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Let µ N be the empirical measure associated to a N -sample of a given probability distribution µ on R d . We are interested in the rate of convergence of µ N to µ, when measured in the Wasserstein distance of order p > 0. We provide some satisfying non-asymptotic L pbounds and concentration inequalities, for any values of p > 0 and d ≥ 1. We extend also the non asymptotic L p -bounds to stationary ρ-mixing sequences, Markov chains, and to some interacting particle systems.

Introduction and results

1.1. Notation. Let d ≥ 1 and P(R d ) stand for the set of all probability measures on R d . For µ ∈ P(R d ), we consider an i.i.d. sequence (X k ) k≥1 of µ-distributed random variables and, for N ≥ 1, the empirical measure

µ N := 1 N N k=1 δ X k .
As is well-known, by Glivenko-Cantelli's theorem, µ N tends weakly to µ as N → ∞ (for example in probability, see Van der Vaart-Wellner [START_REF] Van Der Vaart | Weak convergence of empirical processes[END_REF] for details and various modes of convergence). The aim of the paper is to quantify this convergence, when the error is measured in some Wasserstein distance. Let us set, for p ≥ 1 and µ, ν in P(R d ),

T p (µ, ν) = inf R d ×R d |x -y| p ξ(dx, dy) : ξ ∈ H(µ, ν) ,
where H(µ, ν) is the set of all probability measures on R d × R d with marginals µ and ν. See Villani [START_REF] Villani | Topics in optimal transportation[END_REF] for a detailed study of T p . The Wasserstein distance W p on P(R d ) is defined by W p (µ, ν) = T p (µ, ν) if p ∈ (0, 1] and W p (µ, ν) = (T p (µ, ν)) 1/p if p > 1.

The present paper studies the rate of convergence to zero of T p (µ N , µ). This can be done in an asymptotic way, finding e.g. a sequence α(N ) → 0 such that lim N α(N ) -1 T p (µ N , µ) < ∞ a.s. or lim N α(N ) -1 E(T p (µ N , µ)) < ∞. Here we will rather derive some non-asymptotic moment estimates such as E(T p (µ N , µ)) ≤ α(N ) for all N ≥ 1 as well as some non-asymptotic concentration estimates (also often called deviation inequalities) Pr(T p (µ N , µ) ≥ x) ≤ α(N, x) for all N ≥ 1, all x > 0.

1 They are naturally related to moment (or exponential moment) conditions on the law µ and we hope to derive an interesting interplay between the dimension d ≥ 1, the cost parameter p > 0 and these moment conditions. Let us introduce precisely these moment conditions. For q > 0, α > 0, γ > 0 and µ ∈ P(R d ), we define

M q (µ) := R d
|x| q µ(dx) and E α,γ (µ) := R d e γ|x| α µ(dx).

We now present our main estimates, the comparison with the existing results and methods will be developped after this presentation. Let us however mention at once that our paper relies on some recent ideas of Dereich-Scheutzow-Schottstedt [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF].

1.2. Moment estimates. We first give some L p bounds.

Theorem 1. Let µ ∈ P(R d ) and let p > 0. Assume that M q (µ) < ∞ for some q > p. There exists a constant C depending only on p, d, q such that, for all N ≥ 1, E (T p (µ N , µ)) ≤ CM p/q q (µ)

    
N -1/2 + N -(q-p)/q if p > d/2 and q = 2p, N -1/2 log(1 + N ) + N -(q-p)/q if p = d/2 and q = 2p, N -p/d + N -(q-p)/q if p ∈ (0, d/2) and q = d/(d -p).

Observe that when µ has sufficiently many moments (namely if q > 2p when p ≥ d/2 and q > dp/(d -p) when p ∈ (0, d/2)), the term N -(q-p)/q is small and can be removed. We could easily treat, for example, the case p > d/2 and q = 2p but this would lead to some logarithmic terms and the paper is technical enough.

