quiroga and Bullock (1998)), impact of the modification of the infrastructure (Barbosa
et al. (2000)), identification of safety critical events (Boonsiripant (2009), Nygard (1999)), effects of Intelligent Speed
Adaptation (ISA) systems (Varhelyi et al. (2004))...

The collection of individual space-speed profiles can leads to large volume of data that require the use of appro-
priate methods. Indeed, since in practice space-speed profiles are composed of time-stamped measurements of speed
and position, most studies consider them as R" vectors where n is the number of measurements. However, advances
in sensors technology enable to collect data with high sampling rate that leads to high dimensional vectors (n is very
large), for which classical multivariate statistical methods become inadequate because of problems related to the so-
called "curse of dimensionality" and the significant correlation between close observations. A solution is to preserve
the functional nature of such data derived from a continuous underlying process and then to view them as functions
instead of vectors. This approach is based on the "Functional Data Analysis" (FDA), a statistical domain that has
developed considerably over the last twenty years and that appears in several domains such as meteorology, chemo-
metrics, economics... An overview of the theory of statistics with functional data can be found in the reference books
of Ramsay (Ramsay and Silverman, 2005, 2002), the book of Ferraty and Vieu (2006), and the papers of Levitin et al.
(2007) and Cuevas (2013). The functional approach is particularly suitable for the analysis of speed profiles since
it allows to preserve the physical consistency between speed and position (and implicitly time), and their functional
characteristics: computation of derivatives (that leads to acceleration or jerk profiles), regularity, shape constraints...
In addition, most of the classical multivariate statistical methods can be adapted to functional data (linear models,
principal component analysis, canonical and discriminant analysis...), while some methods are specific to functional
data such as curve registration.

In this paper, we propose a methodology suitable for the functional analysis of space-speed profiles. This paper
is structured as follows. Section 2 presents a functional modeling of space-speed profiles with a definition of the
corresponding functional space and the study of some mathematical properties (continuity and differentiability). In
Section 3, we propose a smoothing method using spline functions in order to convert the raw data into functional
objets and to filter out the measurement noise as efficiently as possible. A validation of the smoothing method is then
proposed using real-world GPS data. Section 4 describes a methodology of construction of an aggregated speed profile
(average and median) and also speed corridors. Three steps of this methodology are detailed and illustrated with a
new data set: the construction of individual speed profiles from raw data by the use of the smoothing procedure,
the registration of speed profiles by the method of landmarks alignment in order to obtain an aggregated profile
representative of the set of individual speed profiles, and the construction of speed corridors by an extension of the
classical boxplots to functional data. Finally, Section 5 provides a discussion and the main conclusions of the present
study.



2. Functional modeling of space-speed profiles

2.1. Definition of space-speed profiles

Before beginning a functional analysis of speed profiles, it is necessary to define the functional space of such
objects. Indeed, any function f : R — R™* is not a space-speed profile (e.g. a constant function equal to zero). In
practice, a space-speed profile is a sequence of time-stamped measurements of position (from GPS or odometer) and
speed, so it can be studied in the three following study areas : distance X time, speed X time and speed X
distance (see Fig. 1).
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Figure 1: Link between the three study areas : [distance X time, speed X time]and [speed X distance].

The functions defined in each of these three study areas are related mathematically: If we denote F(#) a function
defined in the study area distance X time that represents the distance traveled as function of time, the derivative
function F’(¢) represents the speed as function of time and is defined in the study area speed X time. So, by
definition, the function F must be increasing and at least of class C'. In order to define an acceleration profile,
we propose to require that F is at least C?, and so we propose the following definition of the functional space of
space-speed profiles :

Definition 1. Let x; € R*. Then the space of space-speed profiles, denoted Egsp, is defined as follows :

Essp = {vs : [0, x7] — R* such that there exists a positive real T and an increasing function F : [0,T] — [0, x£]
of class C? with F(0) = 0 such that vs(x) = F’ o F~'(x)), x € [0, xrl},

where F~! is the generalized inverse of F defined by F~'(x) = inf{t € [0, T], F(¢) = x}.

The positive real numbers x, and T represent respectively the length and the travel time of the studied section.
Fig. 2 illustrates Definition 1 by showing the functional link between distance, speed and implicitly time.

Time

F/ /F1 F'

Distance > Speed
vs=F oF!

Figure 2: Functional diagram illustrating the definition of space-speed profiles.

2.2. Mathematical properties of space-speed profiles
We studied some properties of the space-speed profiles, i.e. functions in the space Eggp (as defined in Definition
1). The continuity property is given by the following theorem whose proof is deferred to Appendix A:
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Theorem 1. All functions vs : [0,x;] — R* belonging to the space of space-speed profiles Essp (as defined in
Definition 1) are continuous on [0, x].

If the continuity property of space-speed profiles is obvious, the differentiability property is less intuitive as shown
in the following theorem whose proof is also deferred to Appendix A:

Theorem 2. Assume that vs : [0,x7] — R belongs to the space of space-speed profiles Egsp (as defined in
Definition 1). Let Hy = {x € [0, x/], vs(x) = 0}, all points for which the speed is zero. The two following assumptions
are added.:

(H,) Assume that F is of class C* on [0, T] and strictly increasing, and 3ty €10, T[ such that F'(ty) = 0 and F""(ty)
exists with F""'(ty) # 0.

(H,) Assume that F is of class C?2on[0,T] and increasing, ty, t; €10, T[, ty # t; such that F'(¢t) = 0 on [ty, 11], and
the function G defined on [0, T — (t; — to)] by:

fort <ty, G(t)=F(1),
fort>ty, G(@t)=F(t+1t —1ty),

satisfies the assumptions (Hy).

If F satisfies the assumptions (Hy) or (H»), then vs = F’ o F~' is not differentiable on H.

The assumptions (H;) and (H;) are not restrictive and are satisfied in most cases. So, this theorem shows that
space-speed profiles are not differentiable at points for which the speed is zero, i.e. when the vehicle is stopped.
From a geometrical point of view, if we assume that xy € Hy (i.e. vs(xg) = 0), it is easily shown that the graph of a
space-speed profile vg has a half-tangent parallel to the axis of y in xg, i.e. a cusp at the point (x, 0).

