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Multi-task learning technologies have been developed to be an effective way to improve the general-
ization performance by training multiple related tasks simultaneously. The determination of the
relatedness between tasks is usually the key to the formulation of a multi-task learning method. In
this paper, we make the assumption that when tasks are related to each other, usually their models are
close enough, that is, their models or their model parameters are close to a certain mean function.
Following this task relatedness assumption, two multi-task learning formulations based on one-class
support vector machines (one-class SVM) are presented. With the help of new kernel design, both multi-
task learning methods can be solved by the optimization program of a single one-class SVM. Experiments
conducted on both low-dimensional nonlinear toy dataset and high-dimensional textured images show
that our approaches lead to very encouraging results.

1. Introduction

In recent years, multi-task learning has received significant
attention in many research areas. Different from traditional single
task learning methods, multiple related tasks are learned simulta-
neously with the objective to improve the generalization perfor-
mance of each task [1-6]. The concept of multi-task learning is to
share some useful information, for example, a common represen-
tation space or some model parameters that are close to each
other, between related tasks [7-12]. Therefore, the determination
of the relatedness between tasks is usually the key to the
formulation of a multi-task learning method [13,14].

A broad community of multi-task learning has focused on
support vector machines (SVM) [8,15-21], which have been
extensively studied for single task learning. The SVM [22,23] was
initially developed to solve the two-class classification problem.
It looks for the hyperplane that separates two different classes
with maximum margin. The method can be easily generalized to
non-linearly separable cases by the well-known “kernel trick” [23].
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We first map the original data to some higher-dimensional feature
space and then solve a linear problem in that space. In the
framework of multi-task learning, a general relatedness assump-
tion for the SVM based method is that the model parameter values
of different tasks are close to each other [16]. Following this
assumption, numerous SVM based multi-task learning methods
have been exploited, not only for binary data classification [20] but
also for multi-class classification [21]. The good properties of
kernel functions make support vector machines well-suited for
multi-task learning [15]. In this paper, we focus on the problem of
one-class classification in the framework of multi-task learning.

One class classification, also known as novelty or outlier
detection, aims at detecting samples that do not resemble the
majority of the dataset. Only information about one class, usually
referred to as positive class, is available in the training set. For
example, in many applications of fault detection and diagnosis, it
is very difficult to collect samples corresponding to all the
abnormal behaviors of the system. The insufficient knowledge on
the negative class makes this kind of problem more difficult than
traditional two-class or multi-class classification problems. Pre-
vious work has shown empirically as well as theoretically that the
multi-task learning framework can lead to more intelligent learn-
ing models with better performance [7,13-15,24-26]. Therefore, it
may be beneficial to introduce one class classification methods in
the framework of multi-task learning.

The one-class support vector machines (one-class SVM), pro-
posed by Scholkopf et al. [27], and equivalent to the support vector
domain description [28], is a typical one-class classification



method. Instead of the estimation of the probability density [29-
32], it focuses on the estimation of a bounded area for samples
from the target class, which provides significant advantages over
other one-class classification methods. Recently, Yang et al. [18]
proposed a new method based on one-class SVM that makes use
of the advantages of multi-task learning when conducting one-
class classification (hereafter denoted by MTL-OC). The basic idea
is to constrain the solutions of related tasks close to each other by
upper-bounding the L, difference between each pair of parameters
from related tasks as in [33]. Within the multi-task learning
framework, the main problem of this method is that the intro-
duced constraints significantly increase the difficulty of the opti-
mization problem. The authors solve the problem via conic
programming, which is time consuming. This method will be later
used as a comparison method in our experimental study.

In this paper, inspired by the work of Evgeniou and Pontil [16],
we present two multi-task learning formulation approaches based
on one-class SVM. The first one, named as MTL-OSVM I, has
previously appeared in [34]. It makes the same assumption as in
[16,20,21] that the normal vector of the task model can be
represented by the sum of a mean vector and a specific vector
corresponding to each task. We use the same non-linear feature
mapping for all the task models. Some new content has been
included in the current extended version. In particular, we propose
a more general multi-task learning formulation, named by MTL-
OSVM I, in which each task model is represented by the sum of a
generic model and a specific model. According to this new
formulation, we may define different non-linear feature mappings
for different tasks. These task relatedness assumptions are reason-
able due to the observation that when the tasks are similar to each
other, usually their models are close enough. Following these
assumptions, a number of one-class SVMs are learned simulta-
neously in the proposed methods. As demonstrated later in this
paper, both multi-task learning approaches are easy to implement
since they only require, with the help of kernel trick, a simple
modification of the optimization problem in the single one-
class SVM.