This generalizes [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF], in which only the case p ∈ [1, d/2) (whence d ≥ 3) and q > dp/(d -p) was treated. The argument is also slightly simplified.

To show that Theorem 1 is really sharp, let us give examples where lower bounds can be derived quite precisely.

(a) If a = b ∈ R d and µ = (δ a + δ b )/2, one easily checks (see e.g. [16, Remark 1]) that E(T p (µ N , µ)) ≥ cN -1/2 for all p ≥ 1. Indeed, we have µ N = Z N δ a + (1 -Z N )δ b with Z N = N -1 N 1 1 {Xi=a} , so that T p (µ N , µ) = |a -b| p |Z N -1/2|, of which the expectation is of order N -1/2 . (b) Such a lower bound in N -1/2 can easily be extended to any µ (possibly very smooth) of which the support is of the form A ∪ B with d(A, B) > 0 (simply note that T p (µ N , µ) ≥ d p (A, B)|Z N -µ(A)|, where Z N = N -1 N 1 1 {Xi∈A} ). (c) If µ is the uniform distribution on [-1, 1] d , it is well-known and not difficult to prove that for p > 0, E(T p (µ N , µ)) ≥ cN -p/d . Indeed, consider a partition of [-1, 1] d into (roughly) N cubes with length N -1/d . A quick comptation shows that with probability greater than some c > 0 (uniformly in N ), half of these cubes will not be charged by µ N . But on this event, we clearly have T p (µ N , µ) ≥ aN -1/d for some a > 0, because each time a cube is not charged by µ N , a (fixed) proportion of the mass of µ (in this cube) is at distance at least N -1/d /2 of the support of µ N . One easily concludes.

(d) When p = d/2 = 1, it has been shown by Ajtai-Komlós-Tusnády [START_REF] Ajtai | On optimal matchings[END_REF] that for µ the uniform measure on

[-1, 1] d , T 1 (µ N , µ) ≃ c(log N/N ) 1/2 with high probability, implying that E(T 1 (µ N , µ)) ≥ c(log N/N ) 1/2 .
(e) Let µ(dx) = c|x| -q-d 1 {|x|≥1} dx for some q > 0. Then M r (µ) < ∞ for all r ∈ (0, q) and for all p ≥ 1, E(T p (µ N , µ)) ≥ cN -(q-p)/q . Indeed, P(µ N ({|x| ≥ N 1/q }) = 0) = (µ({|x| < N 1/q })) N = (1 -c/N ) N ≥ c > 0 and µ({|x| ≥ 2N 1/q }) ≥ c/N . One easily gets convinced that T p (µ N , µ) ≥ N p/q 1 {µN ({|x|≥N 1/q })=0} µ({|x| ≥ 2N 1/q }), from which the claim follows.

As far as general laws are concerned, Theorem 1 is really sharp: the only possible improvements are the following. The first one, quite interesting, would be to replace log(1 + N ) by something like log(1 + N ) when p = d/2 (see point (d) above). It is however not clear it is feasible in full generality. The second one, which should be a mere (and not very interesting) refinement, would be to sharpen the bound in N -(q-p)/q when M q (µ) < ∞: point (e) only shows that there is µ with M q (µ) < ∞ for which we have a lowerbound in N -(q-p)/q-ε for all ε > 0.

However, some improvements are possible when restricting the class of laws µ. First, when µ is the uniform distribution in [-1, 1] d , the results of Talagrand [START_REF] Talagrand | Matching random samples in many dimensions[END_REF][START_REF] Talagrand | The transportation cost from the uniform measure to the empirical measure in dimension ≥ 3[END_REF] strongly suggest that when d ≥ 3, E(T p (µ N , µ)) ≃ N -p/d for all p > 0, and this is much better than N -1/2 when p is large. Such a result would of course immediately extend to any distribution

µ = λ • F -1 , for λ the uniform distribution in [-1, 1] d and F : [-1, 1] d → R d Lipschitz continuous.
In any case, a smoothness assumption for µ cannot be sufficient, see point (b) above.