This property of non differentiability at points for which the speed is zero, implies some difficulties in the calcula-
tion of an average profile, particularly in the case of stops. Indeed, if a space-speed profile v; is equal to zero at a point
Xp, and a space-speed profile v, is strictly positive at xy, then the sum v; + v, is not a space-speed profile as defined
in the Definition 1 since v; + v; is not differentiable at xo but (v; + v2)(x9) > 0. Thus, the calculation of an average
profile is meaningful only in this two cases:

e when all space-speed profiles are strictly positive (no stops) ;
o when all space-speed profiles are equal to zero at the same points (i.e. all vehicles stop at the same location).

This second case raises the issue of registration of speed profiles that will be discussed in Section 4.3.

3. Estimation of a space-speed profile from noisy data using smoothing splines

The data accuracy is very important to analyse speed profiles. However, sensors can provide inaccurate measure-
ments and it is necessary to use a smoothing procedure in order to reduce the errors that affect the raw data. Several
studies proposed the use of various smoothing methods to estimate speed or acceleration profiles. For example, Rakha
et al. (2001) and more recently Jun et al. (2006) propose a comparaison of different smoothing methods such as the
kernel smoothing method or the Kalman filter. The authors show that most of these methods are not robust to the
presence of outliers and are not suitable for the calculation of derivatives. Indeed, these discrete smoothing methods
provide an estimation of speed profiles at sampling points, and then the estimation of the derivatives (acceleration
or jerk profiles) is performed by using numerical differentiation techniques (backward, forward or central difference)
which can increase the errors depending on the choice of the method and the data sampling frequency. citeBratt1999
propose to use the local polynomial regression technique which presents the advantage to being simple but tends to
overestimate or underestimate the speed and the derivative values (acceleration). In addition, this method requires the
determination of many parameters (kernel, bandwidth parameter) that are not easy to choose. In this section, we pro-
pose another smoothing procedure based on the spline smoothing method which allows to keep the functional nature
of speed profiles, and then to facilitate the calculation of the derivative profiles.



3.1. Smoothing using splines

3.1.1. From discrete data to smooth curves

The first step in a functional data analysis is to convert the raw data into functional objects. In our study, we look
for an estimator of the "true" space-speed profile which belongs to the space Essp defined in Definition 1. Due to
uncertainties in the raw data including speed and position measurements, there is need of use a smoothing procedure in
an attempt to filter out this noise as efficiently as possible. This problem can be written as a nonparametric regression
model:

vi=f(x)+e, i=1,...,n, €))

where (x;, y;) are given observations, €; are uncorrelated errors with zero mean and o2 variance, and f is the regression
function.

A classical method for representing discrete data as a smooth function is the use of a basis expansion, which is
to express a function as a weighted sum or linear combination of elementary functional building blocks called basis

functions as follows:
K

OEDICTAC) @)
k=1
where ¢, are K known basis functions, and ¢ are the basis coefficients estimated from observations and which repre-
sent the weight of each basis function in the construction of the function f. There are many different types of basis
function systems such as powers of x (for polynomials), Fourier basis (for periodic functions), spline basis (for nonpe-
riodic and complex fonctions) or wavelets basis. The main advantage of the basis expansion method is to represent the
function f that potentially belongs to an infinite-dimensional space within a finite-dimensional framework. Note that
this method can also be used in terms of dimension reduction since the number of basis functions K is usually much
lower than the number of observations n. However, the difficulty is the choice of the number K of basis functions
often framed in terms of the bias-variance trade-off common in many statistical analyses. Using a high number of
basis functions will over-fit the data and will produce a curve that is generally not smooth (low bias and high variance),
whereas a small number of basis fails to capture interesting features of the curves (high bias and low variance).
Another way to build a smooth curve from discrete data is the use of a roughness penalty, also called regularization
method. The idea is to control the smoothness of the fitting curve by adding a penalty term in the least squares criterion
as follows:

min ;(y,- — FO)? + (), 3)

where & is a functional space, J(f) is a penalty term, and A > 0 is the smoothing parameter which controls the trade-
off between the goodness of fit (measured by the first term in Eq. (3)) and the regularity of the regression function

(measured by the second term in Eq. (3)). Generally, we use the penalty J(f) = fu b( f(’")(x))zdx where f € C"[a, b]

as a measure of curvature of the smoothing function, and more particularly we use J(f) = fa h( FP(x))*dx, called
the roughness penalty (Green and Silverman (1994)), which reflects the notion of average curvature of a function
f € C*[a, b]. The bias-variance trade-off is directly quantify through the choice of A: the more A is high, the more the
curve is smooth, and vice versa. In particular, when 1 — 0, the fitted curve approaches an interpolant to the data, and
when A4 — oo, the fitted curve approaches the standard linear regression to the observed data. The parameter A can be
determined by automatic methods like cross-validation (CV) or general cross-validation criterion (GCV) which are
based on the minimization of a specific criterion, or by a subjective choice (trial and error method).

3.1.2. Smoothing spline
Assume that the regression function f of the model in Eq. (1) is regular, and more specifically that f € W"[a, b],
m € IN, where W"[a, b] is the Sobolev space of order m defined by:

W™[a,b] = {f : £ absolutely continuous j = 0,...,m—1; f™ € L[a,b]}, “)



where £;[a, b] is the set of square integrable functions on the interval [a, b]. In this space, we can "measure" the

regularity of a function f by J(f) = fa b( £ (x))*dx. A remarkable theorem states that if m < n, the penalized least
squares criterion:

n b
Y on= f? 2 [ e )
i=1 a

has an explicit, finite-dimensional, unique minimizer in the Sobolev space W"'[a, b], which is a natural spline of order
2m with knots at the design points xi, ..., X, in [a, b]. A demonstration of this theorem can be found in Eubank (1999).
We recall that if x; < ... < x, are n points of an interval [a, b], then a function f: [a, b] — R is a polynomial spline of
order m (where m is an integer > 1) with simple knots at the points xi, ..., x,, if f satisfies the following properties:

e fis a piecewise-polynomial of order m (i.e. of degree m — 1),
e f has continuous derivatives up to order m — 2 (if m > 2).

The term "natural” means that we add the following boundary conditions : fY(a) = fU(b), j=m,...,2m—1. When
m = 2, the solution of the penalized least squares criterion is a spline of degree 3 (and order 4) called cubic spline. This
smoothing method using a roughness penalty and resulting from an optimization problem is called "smoothing spline".
By contrast, the "regression spline" is a method that assumes that the regression function is a spline represented as a
spline basis expansion and where the basis coefficients are estimated by the minimization of the least squares criterion.
However, in regression spline, the choice of the number and location of the knots is generally difficult (Hastie and
Tibshirani (1990)).