The remainder of this paper is organized as follows. In Section 2,
we briefly describe the formulation of the one-class SVM algorithm in
the framework of single task learning. The details of the two proposed
multi-task learning methods based on one-class SVM (named by
MTL-OSVM [ and MTL-OSVM II) are then outlined in Section 3.
Section 4 presents the experimental results. We draw conclusion in
Section 5.

2. Single-task learning: preliminary

In a single-task one class classification scenario, we are given a
set of m training samples of a single class A, ={x;}, i=1.....,m,
where x; is a sample in the space X = R? of dimension d. The goal
is to learn a function that represents the best in the given data. In
this section, we briefly review the basic setup of one-class SVM
classifier for single-task learning. The one-class SVM [27] has been
proposed based on support vector machines for solving the
problem of one-class classification. Under the assumption that
the origin in the feature space belongs to the negative or outlier
class, the boundary region estimation is achieved by separating
the target samples (in a higher-dimensional feature space for non-
linearly separable cases) from the origin by a maximum-margin
hyperplane which is as far away from the origin as possible. If a
new test sample falls within this region, then the decision function

fx)=sign(w, p(x;))—p) (1)

will be positive. The hyperplane is determined by solving the
following optimization problem [27]:

. 1 , 1 m
min —llwlis+— i —
wip 2 vm; _21 Si=p 2)
subjectto: (W.gpx)=p—&. =0

where ¢ is the non-linear feature mapping and & is a slack
variable for relaxing the optimality constraints for certain training
samples. A specific parameter for one-class SVM is v (0, 1]. Itis an
upper-bound of the ratio of outliers among all the training
samples as well as a lower-bound of the ratio of support vectors
among all the samples.

As in the classical binary SVM case [23], the primal problem is
solved by its Lagrange dual:

. ‘l m
min 3 __Z1ﬂif7f_i(ff’(xi)~ PDx))
ILj=
. T 3
subject to : Osa;s%. .Eai:]

i=1

where a; are the Lagrange multipliers. By defining the so-called
kernel function [23] (p(x), P(x))) = k(x;,x;), the mapping ¢ is
implicitly given. Examples of commonly used kernel functions
are Gaussian kernel (k,(x;x;)=e'~'% x1%/2Y) and polynomial
kernel (kq(x;, %) = (x;,x;)?). One of the advantages of the so-called
kernel trick is that new kernels can be constructed based on
simpler kernels. For a detailed description on the design of kernel
functions, we refer interested readers to [35].

3. Multi-task learning: the proposed framework

In the context of multi-task learning, we have T learning tasks
on the same space X, with X = RY. For each task t we have m,
samples {Xq;,X2;. ..., Xy, ). In this section, we use the standard one-
class SVM method for the purpose of multi-task learning. Our
objective is to learn a decision function (a hyperplane) f,(x)=
sign((w, ¢h(x)) — p,) for each task t. Based on different task related-
ness assumptions, two formulations (named as formulation I and
formulation II) are proposed. In the following, only a brief review
of formulation I is given as it has appeared in our previous work
[34]. We will focus on formulation II, which introduces the one-
class SVM into a more general multi-task learning framework.

3.1. Formulation |

3.1.1. Assumption I

Inspired by the method proposed by Evgeniou and Pontil [16],
we make a first assumption that when the tasks are related to each
other, the normal vector w; of the task model can be represented
by the sum of a mean vector wy and a specific vector v, corr-
esponding to each task:

W =Wp+V;. (4)

Following the above assumption, we can generalize the one-class
SVM method to the problem of multi-task learning.

3.1.2. Primal problem
The primal optimization problem can be written as follows:

min ! ilvllz-i-’u Iw II2+£‘, ! %5 ‘%)
Wi Ve % 2,5 ‘ 2 0 ro Ny 5 o ::I"{I
subject to:  ((Wo+Ve). X)) = p— & E =0

(3

for all ie{1.2,...,m;} and te{1,2,....T}, where &; are the slack
variables associated to each sample and v (0,1] is the special



parameter of one-class SVM for task t. In this formulation, the
positive regularization parameter p controls the similarity
between tasks. A large value of u tends to enforce the system to
learn the T tasks independently, whereas a small value of u leads
the system to learn a common model for all tasks. By setting the
partial derivatives of the Lagrangian to zero and replacing the
vectors v; and wy by w; in the primal optimization function (5),
we can obtain an equivalent optimization function:

4 T 1 I 12
min 21 Z w112 +2 Yo we—= X wy
oGy 2 25 r, =
T 1 m, f T 6
+ —_— . —
IEI I"Imfigl ! 1'Z:1Pr ®
with
__H __T
AI_,H{T and Az—}u',r. {7}

For a detailed proof we refer interested readers to [34]. We can see
that the objective of the primal optimization problem (5) in the
framework of multi-task learning is therefore to find a trade-off
between the maximization of the margin for each one-class SVM
model and the closeness of each one-class SVM model to the
average model.