Second, for irregular laws, the convergence can be much faster that N -p/d when p < d/2, see point (a) above where, in an extreme case, we get N -1/2 for all values of p > 0. It is shown by Dereich-Scheutzow-Schottstedt [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF] (see also ) that indeed, for a singular law, lim N N -p/d E(T p (µ N , µ)) = 0. 1.3. Concentration inequalities. We next state some concentration inequalities.

Theorem 2. Let µ ∈ P(R d ) and let p > 0. Assume one of the three following conditions:

∃ α > p, ∃ γ > 0, E α,γ (µ) < ∞, (1) 
or ∃ α ∈ (0, p), ∃ γ > 0, E α,γ (µ) < ∞, (2) or ∃ q > 2p, M q (µ) < ∞. ( 3 
)
Then for all N ≥ 1, all x ∈ (0, ∞),

P(T p (µ N , µ) ≥ x) ≤ a(N, x)1 {x≤1} + b(N, x), where a(N, x) = C      exp(-cN x 2 ) if p > d/2, exp(-cN (x/ log(2 + 1/x)) 2 ) if p = d/2, exp(-cN x d/p ) if p ∈ [1, d/2) and b(N, x) = C      exp(-cN x α/p )1 {x>1} under (1), exp(-c(N x) (α-ε)/p )1 {x≤1} + exp(-c(N x) α/p )1 {x>1} ∀ ε ∈ (0, α) under (2), N (N x) -(q-ε)/p ∀ ε ∈ (0, q) under (3).
The positive constants C and c depend only on p, d and either on α, γ, E α,γ (µ) (under (1)) or on α, γ, E α,γ (µ), ε (under (2)) or on q, M q (µ), ε (under (3)).

We could also treat the critical case where E α,γ (µ) < ∞ with α = p, but the result we could obtain is slightly more intricate and not very satisfying for small value of x (even if good for large ones).

Remark 3. When assuming (2) with α ∈ (0, p), we actually also prove that

b(N, x) ≤ C exp(-cN x 2 (log(1 + N )) -δ ) + C exp(-c(N x) α/p ),
with δ = 2p/α-1, see Step 5 of the proof of Lemma 13 below. This allows us to extend the inequality b(N, x) ≤ C exp(-c(N x) α/p ) to all values of x ≥ x N , for some (rather small) x N depending on N, α, p. But for very small values of x > 0, this formula is less interesting than that of Theorem 2. Despite much effort, we have not been able to get rid of the logarithmic term.

We believe that these estimates are quite satisfying. To get convinced, first observe that the scales seem to be the good ones. Recall that

E(T p (µ N , µ)) = ∞ 0 P(T p (µ N , µ) ≥ x)dx. (a) One easily checks that ∞ 0 a(N, x)dx ≤ CN -p/d if p < d/2, CN -1/2 log(1 + N ) if p = d/2, and CN -1/2 if p > d/2, as in Theorem 1.
(b) When integrating b(N, x) (or rather b(N, x) ∧ 1), we find N -(q-ε-p)/(q-ε) under (3) and something smaller under (1) or (2). Since we can take q -ε > 2p, this is less than N -1/2 (and thus also less than N -p/d if p < d/2 and than

N -1/2 log(1 + N ) if p = d/2).
The rates of decrease are also satisfying in most cases. Recall that in deviation estimates, we never get something better than exp(-N g(x)) for some function g. Hence a(N, x) is probably optimal. Next, for ȲN the empirical mean of a family of centered i.i.d. random variables, it is well-known that the good deviation inequalities are the following.