The most common computational technique for smoothing spline is to represent the solution with a B-spline basis
function expansion (De Boor (2001)) with knots at the sampling points :

Fy =" BiBj) (©)
j=1
and to minimize the criterion given in Eq. (5) with respect to the coefficients of the expansion. The solution vectorﬁ
of the coeflicients §; is then written as follows :
B=(B"B+AQ)"'B"Y, (7
where {B};j = B;(x;) and {Q}; = [ B§m>(x)3,im>(x)dx.

3.1.3. Generalization of the spline smoothing problem
In this section, we give a generalization of the spline smoothing problem described in the previous section in the
case where the dimension of the study area is greater than 1. We will show in the next section that the studied model

can be viewed as a particular case of this general spline smoothing problem. A function f of d variables xi, ..., x4 is
"smooth" if the penalty functional J¢(f) defined by
m' +00 —+00 amf
J4(f) = —f f — _dx,...d 8
(/) al+_;d:m ar!.. g Jo o (6)6‘1“ .. .ij") A d ®)

is small.
Lett = (x1,...,x4) and t; = (x1(?), ..., x4(i)). Consider the following data model:

y,’:L,'f-}-E,‘, i=1,...,n, (9)

where the L; are continuous linear functionals of f and the &; are independent zero mean errors with E [siz] = o-iz.

A useful result is that the operator L defined by Lf = Y — fora; +...+ays = k (k,ay,...,aq € N)is a

0% x1...0% xg4

continuous linear form if and only if 2m — 2k — d > 0 (see Berlinet and Thomas-Agnan (2004), Th. 133, and Wahba



and Wendelberger (1980)). A generalization of the spline smoothing problem as defined in Section 3.1.2 is given by
the following variational problem: Find f in a suitable Hilbert space H for which J%(f) is finite, to minimize

1 n
= DTS = i) + AT (10)
=
The null space of the penalty functional J¢(f), i.e. Ho = {f : J4(f) = 0}, is the p = d+ ’Z; B 1)-dimensional space
spanned by the polynomials in d variables of total degree less than or equal to m — 1. We will denote ¢y, ..., ¢, these
polynomials. Then the following theorem gives the form of the minimizer of Eq. (10):
Theorem 3 (Wahba et Wendelberger, 1980). Let Ly,..., L, be n linearly independent continuous linear functionals
and suppose Ly, 25:1 a,¢, = 0 implies that all the a, are 0.
Then Eq. (10) has a unique minimizer E in H, with representation
— P “
f0 =) dg)+ ) citi), (in
v=1 i=1
where
é:i(t) = Li(s)Em(t’ S), (12)

and Lis) means the linear functional L; applied to what follows considered as a function of s, and
Ey(s, 1) = E(ls — 1)), (13)

|s — t| being the Euclidean distance, with

| OnaluP™loglul, d even

B = { Omalul™ 4, d odd (14)

where
ﬂd(/zl)d/hmﬂ d even
Opa =4 ZprnDim=d/2) 15
T, d odd.
The coefficients ¢ = (c1,...,c,)" andd = (dy,...,d,)" are solutions of the linear system

(K+naWhe+Td =y, (16)

TT¢ = 0, (17)
where

{Li(s)Lj(t)Em(s’ t)}?,j:l B
T = {Li¢v}i f 1 VI:) 1s

diag(a’[z, e, 0';,2).

The proof of this theorem is given in Wahba and Wendelberger (1980) and use the theory of reproducing kernels
(see Kimeldorf and Wahba (1971) and Wahba (1990)). Note that this theorem indicates that the smoothing spline
estimate f falls in a finite dimensional space. When the bounded linear functional are the evaluation functionals,
ie. Lif = f(t,), i = 1,...,n, the minimizer f; is a thin-plate spline (see Wahba (1990), Section 2.4, and Gu (2002),
Section 4.4). The smoothing spline model described in Section 3.1.2 is a particular case of the model of Eq. (9) where
d =1 and the bounded linear functional are the evaluation functionals.



3.2. Estimation of a space-speed profile from noisy data: A smoothing problem under constraints

The estimation of a space-speed profile from noisy measurements of position and speed is a complex nonparamet-
ric regression problem (see for example Andrieu et al. (2013)). Indeed, on the one hand, both the response variable
(corresponding to speed) and the explanatory variable (corresponding to vehicle position) are noisy. And on the other
hand, the regression function must belong to the space Eggp defined in Definition 1 and then check its properties, in
particular the non differentiability when the speed is zero. To overcome these difficulties, we propose to change to a
more suitable study area and start by estimating the function F' representing the distance traveled as function of time
(study area distance X time in Fig. 1). Then the new nonparametric model is

yi=F) +exi, i=1,...,n, (18)

where y; are noisy observations of the distance traveled, &, ; are uncorrelated errors with zero mean and o2 variance,
and F(¢) is the regression function. This change of study area leads to take into account the two following constraints:

1. Use the derivative information, i.e. estimate the regression function F(f) of the model (18) from both noisy
observations of F' corresponding to position measurements, and noisy observations of its derivative F’ corre-
sponding to speed measurements.

2. A monotonicity constraint since the function F representing the distance traveled as function of time must be
increasing.

The consideration of these two constraints in the smoothing step is the subject of the two following subsections.
Then, once we have obtained an estimator F of the function F, it is easy to deduce by differentiation an estimator F' F'
of the time- speed profile, and finally to deduce an estimator Vg of the space-speed profile vs by the transformation
VS =F F o F -

3.2.1. Smoothing using derivative information

The first constraint in the nonparametric model (18) is to use the derivative information, i.e. to estimate the

regression function F(¢) from both noisy measurements of position and speed. Assume that the domain of F(¢) is

X =1[0,T], where T is a positive real, and F € W™[0, T] with m > 1. Then the use of the derivative information leads
to consider the following data model:

{y,‘=F(l‘,‘)+8x’i, i=1,...,n (19)

vi=F(@)+ey i=1,...,n

where y; and v; are noisy measurements of distance traveled and speed respectively at each sampling time #;, and
&,; and g,; are independent zero mean errors with variance o> and o respectively. We also assume that for all
i=1,...,n, &, and ¢,; are independent. Note that we have assumed that the observations y; and v; are obtained at
the same times #;. Otherwise, a data resampling will lead to this case.