3.1.3. Dual problem
The Lagrangian dual form of problem (5) is given by

T T mp my 1
IT;IIQX _% 2 XXX al'rajr(; +5rr)<¢(xfr),¢(xjr))
it t=1r=1li=1j=1
PR 8)
bjectto: O<ay < , =1,
subject to =zay < R ‘_}zjlrx” X

for all ie{1,2,....m¢} and te{l,2,..
Kronecker delta kernel:

1
6rl={0

Note that the main difference between the dual problem (8) and
that in a single one-class SVM learning (3) is the new term
(1/p+8y) in the multi-task learning framework.

Let us define the kernel function: k(x;,x; )= (¢(x;). P(x;r)),
where r and t are the task indices associated to each sample.
Using the kernel property that the tensor product of two kernels
(6, and k(x;;,x;,) here) is a valid kernel [35, Proposition 13.6, p.
410], we can deduce that the following function:

.. T}, with &, being the

if r=t,
if rt.

1 1
G“ (X, Xj) = (/—‘+5rr) k(xie, %) = ;k(xil‘~xjr) + Brck(Xie, Xjr) 9)

is a linear combination of two valid kernels with positive coeffi-
cients (1/¢ and 1), and therefore is also a valid kernel [35,
Proposition 13.1, p. 408]. The main advantage of using the new
kernel function G‘, (X, X;) is that we can solve the multi-task
learning optimization problem (5) by means of solving a single
one-class SVM problem. Accordingly, we obtain the decision
function for each task:

r=1i=1

fﬁx):sign( ¥ Z a;,G! (x,-,.x)—pr)_ (10)

3.2. Formulation Il

3.2.1. Assumption Il

In this section, we propose a more general multi-task learning
formulation, still based on one-class SVM. Similar to Assumption I
[16] expressed in Eq. (4), we may assume that all the task models

are close to a certain mean model, that is, each task model f; is
represented by the sum of a generic model gy and a specific model g;:

fi=80+8 (11)

[ = (Wa, (X)) + Ve, b (X)) —p,, (12)

where wy and ¢y are the normal vector and the non-linear
transformation for the generic model, respectively, and v; and ¢,
are those for the specific model. For the sake of notation simplicity,
we use —p, instead of — p, — p, in the model. Note that here ¢, # ¢,
and we define different non-linear feature mapping ¢, for different
task t, while in Formulation [ of Section 3.1 we have used the same
non-linear transformation ¢(x) for all the tasks. In particular,
Formulation [ can be considered as a special case of Formulation IL
If we define ¢, =¢, in Eq. (12), then Formulation II reduces to
Formulation L

3.2.2. Primal problem
In this case, we obtain the following primal optimization
problem:

i T g T
— Y v 2 +E 1wy 12 _
wnl;[".]‘l:l:‘p, 2:21 Ive + Woll*+ 2 (Urm r§1‘m) ;E]pr
subject to :  (Wo, ¢hg(Xie))+ (Ve (h(&‘r)) =p—&n £i=0
(13)

forallie{1,2,....my} and te{1,2,....T}.
With the introduction of Lagrange multipliers aj., f;, = 0, the
Lagrangian can be expressed as follows:

Liwg, vy, §Iru‘)u aie, fiy)

z v+ w24 ¥
=1 2 £=

5 cf,r) - I

vemy ;£

T Tom
- E E Aie[(Wo, ¢o[xr:)>+("'r d’;(x.;J) Pr+&il— ZI _21}6“&'1
i=

r=1i=1

(14)

The partial derivatives of the Lagrangian are set to zero, which lead
to the following equations:

(a)wg =

E Z Aieho(Xir)

He=1i=1

(b, = E i (Xi¢)
i=1

1
(C)atie = vrmf_ﬁ"

Mg
d) ¥ aip=1 (15)
i=1

3.2.3. Dual problem
From Eq. (15) we may obtain the dual form of the Lagrangian as
follows:

_Ef ety (H@g(x.rl ha(Xie)y+ Brelde(Xir). Xy )>)

Zan—l
i=1
(16)

for all ie{1,2,....,m;} and te{1,2,....T}, with &,, being the Kro-
necker delta kernel and r and t the task indices. Now we assume
that kg is the kernel function for the generic model and k; is that
for the specific model:

Ko (xic. X3) = (ho(Xip), (X)), (17)



Fee(Rig. X0) = (h o (Ric). P (5,)). (18)

According to the kernel properties presented in [35, Chapter 13],
we may construct a novel kernel function:

1
G2 (Xie, Xjr) = ko i)+ Breke (X, Xp). (19)

Once again, the multi-task learning optimization problem can be
solved by the algorithm of a single one-class SVM with the above
new kernel function G‘rf’(x,-f.xjr) and finally the decision function is
written as follows:

T m
f;(x)=sign(2 Elaarc‘,f‘(x.-r.x)—pt). (20)

r=1i=1

3.3. Summary

Fig. 1 illustrates the flowchart of the two proposed multi-task
learning methods, denoted by MTL-OSVM 1 for the Formulation I
presented in Section 3.1 and MTL-OSVM 1l for the Formulation Il
presented in Section 3.2. The two methods are depicted in parallel
within a single chart, in order to better present their similarity and
difference. We can see that starting from different relatedness
assumptions, both methods introduce a regularization parameter
u in the optimization process to control the trade-off between the
maximization of the margin for each one-class SVM model and the
closeness of each one-class SVM model to the average model. Note
that the relatedness assumption for MTL-OSVM II is a more flexible
one and we can thus employ different kernel functions for the
generic model and the specific model in the formulation, as shown
in Eqs. (17) and (18). On the contrary, based on the assumption I in
Eq. (4), we have to use a common kernel for the whole model.
Thanks to the new kernel design, both proposed methods can be
implemented easily through the optimization of a single one-
class SVM.

MTL-OSVM | MTL-OSVM I
Assumption | Assumption Il
Wi =Wo+ V| fr = g0+ag
- Formulation| Formulation |1
. Equation (5) | n Equation (13)

) — —JC

 Dual problem | |
Equation (8)

Dual problem Il
Equation (16)

Jo — JC
Kernel Kernel Kernel

._ Equation (9) trick Equation (19)

Implementation through
single OSVM

Fig. 1. Flowchart of the two proposed methods.

4. Experiments

We present in this section the experimental results of the
proposed one-class SVM based multi-task learning approaches
(MTL-OSVM | and MTL-OSVM II). Experiments have been con-
ducted on both nonlinear toy data with low-dimensional feature
space and textured image data with high-dimensional feature
space. We address the problem of modeling the normal data (data
of the target class) with the help of one-class SVM method, which
is usually considered as an essential step for classification or
outlier detection. In each experiment, related tasks are created in
order to simulate applications of the modeling of normal data
collected with different sensors or under different conditions (thus
having different noises on the measurements). In order to evaluate
the effectiveness of the proposed multi-task learning framework,
we compare our approaches not only with a number of multi-task
learning methods, but also with two other learning strategies: the
traditional learning method that learns the T tasks independently
each with a one-class SVM (denoted by T-OSVM) and the method
that considers all the related tasks as one big task (denoted by
1-0SVM). For the sake of simplicity, we assume in our experiments
that all the tasks have the same number of samples, so m, is
substituted by m. In order to ensure the reliability of the perfor-
mance evaluation, all the results have been averaged over 20 trials
each with random draws of training set.

4.1. Nonlinear toy data

4.1.1. Data description
We have firstly tested the proposed methods on four (T=4)
related simple nonlinear classification tasks. The datasets are
created accordi{ig t20 thge fc:‘llowing steps. For the first task, each
(11 L2 030 )

) .
sample x;; =[x;;. %", x;;.%;;'] is composed of d=4 variables and

generated by the following model:
X0 ~u©,1), j=1,2,3
Xy =X+ 207+ 047 @n

where 24(0,1) is the standard uniform distribution on the open
interval (0,1) and i is the index of sample. The datasets for the
other three tasks are then created by adding Gaussian white noises
with different amplitudes on the dataset of the first task. The
added Gaussian noises are classified as low noise (for Task 2, with
N(0,0.01%)), medium noise (for Task 3, with A/(0,0.08%)) and high
noise (for Task 4, with A7(0,0.15%)). In order to evaluate the false
positive error rates, we have generated a set of negative samples
that are composed of d=4 uniformly distributed variables on
(0,1). Therefore, the training set of each task contains only positive
samples (m=200), whereas in the test procedure we use the test
set of size 400 that contains both positive and negative samples
(200 samples for each class).