(a

) If E[exp(a|Y 1 | β )] < ∞ with β ≥ 1, then Pr[| ȲN | ≥ x] ≤ Ce -cN x 2 1 {x≤1} + Ce -cN x β 1 {x>1}
, see for example Djellout-Guillin-Wu [START_REF] Djellout | Transportation Cost-information inequalities and applications ro random dynamical systems and diffusions[END_REF], Gozlan [START_REF] Gozlan | Integral criteria for transportation cost inequalities[END_REF] or Ledoux [START_REF] Ledoux | The concentration of measure phenomenon[END_REF], using transportation cost inequalities.

(b [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF]Formula (1.4)] which is based on results by Borovkov [START_REF] Borovkov | Estimates for the distribution of sums and maxima of sums of random variables when the Cramér condition is not satisfied[END_REF].

) If E[exp(a|Y 1 | β )] < ∞ with β < 1, then Pr[| ȲN | ≥ x] ≤ Ce -cN x 2 +Ce -c(N x) β , see Merlevède- Peligrad-Rio
(c

) If E[|Y 1 | r ] < ∞ for some r > 2, then Pr[| ȲN | ≥ x] ≤ Ce -cN x 2 + CN (N x) -r
, see Fuk-Nagaev [START_REF] Fuk | Probability inequalities for sums of independent random variables[END_REF], using usual truncation arguments.

Our result is in perfect adequation with these facts (up to some arbitratry small loss due to ε under (2) and (3)) since T p (µ N , µ) should behave very roughly as the mean of the |X i | p 's, which e.g. has an exponential moment with power β := α/p under (1) and (2). 1.4. Comments. The control of the distance between the empirical measure of an i.i.d. sample and its true distribution is of course a long standing problem central both in probability, statistics and informatics with a wide number of applications: quantization (see Delattre-Graf-Luschgy-Pagès [START_REF] Delattre | Quantization of probability distributions under norm-based distortion measures[END_REF] and Pagès-Wilbertz [START_REF] Pagès | Optimal Delaunay and Voronoi quantization schemes for pricing american style options[END_REF] for recent results), optimal matching (see Ajtai-Komlós-Tusnády [START_REF] Ajtai | On optimal matchings[END_REF], Dobrić-Yukich [START_REF] Dobrić | Asymptotics for transportation cost in high dimensions[END_REF], Talagrand [START_REF] Talagrand | The transportation cost from the uniform measure to the empirical measure in dimension ≥ 3[END_REF], Barthe-Bordenave [START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF]), density estimation, clustering (see Biau-Devroye-Lugosi [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF] and Laloë [START_REF] Laloë | L 1 -quantization and clustering in Banach spaces[END_REF]), MCMC methods (see [START_REF] Roberts | Shift-coupling and convergence rates of ergodic averages[END_REF] for bounds on ergodic averages), particle systems and approximations of partial differential equations (see Bolley-Guillin-Villani [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF] and Fournier-Mischler [START_REF] Fournier | Rate of convergence of the Nanbu particle system for hard potentials[END_REF]). We refer to these papers for an extensive introduction on this vast topic.

If many distances can be used to consider the problem, the Wasserstein distance is quite natural, in particular in quantization or for particle approximations of P.D.E.'s. However the depth of the problem was discovered only recently by Ajtai-Komlós-Tusnády [START_REF] Ajtai | On optimal matchings[END_REF], who considered the uniform measure on the square, investigated thoroughly by Talagrand [START_REF] Talagrand | The transportation cost from the uniform measure to the empirical measure in dimension ≥ 3[END_REF]. As a review of the litterature is somewhat impossible, et us just say that the methods involved were focused on two methods inherited by the definitions of the Wasserstein distance: the construction of a coupling or by duality to control a particular empirical process.