The problem of smoothing with derivative information appears in various applications such as economy (Hall and
Yatchew (2007)), molecular biology (Calderon et al. (2010)) or image analysis (Mardia et al. (1996)). We propose
to solve this problem by using smoothing splines, which have the advantage of requiring the estimation of a single
smoothing parameter A, contrary to penalized splines used by Calderon et al. (2010), for which the choice of the
number of knots can be difficult. Thus, this problem can be seen as a special case of the general spline smoothing
problem (see Wahba (1990) and Wang (2011)) and can be solved by using the theory of reproducing kernel Hilbert
spaces (see Cox (1988)). Then, the estimator can be written as a linear combination of basis functions and kernel
functions. However, to compute the estimator, it is necessary to choose a norm associated with the design space (in
this study, the Sobolev space W”'[0, T']) that is suitable. Indeed, the expression of the reproducing kernels used for
calculating the estimator depends on the choice of this norm, and can leads to difficulties in the numerical computation
(see Andrieu (2013), Chap. 4, for more details). So, we propose to use the theory of thin-plate spline which leads
to similar results for the form of the estimator (see Duchon (1977), Meinguet (1979) and Wahba and Wendelberger
(1980)) but that greatly simplifies the computation of the estimator.



The model (19) is a particular case of the general spline smoothing model (9) with the dimension d = 1, since it
can be rewritten as follows:
yj=.£‘]'F+8j, j:l,...,Zn, (20)

where

e the observations y; are defined by:
{ yj=yi with i=j for j=1,...,n
yj=v; with i=j-nfor j=n+1,...,2n"°
e the bounded linear functionals .£; on W™[0, T'] are defined by:
{ L;F=F(t) with i=j for j=1,...,n
L;F=F() with i=j-n for j=n+1,...,2n"°

e the errors g; are defined by:
gj =& avec i=j pour j=1,...,n
gj=¢gyavec i=j—npour j=n+1,...,2n °

The useful result stated in Section 3.1.3 leads to the conclusion that the linear functionals are bounded on W0, T'] if
m>1lsinced=1,k=0for j=1,...,nandk = 1for j=n+1,...,2n. Then, an estimator of F(¢) is the minimizer
of the following criterion in W™'[0, T']:

1 n n T
Sl ;@i - F(t))? + 0 ;m —F'(1)*) + A fo (F™ (1), Q1)

Provided that the two hypothesis on the linear functionals are satisfied, which it’s the case if the sampling points
t1,...,t, are distincts, we can apply Theorem 3 of Wahba and Wendelberger. So, under this assumption, we deduce
from Theorem 3 that the minimizer of (21) can be written as:

- m n n , 6
Fat) = Z} dyp (1) + Zl CiEn(tin 1) + Zl €5 En(s.Ols=i (22)
where
En(s,) = Opals -1,
p ra/2-m
™l 22l 2 (m = 1)1
The coefficients ¢ = (cq,...,cy, c’l, R c,’1)T and d = (dy,...,d,)T are solutions of the linear system defined by Eqgs.

(16) and (17) where

2
r = {LJ¢V}j:l o
K = A{LjyLnEn(s, l)}ir;(:l ,
W = diag(c%,....02,0,%...,0,7).

Then, the solution F,(¢) is a polynomial spline of order m with knots at the sampling time 71, ..., ¢,.

Note that the error variances o2 and o2 are usually unknown in practice. In general, we use an estimator of the
error variance corresponding to the criterion used for the selection of the smoothing parameter A. Three scores are
commonly used:



e the UBR score ("Unbiased Risk") which is an extension of the Mallow’s C, criterion ;
o the GCV score ("Generalized Cross-Validation") which is a weighted version of the standard cross-validation ;

e the GML score ("Generalized Maximum Likelihood") based on a Bayesian model, and that required a normality
assumption on the errors.

The selection of the smoothing parameter results from the minimization of one of these criteria, and the error variances
estimates depend on the smoothing parameter obtained, and therefore on the criterion chosen. Thus, if in a first time,
we consider only the position measurements, i.e. the data model (18), and if we denote A(A) the hat matrix defined by

(Fat), ..., Fat))T = Ay, (23)

where F, is the smoothing spline estimate of F for the smoothing parameter A (that is a polynomial spline of order
2m by results stated in Section 3.1.2), then the variance estimate of 0')% associated with the GCV criterion is

Y- APy

L, = 24
Teev =TT — AL)) @4
and the variance estimate associated with the GLM criterion is
_ (I - A(A
>y ( ( ))y. 25)

gml — n—m
Similarly, in a second time, we consider only the speed measurements and calculate the smoothing spline estimate of
F’ for the smoothing parameter A, and then deduce an estimate of the variance error o-2.

3.2.2. Smoothing under monotonicity constraint

The second constraint in the nonparametric model (18) is a monotonicity constraint since the function F represent-
ing the distance traveled as a function of time must be increasing. Various methods of smoothing under monotonicity
constraint have been developed. The main approaches are based on kernel smoothers and splines. An overview of
these methods can be found in Delecroix and Thomas-Agnan (2000). Among the main methods, we can cite the
isotonic regression introduced by Brunk (1955), the monotone splines (for example, Ramsay introduces the I-splines
basis in Ramsay (1988) for monotone regression splines) or the projection methods (e.g. Delecroix et al. (1996) or
Mammen et al. (2001)).

In a previous study (Andrieu et al. (2012)), the method of homeomorphic splines developed by Bigot and Gadat
(2010) have been tested. However, if the monotonization step presented good results, we had difficulties in the
implementation of the derivative. So, we propose to use a method developed by Ramsay (1998) which has the
advantage of being relatively simple to implement. The principle of this method is to transform the constrained
smoothing problem to an unconstrained one. A monotone function has a positive first derivative. So the main idea is
that any strictly monotonic function f satisfies the following differential equation:

D’f = wDf, (26)

where Df and D?f are respectively the first and second derivative of the function f, and w is an unconstrained
function. So any strictly monotonic function f can be written as following (as solution of the equation (26)):

£ = Bo + By fo expl fo w(v)dvldu, @7

where 5y and S, are arbitrary constants such that f(0) = Sy and f’(0) = B;. Then, the problem is to estimate the
coefficients 5y and 8| and the unconstrained function w by minimizing the following criterion:

n T
i = Bo = Bih()? + A fo (W (1)), (28)

i=1
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where , ,
h(t) = f exp[f w(v)dv]du. 29)
0 0

The unconstrained function w is computed using an appropriate basis expansion (e.g. B-splines) and the coefficients
Bo and B; are estimated by numerical algorithms. However, due to a numerical optimization of the criterion (28),
monotone smoothing spline involves considerably more computation than the usual smoothing spline process.