4.1.2. Evaluation of MTL-OSVM |

1. Parameter setting: In our experiments for the analysis of MTL-
OSVM 1, the kernel used in T-OSVM and 1-OSVM is a Gaussian
kernel. For the proposed multi-task learning method MTL-OSVM I,
the new kernel is thus constructed based on the Gaussian kernel
as presented in Eq. (9). The optimum values for the two para-
meters v and & of the one-class SVM are determined through cross
validation. For the sake of simplicity, we have used a common
combination of their values (v, ) for all related tasks. The obtained
optimum parameter values of one-class SVM are (v, ) =(0.01,0.5)
for this experiment. As the approaches are all one-class classifica-
tion methods, the statistics of both false positive and false negative
error rates are reported.
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Fig. 2. The variation of the average false positive (FP), false negative (FN) and total error rates (Total) of different methods (T-0SVM, 1-0SVM and MTL-0SVM I) for each task
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(nonlinear toy data), along with the value change of the regularization parameter u.

2. Results: Fig. 2 illustrates the variation of the average false
positive, false negative and total error rates of our multi-task
learning method MTL-OSVM 1 for each task, along with the value
change of the regularization parameter y. The error rates of T-
0OSVM and 1-0OSVM are also presented. We can see that for a very
small value of y, the performance of MTL-OSVM I coincides with
that of 1-OSVM as if all the tasks were considered as the same task.
When the value of y is very large, the performance of MTL-OSVM I
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is in accordance with that of the traditional independent learning
method T-OSVM. With the increase of the value of y, the behaviors
of the first three tasks are similar. The false positive error rate of
the MTL-OSVM 1 method tends to decrease, whereas its false
negative error rate tends to increase. However, for the fourth task,
the false positive (false negative) error rate first increases
(decreases) and then decreases (increases) after it reaches the
maximum (minimum) value. This behavior may be due to the very



high noise that we have added to the original dataset. With a good
choice of p (eg. p=0.1), the multi-task framework achieves a
better performance in terms of the total error rate (see the third
column in Fig. 2) when compared to the traditional learning
methods.

4.1.3. Evaluation of MTL-OSVM I

1. Parameter setting: For the second multi-task learning
approach MTL-OSVM I, two basic kernel functions: ky (Eq. (17))
in the generic model and k; (Eq. (18)) in the specific model, need to
be defined. We may use the Gaussian kernel with different values
of ¢ or polynomial kernels with different degrees. In this section
we present results with ko(X;;, X;;) = (X, %)% a polynomial func-
tion of degree dg and ke(x;;, %) = (X, X;;)* a polynomial function of
degree d; > dy. It is reasonable to choose a higher degree for the
specific model than for the generic one since the specific model for
each task is generally more complicated than the generic one. Note
that, in this section, the kernel of the one-class SVM used for
T-OSVM, 1-0SVM and MTL-OSVM 1 is also a polynomial kernel
with degree dj.

In order to determine the optimum degree value of each
polynomial function for the kernel G, we have evaluated the
performance of MTL-OSVM II for different combinations of dy and
d,. To do this, a series of experiments have been conducted with d,
fixed (dpe{1,2,....25}) and d; varied from dy+1 to 26. The
optimum values of dy and d, are determined as the one that gives
the minimum total error rate. Fig. 3 shows the total error rate for
task 1 of different methods (T-OSVM, 1-OSVM, MTL-0SVM | and
MTL-0OSVM II) with dy =1 and d; € {2, 3, ..., 26}. Note that for the
two proposed methods, MTL-OSVM I and MTL-OSVM 11, only the
error rates obtained with the optimum value of u are presented.
We can see that as the value of d, increases, the total error rate of
MTL-OSVM I first decreases and then increases showing a mini-
mum at d; = 7. This observation suggests that effect of overfitting
occurs when the degree of polynomial is too high. This behavior is
common for other fixed values of d,. We can thus obtain a series of
optimum combinations of dy and d..

2. Results

Influence of u: We have first tested the effect of the regulariza-
tion parameter x in MTL-OSVM IL Fig. 4 illustrates results of
different methods (T-OSVM, 1-0SVM and MTL-OSVM II) for each
task with different values of y. In this figure, we have dy =1.d; = 2.
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Fig. 3. The average total error rate value of MTL-OSVM Il for task 1 (nonlinear toy
data) in function of d,, with dy=1 and optimal value of the regularization
parameter p.