Concerning moment estimates (as in Theorem 1), some results can be found in Horowitz-Karandikar [START_REF] Horowitz | Mean rates of convergence of empirical measures in the Wasserstein metric[END_REF], Rachev-Rüschendorf [START_REF] Rachev | I. and II. Probability and its Applications[END_REF] and Mischler-Mouhot [START_REF] Mischler | Kac's programm in kinetic theory[END_REF]. But theses results are far from optimal, even when assuming that µ is compactly supported. Very recently, strickingly clever alternatives were considered by Boissard-Le Gouic [START_REF] Boissard | On the mean speed of convergence of empirical and occupation measures in Wasserstein distance[END_REF] and by Dereich-Scheutzow-Schottstedt [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF]. Unfortunately, the construction of Boissard-Le Gouic, based on iterative trees, was a little too complicated to yield sharp rates. On the contrary, the method of [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF], exposed in details in the next section, is extremely simple, robust, and leads to the almost optimal results exposed here. Some sharp moment estimates were already obtained in [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF] for a limited range of parameters.

Concerning concentration estimates, only few results are available. Let us mention the work of Bolley-Guillin-Villani [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF] and very recently by Boissard [START_REF] Boissard | Simple Bounds for the Convergence of Empirical and Occupation Measures in 1-Wasserstein Distance[END_REF], on which we considerably improve. Our assumptions are often much weaker (the reference measure µ was often assumed to satisfy some functional inequalities, which may be difficult to verify and usually include more "structure" than mere integrability conditions) and Pr[T p (µ N , µ) ≥ x] was estimated only for rather large values of x. In particular, when integrating the concentration estimates of [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF], one does never find the good moment estimates, meaning that the scales are not the good ones.

Moreover, the approach of [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF] is robust enough so that we can also give some good moment bounds for the Wasserstein distance between the empirical measure of a Markov chain and its invariant distribution (under some conditions). This could be useful for MCMC methods because our results are non asymptotic. We can also study very easily some ρ-mixing sequences (see Doukhan [START_REF] Doukhan | Mixing: properties and examples[END_REF]), for which only very few results exist, see Biau-Devroye-Lugosi [START_REF] Boissard | On the mean speed of convergence of empirical and occupation measures in Wasserstein distance[END_REF]. Finally, we show on an example how to use Theorem 1 to study some particle systems. For all these problems, we might also obtain some concentration inequalities, but this would need further refinements which are out of the scope of the present paper, somewhat already technical enough, and left for further works.

1.5. Plan of the paper. In the next section, we state some general upper bounds of T p (µ, ν), for any µ, ν ∈ P(R d ), essentially taken from [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF]. Section 3 is devoted to the proof of Theorem 1. Theorem 2 is proved in three steps: in Section 4 we study the case where µ is compactly supported and where N is replaced by a Poisson(N )-distributed random variable, which yields some pleasant independance properties. We show how to remove the randomization in Section 5, concluding the case where µ is compactly supported. The non compact case is studied in Section 6. The final Section 7 is devoted to dependent random variables: ρ-mixing sequences, Markov chains and a particular particle system.

Coupling

The following notion of distance, essentially taken from [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF], is the main ingredient of the paper. Notation 4. (a) For ℓ ≥ 0, we denote by P ℓ the natural partition of (-1, 1] d into 2 dℓ translations of (-2 -ℓ , 2 -ℓ ] d . For two probability measures µ, ν on (-1, 1] d and for p > 0, we introduce

D p (µ, ν) := 2 p -1 2 ℓ≥1 2 -pℓ F ∈P ℓ |µ(F ) -ν(F )|,
which obviously defines a distance on P((-1, 1] d ), always bounded by 1.

(b) We introduce B 0 := (-1, 1] d and, for n ≥ 1, B n := (-2 n , 2 n ] d \ (-2 n-1 , 2 n-1 ] d . For µ ∈ P(R d )
and n ≥ 0, we denote by R Bn µ the probability measure on (-1, 1] d defined as the image of µ| Bn /µ(B n ) by the map x → x/2 n . For two probability measures µ, ν on R d and for p > 0, we introduce

D p (µ, ν) := n≥0 2 pn |µ(B n ) -ν(B n )| + (µ(B n ) ∧ ν(B n ))D p (R Bn µ, R Bn ν) .
A little study, using that D p ≤ 1 on P((-1, 1] d ), shows that this defines a distance on P(R d ).