Thus, the monotonicity constraint is consider in a second smoothing step by applying the method of Ramsay
described above, to the estimated values F(7;) obtained at the first smoothing step for which we have used the speed
measurements (Section 3.2.1). Therefore, this second smoothing step can be seen as a monotonization step and then
is similar to the projection step in projection methods (see Mammen et al. (2001)). The new monotone estimator of
F(t) iithen dg{loted F, nono» and finally we deduce an estimator vy of the space-speed profile vg by the transformation
vs = F o F-l

mono mono*

3.3. Validation of the smoothing method

We propose to test the developed smoothing method using real-world GPS data collected from test track in
Versailles-Satory, France. The studied trip corresponds to two laps, each lap having a length of about 2 km. The
vehicle is a Renault Clio III equipped with a data recorder which monitors at 1Hz distance traveled and speed from
the vehicle network (CAN bus), and vehicle position from two GPS: a GlobalSat BR-355 SiRF III GPS receiver to col-
lect non accurate measurements, and a Thales Sagitta Real Time Kinematic GPS (RTK) with high accuracy to collect
reference data in our test. The GlobalSat BR-355 GPS also estimates vehicle speed using the Doppler effect, which is
independent of vehicle location, but not the RTK-GPS. The objective of this test is to estimate the space-speed profile
vg of the vehicle during this run from position and speed measurements obtained with the GlobalSat BR-355 GPS.
Note that in this study, position measurements correspond to the distance traveled calculated from map-matched GPS.

Before applying the smoothing method, the error variances o2 and o2 are estimated using a smoothing spline
estimate of degree 5 (quintic spline) with a smoothing parameter calculated by minimization of the GML criterion.
Results are o, = 2.21 mand &, = 0.42 m/s.

For, the first step of the developed smoothing method, that is the use of the derivative information (speed mea-
surements), we have chosen m = 3 (i.e. a quintic spline) and the GML criterion for the selection of the smoothing
parameter (Ag,; = 0.0143). The estimator F. 210 (Eq. (22)) is computed with the function ssr in the R package assist
(R Development Core Team (2008) available at http://cran.r-project.org).

For the second step, that is the monotonization step, we have chosen m = 3 for the degree of the penalty in Eq.
(28) and A = 107! for the smoothing parameter (trial and error method). The resulting estimator F, mono(f) 1s computed
with the function smooth.monotone in the R package fda. Fig. 3.a shows the smoothing results with the estimated
space-speed profiles (in red) obtained from speed and position GPS measurements (in green). Position measurements
from RTK-GPS are used as reference data of position of the vehicle, and derivative values of this accuracy position
measurements (calculated by central-difference approach) are used as reference data of speed (in blue). This figure
shows that the proposed estimator of the space-speed profile is good and corrects some measurement errors. It is
also important to note that the proposed estimator (red curve) is a function belonging to the space Essp defined in
Definition 1, contrary to other curves that are linear interpolations of observed points. The advantage of this functional
approach will be illustrated in more details at Section 4. Fig. 3.b that is a focus on the stop located about 3000 m,
confirms these good results even if the estimated speed is over-estimates at the stop (estimated speed is non zero). This
problem results from the mononization step, since the method of Ramsay which is used, provides a strictly increasing
estimator F, mono(f) Whereas the real function F(¢) is constant when the vehicle is stopped. So, the main difficulty of
the estimation of the distance traveled F(¢) is the estimation of the points for which the speed is zero (i.e. stops).
However, we have observed that in practice, only short stops (less than 5 s) are not very good estimated. In Fig. 3.b,
the stop lasts exactly 5 s and the estimated speed is less than 2 km/h, which is acceptable.

Finally, the proposed smoothing method is validated with a comparison between the Root Mean Square Error
(RMSE) of the GPS measurements and the RMSE of the estimated values. Table 1 provides the results for distance
and speed values. Even if noisy measurements from the GPS are not too bad, the proposed estimator provides smallest
errors for both position and speed values.
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Figure 3: Smoothing results in the study area [speed X distance]. Measurements from the RTK-GPS (reference data) and the GlobalSat BR-
355 GPS (observations) are in blue and green, respectively. The estimated space-speed profile ("Smooth estimate") is in red. By comparison,

measurements from the CAN bus are in orange.

4. Construction of an aggregated speed profile and speed corridors

If the speed profiles are very informative on the individual behavior of road users and especially on their speeds,
the estimation of actual speeds from measurements collected by probe vehicles is not easy and requires the use of
appropriate methods. Indeed, we have shown at the previous section that a smoothing procedure allows to convert
discrete measurements into individual speed profiles of functional nature. However, when the volume of data is
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Table 1: Table of the Root Mean Square Error (RMSE) for distance and speed.

GPS data Smoothing
estimate
RMSE for distance (m):
T on = 5 3.13 2.05
\/; Z,’:l(Fmano(ti) - F(ti))
RMSE for speed (km/h):
Ly (7 S 2.14 1.64
VLS Bt - F1(1)

large, it is necessary to summarize the information with the construction of an aggregated speed profile which is
representative of the set of the individual speed profiles.

Various studies used the average speed profile such as Hyden and Varhelyi (2000) who study the impact of a
modification of the infrastructure by comparing the average speed profile before and after the addition of roundabouts,
or Varhelyi et al. (2004) who study the effects of an active accelerator pedal by comparing the average speed profile
with and without the system. However, if the average speed profile appears to be a good representative profile,
its construction is not always easy. For example, Laureshyn et al. (2009) distinguish different groups associated
with driving situations at a signalised intersection and construct the corresponding average profile, but due to phase
variation (i.e. horizontal variation) between the individual speed profiles, the average profile is not representative of
the corresponding class. This problem shows that it is necessary to synchronize the set of individual speed profiles
before calculating an average profile in order to remove these phase variations. Some authors such as citetKerper2012
have approached this problem of alignement of curves, and a method based on landmarks alignement will be proposed
in Section 4.3.

In addition, the speed variations between road users are also an important information to take into account. Boon-
siripant (2009) considers speed variations as a risk indicator and provides various indicators which summarize the
speed variability between drivers with an overall indicator. In Section 4.4, we propose a method to obtain speed cor-
ridors that reflect the speeds dispersion on a given road section, and preserve the functional nature of speed profiles.