The behaviors are common for all the other combinations of dy and
dy. Similar to the results of MTL-OSVM I (see Fig. 2), we can see that
with a good choice of u (e.g. ¢ =0.1), the multi-task learning
method MTL-OSVM II shows significant improvement in terms of
total error rate over the traditional learning methods. For the first
three tasks when y is very small (respectively large), the error
rates of MTL-OSVM II have the tendency to coincide with those of
1-0SVM (respectively those of T-OSVM). The fourth task, which
has high noise on the dataset, has a slightly different behavior. For
the first three tasks the variations of the false positive and false
negative error rates of MTL-OSVM II are no longer monotone and
the values of these two error rates are not completely bounded
between those of T-OSVM and 1-OSVM. It appears that the
regularization parameter y has a smaller influence in MTL-OSVM
Il than in MTL-OSVM 1. This can be explained by the fact that MTL-
OSVM 11 uses two different kernels (ko and k;) for constructing G'',
whereas MTL-OSVM I employs a single kernel (k) for G,

Influence of dy and d,: Fig. 5 presents the variation of the best
average total error rate of different methods, along with the value
change of d, for the four tasks. When dj is small, we observe that
MTL-OSVM II outperforms significantly the other three methods
and 1-0OSVM performs the worst. With increasing degree d,, the
performance of MTL-OSVM II does not change greatly. However,
the error rates of all the other three methods decrease sharply at
first (1 =dp=<7) and then increase slightly after they reach the
minimum value. For dy = 13, it appears that MTL-OSVM I tends to
outperform MTL-OSVM II. This may be explained by the fact that
when dj is large, even with a larger value of d;, we may encounter
the effect of overfitting. Besides, a higher degree in the polynomial
kernel usually increases the computational cost. A lower degree
value is thus preferred. We may always fix dy =1 and then find
an appropriate value of d; with validation set. As illustrated in
Fig. 3, for this dataset, we may simply choose the combination
(do.dp)=(1.7).

4.2. Textured image data

The two proposed methods were also tested on several
textured gray-scale images that contain textures generated by
using Markov chain models [36]. Many examples in textile quality
control can be found where multi-task learning can be beneficial.
For example, it is usually difficult or even impossible to obtain a
perfect training set of texture images due to the presence of sensor
noise, incorrect set of sensor parameters or oblique position of
sensors. We may consider the learning of data that were collected
from different sensors as a different task. The objective of this
experiment is to show that within the multi-task learning frame-
work, imperfect datasets can be helpful to improve the perfor-
mance of outlier detection.

According to the nature of a texture, we suppose that the useful
information for texture characterization is included in an isotropic
neighborhood of each pixel. In our experiments we use the gray
levels of a local d=5 x 5 squared window centered to each pixel as
its feature vector. Similar to the previous experiment in Section
4.1, four related tasks are created. The dataset for Task 1 contains
samples with high feature dimension (d=5 x 5=25) that are
selected randomly from the original single texture source image.
The samples for the other three tasks are selected from textured
images of the same source as Task 1, but contaminated by low
Gaussian noise (Task 2, with A’(0,5%)), medium Gaussian noise
(Task 3, with A'(0,15%)) and high Gaussian noise (for Task 4, with
N(0,35%)). Negative samples used in the test set are generated by
using a different single texture source image. Fig. 6 illustrates the
single texture source images used for generating the datasets. In
each trial, the training set of each task contains m=200 positive
samples and the test set is composed of 200 positive and 200
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Fig. 4. The variation of the average false positive (FP), false negative (FN) and total error rates (Total) of different methods (T-0OSVM, 1-05VM and MTL-OSVM II) for each task
(nonlinear toy data), along with the value change of y, with dy =1,d, = 2.

negative samples. The common parameter value of one-class SVM
used in this experiment is v =0.01.

Besides T-OSVM and 1-OSVM, we also compare the two
proposed methods with MTL-OC of Yang et al. [18] and MTL-
FEAT of Argyriou et al. [9]. Readers could refer to Section 1 for brief
descriptions of MTL-OC. The MTL-FEAT method has been devel-
oped for learning a common sparse representation for related
tasks based on an optimization problem with a mixed (2, 1)-norm

regularizer. MTL-FEAT was initially proposed for regression pro-
blems. We may extend the method to one-class classification by
introducing a threshold interval. That is, when the regression
function value is in the predefined threshold interval, the query
sample belongs to the normal class. In order to conduct fair
reasonable comparisons with our one-class classification methods,
we report the results of MTL-FEAT by setting an appropriate
threshold interval that results in the same false positive (or false
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Fig. 6. Single texture source images used for generating the training and testing datasets. (a) Original texture image for Task 1. (b) Texture image of (a) with low noise, for
Task 2. (c) Texture image of (a) with medium noise, for Task 3. (d) Texture image of {a) with high noise, for Task 4. (e) Original texture image for generating negative samples.