Having a look at D p in the compact case, one sees that in some sense, it measures distance of the two probability measures simultaneously at all the scales. The optimization procedure can be made for all scales and outperforms the approach based on a fixed diameter covering of the state space (which is more or less the approach of Horowitz-Karandikar [START_REF] Horowitz | Mean rates of convergence of empirical measures in the Wasserstein metric[END_REF]). Moreover one sees that the principal control is on |π(F ) -µ(F )| which is a quite simple quantity. The next results are slightly modified versions of estimates found in [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF], see [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF]Lemma 2] for the compact case and [16, proof of Theorem 3] for the non compact case. It contains the crucial remark that D p is an upper bound (up to constant) of the Wasserstein distance.

Lemma 5. Let d ≥ 1 and p > 0. For all pairs of probability measures µ, ν on R d , T p (µ, ν) ≤ κ p,d D p (µ, ν), with κ p,d := 2 p(1+d/2) (2 p + 1)/(2 p -1).
Proof. We separate the proof into two steps.

Step 1. We first assume that µ and ν are supported in (-1, 1] d . We infer from [16, Lemma 2], in which the conditions p ≥ 1 and d ≥ 3 are clearly not used, that, since the diameter of (

-1, 1] d is 2 1+d/2 , T p (µ, ν) ≤ 2 p(1+d/2)-1 ℓ≥0 2 -pℓ F ∈P ℓ µ(F ) C child of F µ(C) µ(F ) - ν(C) ν(F ) ,
where "C child of F " means that C ∈ P ℓ+1 and C ⊂ F . Consequently,

T p (µ, ν) ≤2 p(1+d/2)-1 ℓ≥0 2 -pℓ F ∈P ℓ C child of F ν(C) ν(F ) |µ(F ) -ν(F )| + |µ(C) -ν(C)| ≤2 p(1+d/2)-1 ℓ≥0 2 -pℓ   F ∈P ℓ |µ(F ) -ν(F )| + C∈P ℓ+1 |µ(C) -ν(C)|   ≤2 p(1+d/2)-1 (1 + 2 p ) ℓ≥1 2 -pℓ F ∈P ℓ |µ(F ) -ν(F )|, which is nothing but κ p,d D p (µ, ν). We used that F ∈P0 |µ(F ) -ν(F )| = 0.
In [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF], Dereich-Scheutzow-Schottstedt use directly the formula with the children to study the rate of convergence of empirical measures. This leads to some (small) technical complications, and does not seem to improve the estimates.

Step 2. We next consider the general case. We consider, for each n ≥ 1, the optimal coupling π n (dx, dy) between R Bn µ and R Bn ν for T p . We define ξ n (dx, dy) as the image of π n by the map (x, y) → (2 n x, 2 n y), which clearly belongs to H(µ| Bn /µ(B n ), ν| Bn /ν(B n )) and satisfies |x -

y| p ξ n (dx, dy) = 2 np |x -y| p π n (dx, dy) = 2 np T p (R Bn µ, R Bn ν).
Next, we introduce

q := 1 2 n≥0 |ν(B n ) -µ(B n )| and we define ξ(dx, dy) = n≥0 (µ(B n ) ∧ ν(B n ))ξ n (dx, dy) + α(dx)β(dy) q , where α(dx) := n≥0 (µ(B n ) -ν(B n )) + µ| Bn (dx) µ(B n ) and β(dy) := n≥0 (ν(B n ) -µ(B n )) + ν| Bn (dy) ν(B n ) .
Using that