4.1. The data

The data set used in the next sections of this study is extracted from an experiment conducted by the French
laboratory IFSTTAR-LIVIC and that took place in 2012 in Versailles, France. Thirty-nine drivers participated to this
experiment and performed twice a road section of urban and inter-urban type with a length of about 1100 m. This road
section, illustrated at Fig. 4, corresponds to the path from A to B and is composed of a stop sign, two roundabouts
and a traffic light. For logistical reasons, two vehicles were used for this experiment: a Renault Clio III equipped with
a Garmin GPS 16x LVC (for 20 drivers), and a Renault Modus with a GPS GlobalSat BR-355 (for 19 drivers). Note
that the use of two vehicles and the fact that each driver performed twice the studied section lead to conditions close
to naturalistic driving studies where different drivers were observed in a natural setting, in particular during regular
travels such as the commute to work. Thus, we do not take into account the correlation between the two paths of
the same driver. The aim of the study is to focus on space-speed profiles from this data set, i.e. position and speed
measurements from the GPS.

4.2. From raw data to individual speed profiles: the smoothing step

Since the 39 drivers performed twice the studied section, the data set is composed of 78 individual space-speed
profiles. However, the raw data, illustrated at Fig. 5.a, are represented as sequences of time-stamped noisy measure-
ments of position and speed from GPS, and then as vectors. So, the first step is to convert them in functional objects
by using a smoothing procedure in order to filter out the noise as efficiently as possible and to preserve the continuous
underlying process. The smoothing procedure described in Section 3 is applied as follows:
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Figure 4: Map of the studied section.

1. A first smoothing step using derivative information, with for each path j, j = 1,...,78, an estimation F 2,0 of
each function F(¢) (representing the distance traveled as function of time) with the following parameters:

e an estimation of the variance o ;and o? jforeachpath j, j=1,...,78;

e m = 3 (quintic spline) ;
e an automatic selection of each smoothing parameter A; resulting from the minimization of the GML cri-

terion.
2. A second smoothing step under monotonicity constraint, corresponding to a monotonization of each estimate

F. 1,(7) obtained at the previous step with the following parameters:

e m = 3 for the degree of the penalty ;
o a selection of each smoothing parameter by trial and errors.

(#). Results are good since some peaks which appear in raw data,

Fig. 5.b illustrates the results of this smoothing procedure and shows the smooth individual space-speed profiles

1
(t) oF J.mono

obtained with the transformation F’ ;m ono

and that probably correspond to outliers, are reduced (e.g. blue and orange curves). Missing values are also be
corrected by the smoothing procedure. The disadvantage of the step monotonisation mentioned in Section 3.3 which
causes an over-estimation of speed, appears mainly at the stop (short stop) but is less important at the traffic light (long
stop). Finally, note that the main difference between Fig. 5.a and Fig. 5.b is that the smoothing procedure allows to
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reduce the study of these individual speed profiles to a functional framework, and then to take into account functional
characteristics such as phase variation (see Section 4.3).

a. Raw data.

Speed (kmih)
40

Distance (m)

b. Smooth data.

Speed (kmih)
40

Distance (m)

Figure 5: Smoothing step on the 78 individual space-speed profiles.

4.3. Registration of speed profiles by landmarks alignment

The curve registration or curve alignment problem appears in many areas such as biology, meteorology, pattern
recognition... (Ramsay and Li (1998), Bigot (2006)). Indeed, frequently, observed curves exhibit two types of variabil-
ity: amplitude variation which corresponds to vertical variation, and phase variation which corresponds to horizontal
variation (Ramsay and Silverman (2005)). Then, to build a representative curve of a set of observed curves, it is
necessary to correct the phase variation in order to obtain curves with similar features. For example, the calculation
of an average speed profile which is representative of a set of speed profiles requires that all vehicles stop at the same
location, which is not the case in practice (see Fig. 5.b). The curve registration problem consists in finding, for each
curve, a warping function and to deform all the curves in order to align them. If the literature about this problem is
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relatively large (e.g. Kneip and Gasser (1992), Wang and Gasser (1997)), it is not treated or treated in a simple way
in velocity profiles studies (shift registration is proposed in Kerper et al. (2012) and Violette et al. (2010)).

We propose to use the method of landmarks alignment which consists to determine, for each curve, a deformation
function so that specific points called landmarks of the registered curves are aligned. Specific points defined as
landmarks are generally the positions of maxima, minima, inflection points, or zero crossings. Then, the landmarks
registration of m signals fi, ..., f,, defined on the same interval [0, X] can be divided into the five following steps (see
Bigot (2003)):

1. Definition of characteristic points to be used as landmarks (eg, minimum, maximum, zero crossing ...).

2. Extraction of landmarks x; 1, ..., x; ¢ from an observed sequence of each signal f;, i = 1...,m. Note that since
observed signals are noisy, the landmarks x; 1, ..., x; ¢ are usually extracted from a estimator ﬁof the signal f;.

3. Identify landmarks reference x 1, . .., Xo k, i.. the points at which the curves must match.

4. Determine deformation functions hjy,...,h, so that corresponding landmarks are matched, i.e. for all i =
1, e, m, h,’()CQ,j) = x,-,j, ] = 1,...,K.

5. Deformation of the signals using transformations obtained in the previous step. The registered functions fi(x) =
f,-[hi‘l(x)], i=1,...,m,are then aligned at each points xg 1, . .., X0 k-

The deformation functions h;(x), i = 1...,m, called warping functions, must check the following properties:
e Initial conditions: /;(0) = 0, h;(X) = X.
e Landmarks alignment: h;(xo ;) = x; ;.

o Strict monotonicity: x; < x implies /;(x;) < h;(x,) (in order to respect the sequencing of points).

The method of landmarks alignment is applied to the set of speed profiles illustrated at Fig. 5.b. In order to
compare similar speed profiles, we distinguish the two driving situations corresponding to the state of the traffic
light (red or green light). Only the red light case will be studied in the following, that represents a sample of 36
individual profiles. We have chosen to define landmarks as the positions of the two elements of the infrastructure
that require a stop of the vehicle, namely the stop sign and the red light. Thus, the landmarks, corresponding to
zero-crossing (or local minima) at the stop sign and the traffic light positions, are extracted from the estimated space-
speed profiles obtained with the smoothing procedure, and are matched with the reference landmarks defined by the
average position of vehicle stops at this two elements of the infrastructure. Then, monotone cubic spline interpolation
have been determined as warping functions and have been computed with the R function splinefun and the option
"monoH.FC". We also impose the condition that the warping functions are linear with a slope equal to one around the
stops (we fix an interval of length 100 m around each stop) in order to not too distort the space-speed profiles in the
neighborhood of each stop and to obtain "true" space-speed profiles as defined in Definition 1.