Table 1
Parameter settings and training time of different methods.

Methods Kernel Kernel parameter Time (s)
T-0SVM Gaussian a=300 0.0175
1-0SVM Gaussian a=300 0.0159
MTL-0OSVM [ Gaussian a=300 0.0192
MTL-0SVM II Polynomial (dy,d)=1(1,6) 0.0426
MTL-OC Gaussian a=300 636
MTL-FEAT Linear - 0.0813

negative) value as the method under comparison once the regres-
sion function is learned.

In order to determine the appropriate kernel (we tested both
Gaussian and polynomial kernels) and parameter values for each
method, a series of experiments similar to those in Section 4.1
have been conducted on a validation set. The resulted optimum
settings, which minimize the average total error rate of the four
tasks on the validation set, are presented in Table 1. The Gaussian
kernel is therefore employed for T-OSVM, 1-OSVM, MTL-OSVM 1
and MTL-OC, whereas the polynomial kernel provides the best

results for MTL-OSVM II. For the MTL-FEAT method, a linear kernel
is used. The last column of Table 1 lists the average training time of
each method with the fixed parameter values. Note that here we
only present a comparison with MTL-OC by using m=>50 training
samples per task due to the overwhelming time and space
consumption of the MTL-OC method when m > 50. All experi-
ments were conducted under the Matlab software on a PC with an
Intel i7 2 GHz processor. We can see that 1-OSVM is the fastest
among all the methods. Taking the training time of 1-OSVM as a
unit measure, the differences between 1-OSVM, T-OSVM and MTL-
OSVM 1 are small. MTL-OSVM II needs a little more time for
training, about 2.68 times of 1-OSVM. MTL-FEAT carries out the
common feature selection in addition to the training, so its
training time is longer, about five times of 1-OSVM. Only MTL-
OC stays far behind due to the complexity of the optimization
procedure. It needs about 40,000 times of that for 1-OSVM,
making this method impractical for real applications with large
training sets.

Table 2 shows the best obtained results (both the means and
the standard deviations of the obtained error rates) of all the
methods under comparison with m=50 training samples. The best



Table 2

Statistics of the error rate (%) of different methods for all tasks on texture data with
50 training samples per task. FP: false positive error rate, FN: false negative error
rate, Total: total error rate. The FN of MTL—FEAT py, is shown in italic, which has
been manually tuned to be close to the smallest FN of methods under comparison.

Methods FP FN Total “
Task 1
T-0SVM 1.62 +0.92 50.4 +5.3 26.0+2.7 -
1-05VM 141+34 23.7+6.9 18.9+4.0 -
MTL-0SVM | 140+ 08 238451 189+27 0.001
MTL-0OSVM 11 0.375 + 0.393 50.7 +5.5 255+ 28 104
MTL-OC 1.70 + 0.85 498 +5.2 257+28 -
MTL—FEAT gy, 11.3+39 238+ 112 17.6 + 5.1 -
Task 2
T-0SVM 172 + 0.89 51.5+5.7 264+29 -
1-0SVM 141+34 243+74 19.2 + 4.2 -
MTL-0OSVM 1 140+ 0.8 244+53 19.2 +28 0.001
MTL-OSVM 1l 0.425 + 0.373 51.3+64 259+3.2 10*
MTL-OC 173 +0.85 S0.2+54 260+ 28 -
MTL—FEAT 17.6 + 4.7 245+ 98 211 +50 -
Task 3
T-05VM 2.62+1.38 543 +6.2 284433 -
1-0SVM 141 + 34 298 + 8.2 219+ 42 -
MTL-0OSVM 1 140+ 14 30.0+6.2 219 +33 0.001
MTL-0OSVM 11 0.675 + 0.467 531+73 269+3.7 10°
MTL-OC 3.05 + 1.56 51.5+ 6.6 273 +35 -
MTL—FEAT my, 23.6+5.7 29.6 +11.9 26.6+59 -
Task 4
T-0SVM 140+ 3.8 63.5+8.2 38.8 +3.8 -
1-05VM 141+34 62.8 + 8.0 384 +3.8 -
MTL-0OSVM | 16.3+33 56.7+79 36.5+3.7 1
MTL-0SVM 11 642 + 3,12 613+ 98 338+ 46 104
MTL-0C 191 + 4.9 51.6 + 89 353 +46 -
MTL—FEAT py, 371 +73 515+ 16.6 443 + 7.8 -
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results are labeled in bold. Note that u is a special regularization
parameter of our proposed methods, the symbol “~" in Table 2
means that the corresponding method in the same line has no
such parameter. According to this table, we can see that in general
T-OSVM and MTL-OSVM II have the lowest false positive error rate
but a higher false negative error rate. On the contrary, 1-OSVM and
MTL-OSVM I achieve the lowest false negative rate at the expense
of a higher false positive rate. From the table we can see that a
relative small false negative usually leads to a better performance
(i.e. small total error). Therefore, for the MTL-FEAT method, we
tune manually the threshold interval providing false negative that
is close to the smallest one for each task and we note in the table
as MTL-FEATgy, (for MTL-FEAT with fixed FN values). The
obtained results show that MTL—FEAT gy, achieves the best per-
formance for task 1 but the worst for task 4. Meanwhile, a large
variance is observed for MTL—FEATsy,. For the first three tasks,
T-OSVM that learns each task individually performs the worst.
1-0SVM and MTL-OSVM I with a small value of u have very close
results. Both of them perform significantly better than the other
methods. This implies that we may learn all related tasks as a
single task in order to improve the system’s performance when
only a few training samples are available (in our case, the number
of samples is 50). For the fourth task that differs a lot from the
other tasks, MTL-OSVM II performs the best and 1-OSVM turns to
be a bad choice.