q = n≥0 (ν(B n ) -µ(B n )) + = n≥0 (µ(B n ) -ν(B n )) + = 1 - n≥0 (ν(B n ) ∧ µ(B n )),
it is easily checked that ξ ∈ H(µ, ν). Furthermore, we have, setting c p = 1 if p ∈ (0, 1] and

c p = 2 p-1 if p > 1, |x -y| p α(dx)β(dy) q ≤ 1 q c p (|x| p + |y| p )α(dx)β(dy) =c p |x| p α(dx) + c p |y| p β(dy) ≤c p n≥0 2 pn [(µ(B n ) -ν(B n )) + + (ν(B n ) -µ(B n )) + ] =c p n≥0 2 pn |µ(B n ) -ν(B n )|. Recalling that |x -y| p ξ n (dx, dy) ≤ 2 np T p (R Bn µ, R Bn ν), we deduce that T p (µ, ν) ≤ |x -y| p ξ(dx, dy) ≤ n≥0 2 np (c p |µ(B n ) -ν(B n )| + (µ(B n ) ∧ ν(B n ))T p (R Bn µ, R Bn ν)) .
We conclude using Step 1 and that c p ≤ κ p,d .

When proving the concentration inequalities, which is very technical, it will be good to break the proof into several steps to separate the difficulties and we will first treat the compact case. On the contrary, when dealing with moment estimates, the following formula will be easier to work with. Lemma 6. Let p > 0 and d ≥ 1. There is a constant C, depending only on p, d, such that for all µ, ν ∈ P(R d ),

D p (µ, ν) ≤ C n≥0 2 pn ℓ≥0 2 -pℓ F ∈P ℓ |µ(2 n F ∩ B n ) -ν(2 n F ∩ B n )| with the notation 2 n F = {2 n x : x ∈ F }. Proof. For all n ≥ 1, we have |µ(B n ) -ν(B n )| = F ∈P0 |µ(2 n F ∩ B n ) -ν(2 n F ∩ B n )| and (µ(B n ) ∧ ν(B n ))D p (R Bn µ, R Bn ν) is smaller than (µ(B n ) ∧ ν(B n ))D p (R Bn µ, R Bn ν) ≤µ(B n ) ℓ≥1 2 -pℓ F ∈P ℓ µ(2 n F ∩ B n ) µ(B n ) - ν(2 n F ∩ B n ) ν(B n ) ≤ ℓ≥1 2 -pℓ F ∈P ℓ |µ(2 n F ∩ B n ) -ν(2 n F ∩ B n )| + 1 - µ(B n ) ν(B n ) ℓ≥1 2 -pℓ F ∈P ℓ ν(2 n F ∩ B n ).
This last term is smaller than 2

-p |µ(B n ) -ν(B n )|/(1 -2 -p
) and this ends the proof.

Moment estimates

The aim of this section is to give the Proof of Theorem 1. We thus assume that µ ∈ P(R d ) and that M q (µ) < ∞ for some q > p. By a scaling argument, we may assume that M q (µ) = 1. This implies that µ(B n ) ≤ 2 -q(n-1) for all n ≥ 0. By Lemma 5, we have T p (µ N , µ) ≤ κ p,d D p (µ N , µ), so that it suffices to study E(D p (µ N , µ)).

For a Borel subset

A ⊂ R d , since N µ N (A) is Binomial(N, µ(A))-distributed, we have E(|µ N (A) -µ(A)|) ≤ min 2µ(A), µ(A)/N .
Using the Cauchy-Scharz inequality and that #(P ℓ ) = 2 dℓ , we deduce that for all n ≥ 0, all ℓ ≥ 0,

F ∈P ℓ E(|µ N (2 n F ∩ B n ) -µ(2 n F ∩ B n )|) ≤ min 2µ(B n ), 2 dℓ/2 (µ(B n )/N ) 1/2 .
Using finally Lemma 6 and that µ(B n ) ≤ 2 -q(n-1) , we find