Fig. 6 compares the unregistered (Fig. 6.a) and the registered (Fig. 6.b) speed profiles in the red light case (36
curves). Fig. 6.a illustrates the fact that averaging unregistered profile results in an average profile (black curve) that
is not representative of the set of the individual speed profiles. Indeed, this average profile doesn’t equal to zero at the
red light unlike all individual profiles. In contrast, Fig. 6.b shows that the average of the registered profiles tends to
resemble much more closely most of the individual profiles, and then is a good aggregated speed profile of the sample.

4.4. Construction of speed corridors

If the construction of an aggregated speed profile, such as the average, leads to a good representation of the actual
speeds on a road network section, such an aggregated profile does not reflect the variability between road users. The
boxplot proposed by Tukey (1977) is a graphical method used to represent the distribution of univariate data, and can
be used to represent speed variations between individuals at a given point. For example, Fig. 7.a represents pointwise
boxplots calculated at a regular interval of 10 m in the red light case, with medians connected by a red line (V50
profile) and 85th percentiles connected by a blue line (V85 profile). However, this representation lost the continuous
form of the individual profiles, and then the V50 and V85 profiles are not true space-speed profiles as defined in
Definition 1 in contrast to the average speed profile obtained at Fig. 6.b.
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Figure 6: Registration of space-speed profiles in the red light case (36 curves). The black curve is the average profile.

So, we propose to use a graphical tool called functional boxplots, recently developed by Sun and Genton (2011),
which extends the notion of boxplots to functional data. This tool is based on the notion of functional depth which
generalizes order statistics or ranks to the functional setting. Indeed, the first step to construct a boxplot is the data
ordering. But if the notion of order is obvious in the univariate setting, it is much more complicated in the functional
setting. This problem has led to the emergence of the concept of functional depth, first introduced for multivariate data
(Zuo and Serfling (2000)), that provides a measure of "centrality” and "outlyingness" for a function within a sample
of curves and allows to order them from center-outward (L6pez-Pintado and Romo (2009)). The median curve is then
the curve with the higher depth. Various examples of functional depth have been proposed in the literature such as
the Fraiman and Muniz depth (Fraiman and Muniz (2001)), the random projection depth (Cuevas et al. (2007)) or the
band depth (Lépez-Pintado and Romo (2009)). If Sun and Genton (2011) use the band depth and its modified version
for the construction of its functional boxplots, a comparison of the results obtained with various functional depth led
us to choose the h-mode depth introduced by Cuevas et al. (2006) and based on the concept of mode. The authors
defined a functional mode as the curve most densely surrounded by the rest of curves of the dataset. Thus, the h-modal

functional depth of a curve x; with respect the set of curves xi, ..., x, is given by:
D,y = Y g (30)
k=1 h
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where ||.|| is an appropriate norm, K is a kernel function, and /4 is a bandwidth. In practice, the L? norm and the
truncated Gaussian kernel are used, and the bandwidth taken is the 15th percentile of the empirical distribution of
{llx; — xll, i,k = 1,...,n}. Functional boxplots create with the h-modal depth are illustrated in Fig. 7.b in the red light
case. This functional boxplot is composed of the maximum enveloppe (blue curves), the median profile (black curve)
which is the most central curve with the highest h-modal depth, the 25% central region (dark magenta region), the
50% central region (magenta region) and the 75% central region (pink region). The red dashed curves are the outlier
candidates detected by the 1.5 times the 50% central region rule (see Sun and Genton (2011)). This functional boxplot
have been computed with the function fdepth of the R package rainbow and the function fbplot of the R package
fda (R Development Core Team (2008)).

The advantage of this graphical tool is that it allows to represent the speed dispersion among individuals on a
given road section. These speed corridors allow to distinguish road sections where the speed variability is large and
those for which speeds are more homogeneous. Moreover, this tool leads to the extraction of the median profile which
depends to the choice of a functional depth, and that can be used as a representative speed profile of the set of the
individual speed profiles instead of the average profile.

a. Pointwise boxplots.

2 - —— V50 profile —— V85 profile

Speed (km/h)

Distance (m)

b. Functional boxplots.

4 —— 25% central region = 50% central region 75% central region

80
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Figure 7: Pointwise boxplots ans functional boxplots in the red light case (36 curves).
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5. Conclusion and discussion

The current paper presents a methodology of construction of an aggregated speed profile and speed corridors
based on a functional analysis of speed profiles. Indeed, the development of probe vehicles and smartphones, that can
turn everyone in data collector ("Floating Car Data"), and the progress in sensors technology leads to collect large
volume of data that requires adapted methods. If in practice data collected are discretized and then view as vectors,
the fact that grids being increasingly fine makes them inherently functional and leads us to view them as functions.
The functional approach proposed in this paper takes inspiration from Functional Data Analysis, a statistical domain
that has developed recently, which overcomes the problems obtained with high dimensional vectors and allows to take
into account functional characteristics (derivatives, shape constraints, phase variation...).

This paper focus on space-speed profiles, i.e. speed as function of space, which are very informative components
of drivers behavior and their road usage. Thus, a definition of the functional space of these objects is proposed and the
study of their mathematical properties has shown the remarkable property of non differentiability at points for which
speed is zero. Solutions have been proposed to take into account this property that implies some difficulties in the
smoothing step and the calculation of an aggregated speed profile such as the average profile.

In a first time, a smoothing procedure has been proposed in order to convert raw data into functional objects and to
reduce errors that affected them. We have shown that the estimation of a space-speed profile from noisy measurements
of position and speed is a complex nonparametric regression problem that needs to take into account two constraints:
the use of the derivative information, and a monotonicity constraint. The studied nonparametric model is viewed as a
particular case of a more general spline smoothing model, and the use of known results about thin-plate spline leads
us to obtain an estimator of the "true" speed profile. Contrary to the local polynomial regression method commonly
used, this method does not require the estimation of many parameters except the smoothing parameter which allows
to control the degree of smoothness. The performances of the estimator have been shown using real-world GPS data
even if speed tends to be overestimated at short stops.