Fig. 7 shows the variation of the average total error rate for the
proposed methods when we change the number of training
samples (m=50, 100, 150, 200). We can see that T-OSVM performs
always the worst. With the increase of the number of training
samples, the error rate of all the methods decreases except for
1-OSVM. This observation indicates that considering all related
tasks as a single task (as 1-OSVM) may result in deterioration of
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Fig. 7. Total error rate for different methods versus number of training samples.



performance when we have enough training samples. When many
training samples are available, say m = 100, our methods lead to
more interesting results than 1-OSVM which learns a single model
for all tasks. The MTL-OSVM II method that uses a combination of
two polynomial functions has the best overall performance. Under
task 1 and task 2, the difference between MTL-OSVM I and MTL-
OSVM 1I is small. For task 3 and task 4 MTL-OSVM II performs
much better. Another point is that when the number of training
samples is small (e.g. m=50, see the last column of Table 2), we
have to use different values of i for different tasks (especially for
task 4) in order to obtain the best performance for our methods.
However, with m = 200 training samples, the best results of MTL-
OSVM I and MTL-OSVM I are obtained with a fixed value of u for
all the tasks (e.g. m=200, g =0.1 for MTL-OSVM I and u = 10* for
MTL-OSVM 1I). This implies that with the help of multi-task
learning framework, significant improvement of the system per-
formance not only can be obtained with small sample size
compared to single-task learning T-OSVM, but also can be guar-
anteed when more samples are available.

5. Conclusion

We have presented two multi-task learning methods that learn
a pool of related one-class SVM classifiers, each for a task,
simultaneously. The first one is based upon the assumption that
the model parameters of different one-class SVMs are close to a
certain mean value. In the second method, we assume that the
models of related one-class SVMs are close to a certain mean
function, which leads to a more general assumption than in the
first one, We show that with the help of kernel design techniques,
both methods can be reformulated to a single one-class SVM
optimization problem and therefore are easy to implement. We
have reported experiments on a set of one-class classification
problems, including toy dataset and textured images. We have
shown that even with a common setting of model and kernel
parameters, the proposed multi-task learning frameworks are
usually more effective than a single-task learning strategy. In
addition, the proposed multi-task learning methods are dynamic.
That is, when tasks are related to each other, an appropriate value
of the regularization parameter x in the optimization problem may
lead to improvements of the system performance. On the contrary,
if tasks are independent, then a large value of u will enforce the
system to learn tasks independently, and can thus preserve the
system performance. Future work includes different parameter
settings for different tasks. Automatic determination of the reg-
ularization parameter y in the formulation remains another open
question.

It is possible to extend the proposed methods to the nonlinear
multi-output regression problems, for example, we may extend
our methods to the SVM multiregression approach in multiple-
input multiple-output systems (proposed by [37]). It would be an
interesting idea to study the nonlinear multi-output regression
problems in the framework of multi-task learning. We may
consider the learning of different channels of the multi-output
regression problem as different tasks. The only issue is whether
these tasks are related. If the tasks are related to each other, then
using the proposed multi-task learning methods may explore the
relatedness between tasks and thus improve the performance. On
the contrary, if the tasks are independent, then by setting an
appropriate value of the regularization parameter (the parameter
) in the formulation, each task (i.e. each channel) can be trained
independently, which can at least preserve the system perfor-
mance. Again, this requires the automatic determination of the
regularization parameter g in the formulation.
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