In a second time, a methodology has been proposed to summarize a set of individual space-speed profiles with an
aggregated speed profile. The functional approach allows to use curve registration method in order to correct phase
variation, and then to obtain a representative speed profile with similar features of corresponding individual speed
profiles. The method of landmarks alignment, which consists to align specific points of the curves, is applied on a
data set where two driving situations corresponding to the state of the traffic light (red or green light) are distinguish. A
comparison of the unregistered and the registered speed profiles at stops imposed by the infrastructure in the red light
case, as well as the corresponding average profiles, illustrates the interest of the method. In addition, the construction
of the average profile is extended to the construction of speed corridors that reflect the variability between road users.
The construction of speed corridors is based on a graphical tool called functional boxplots, initially proposed by Sun
and Genton (2011), which are an extension of the classical boxplots used in the univariate setting. This tool is based
on the notion of functional depth that generalizes order statistics to functional data, and allows to order curves from
center-outward and to extract the median curve (associated with the highest depth value).

The construction of an aggregated speed profile or speed corridors is very informative about actual operating speed
and it could be interesting to incorporate them in a driving assistance system to provide a reference speed or a safe
speed corridor to the driver such as the Porsche InnoDrive system (Porsche InnoDrive (2013)). It is also a very useful
information for infrastructure manager to study the impact assessment of a modification of the infrastructure with a
safety or environmental point of view. In addition, individual speed profiles reflect the adaptation of drivers to the
environment and then provide information on the infrastructure itself. Therefore, the present study can be used to
characterize some elements of the infrastructure by a "signature" (e.g. a stop sign is characterized by a zero-crossing
for all (or most) speed profiles), and to develop a probabilistic model of the presence of various elements of the
infrastructure in order to enrich or update digital maps.

Future works will be focused to the development of the smoothing method with the fusion of the two constraints
in a single smoothing step, and the addition of spot speed measurements from radars or magnetic loops in order to
improve the data accuracy (see for example the article of Louah (2005) on this subject). Future works will also be
focused to the development of unsupervised classification methods to distinguish traffic conditions (free vs congestion)
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or specific driving conditions (state of traffic lights). Finally, it would be interesting to use the functional approach
to detect peaks in acceleration or jerk profiles for the identification of safety critical events. In this case, the use of
wavelets seems to be more adapted than splines for the signals denoising.
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Appendix A. Proofs of properties given in Section 2.2

Proof of Theorem 1:

Let xo € [0, x7]. There are two distinct cases :

1% case : xo is a point of continuity of F~!. Then by composition of two continuous functions, we deduce that F’ o F~!
is continuous at xg.

2" case : xg is a point of discontinuity of F~!. We begin by demonstrating the following lemma:

Lemma 4. Let xo € [0,xf] a point of discontinuity of F =1, Then the speed is zero at this point, i.e. vs(xy) =
F' o Fl(x) =0.

This lemma can be proved easily. Indeed, if x, is a point of discontinuity of F~!, then there is a close interval
[, 7] where F is constant and equal to xo, and by definition of F~!, F~!(x,) = #~. This implies that F’,(t") = 0 where
F’, (") is the right derivative of F at 7, and as it was assumed that F was differentiable, we also have F’ (") = 0
where F’.(¢7) is the left derivative of F at . Finally, F'(") = 0, and therefore F’ o F~!(xy) = 0 which ends the proof
of the lemma 4.

Now, we study the one-sided limit of vg = F’ o F~! at xo. (vs)_(xg) = }g&lﬂ vg(x) = xh_)r&lo F’ o F7'(x). When x — xg
xX<Xo X<X0
by lower values, ¢t — ¢~ by lower values, and lim F’(f) = 0 since F’(f) = O on [¢~, "] and F’ is continuous at ~. So,

=1
<t

we deduce that (vg)_(xp) = 0. Similarly, (vs)+(x9) = lim vg(x) = lim F’ o F ~1(x). When x — xg by upper values,
X— X0 X—X0
x> X0 x> X0

t — t~ by upper values, and lim F’(z) = 0 since F’(f) = 0 on [t,1*]. So, we deduce that (vs).(xo) = 0. Hence, using
-t
>t

Lemma 4, we conclude that vg is continuous at xg. O

Proof of Theorem 2:

1% case: Assume that F satisfies the assumptions (H;).

Let xp such that fo = F~'(xg). Since F’(ty) = 0, then vy (x) = 0, i.e. xo € Hy. Under the assumptions (H), we can ap-
ply the Taylor-Young’s formula to F”: For all 8 in a neighborhood of #y, F’(fy+6) = F'(ty)+O0F" (tp)+ %F " (1) +6%£(0),
where £(6) — 0 when § — 0. But since F’(fy) = 0, if we had F"'(ty) # 0, then F’ would change sign at #,, which
contradicts the strict monotonicity of F. Therefore F”'(fy) = 0. So, F'(ty + 6) o %F "' (to) (since it is assumed that
F""(ty) # 0).

Leth = F(typ + 6) — F(ty). We apply the Taylor-Young’s formula to F :

h=F(ty+0)— F(ty) = OF (1y) + %F”(to) + %F”’(to) + 63 () where £ (§) — 0 when 6 — 0. In order to study the
differentiability of v, at x(, we define the following growth rates:

20



2
vsGoth-vs () _ Flpt6)-F'(t) _ FF"(t) _ 3 . L .
= Tt Py 50 Tpogy 0 This growth rate has no limit when 6 — 0, but this does not prove that

it has also no limit when 2 — 0.
We will prove this by contradiction. Assume that w il ¢ € R. Then, by definition,

Ve > 0, Ja > 0 such that 4] < @ = |BBwst0) _ g < g

But since F is continuous at #y, 38 > 0 such that |t — 9| < 8 = |F(t) — F(ty)] < «, or similarly |6] < 8 =
| F(tg +6) — F(tg)| < a.

—_ —

h
Hence, Ve > 0, 48 > O such that |0| < 8 = Iw — {| < &. This means that the growth rate has a limit £ € R
when 8 — 0, which is a contradiction. Hence, under the assumptions (H), vg is not differentiable at x.

2" case: Assume that F satisfies the assumptions (H,).
As in the first case, we define xo such that 7y = F~'(xy). The graph of G :

e coincides with F on [0, ],

e is deduced from the graph of F by the translation vector () — tl)_z} on [ty, T — (t; — to)].

Thus, the graph of G is similar to the graph of F but removing the time period [7y, ¢, ] for which the function is constant.
So, the same growth rate occurs at xy, and if vg is not differentiable at x; for one, it is not for the other. In other words,
the results of the first case where F” = 0 at one point 7y extend to the more general case where F” is zero on an interval
[0, 1] (to # 1), subject to the assumptions (H;) on G. O
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