E(D p (µ N , µ)) ≤ C n≥0 2 pn ℓ≥0 2 -pℓ min 2 -qn , 2 dℓ/2 (2 -qn /N ) 1/2 . ( 4 
)
Step 1. Here we show that for all ε ∈ (0, 1), all N ≥ 1,

ℓ≥0 2 -pℓ min ε, 2 dℓ/2 (ε/N ) 1/2 ≤C      min{ε, (ε/N ) 1/2 } if p > d/2, min{ε, (ε/N ) 1/2 log(2 + εN )} if p = d/2, min{ε, ε(εN ) -p/d } if p ∈ (0, d/2).
First of all, the bound by Cε is obvious in all cases (because p > 0). Next, the case p > d/2 is immediate. If p ≤ d/2, we introduce ℓ N,ε := ⌊log(2 + εN )/(d log 2)⌋, for which 2 dℓN,ε ≃ 2 + εN and get an upper bound in

(ε/N ) 1/2 ℓ≤ℓN,ε 2 (d/2-p)ℓ + ε ℓ≥ℓN,ε 2 -pℓ .
If p = d/2, we find an upper bound in

(ε/N ) 1/2 ℓ N,ε + Cε2 -pℓN,ε ≤ C(ε/N ) 1/2 log(2 + εN ) + Cε(1 + εN ) -1/2 ≤ C(ε/N ) 1/2 log(2 + εN )
as desired. If p ∈ (0, d/2), we get an upper bound in 

C(ε/N ) 1/2 2 (d/2-p)ℓN,ε + Cε2 -pℓN,ε ≤ C(ε/N ) 1/2 (2 + εN ) 1/2-p/d + Cε(2 + εN ) -p/d . If εN ≥ 1, then (2 + εN ) 1/2-p/d ≤ (3εN )
) -p/d } = ε.
Step 2: p > d/2. By (4) and Step 1 (with ε = 2 -qn ), we find

E(D p (µ N , µ)) ≤ C n≥0 2 pn min 2 -qn , (2 -qn /N ) 1/2 ≤ C N -1/2 if q > 2p, N -(q-p)/q if q ∈ (p, 2p).
Indeed, this is obvious if q > 2p, while the case q ∈ (p, 2p) requires to separate the sum in two parts n ≤ n N and n > n N with n N = ⌊log N/(q log 2)⌋. This ends the proof when p > d/2.

Step 3: p = d/2. By (4) and Step 1 (with ε = 2 -qn ), we find

E(D p (µ N , µ)) ≤ C n≥0 2 pn min 2 -qn , (2 -qn /N ) 1/2 log(2 + 2 -qn N ) .
If q > 2p, we immediately get a bound in

E(D p (µ N , µ)) ≤ C n≥0 2 (p-q/2)n N -1/2 log(2 + N ) ≤ C log(2 + N )N -1/2 ,
which ends the proof (when p = d/2 and q > 2p).

If q ∈ (p, 2p), we easily obtain, using that log(2 + x) ≤ 2 log x for all x ≥ 2, an upper bound in

E(D p (µ N , µ)) ≤C n≥0 1 {N <2.2 nq } 2 (p-q)n + C n≥0 1 {N ≥2.2 nq } 2 (p-q/2)n N -1/2 log(N 2 -nq ) ≤CN -(q-p)/q + CN -1/2 nN n=0 2 (p-q/2)n (log N -nq log 2) =:CN -(q-p)/q + CN -1/2 K N ,
where n N = ⌊log(N/2)/(q log 2)⌋. A tedious exact computation shows that

K N = log N 2 (p-q/2)(nN +1) -1 2 (p-q/2) -1 -q log 2 (n N + 1) 2 (p-q/2)(nN +1) -1 2 (p-q/2) -1 + n N + 1 2 (p-q/2) -1 - 2 (p-q/2)(nN +2) -2 (p-q/2) (2 (p-q/2) -1) 2 .
Using that the contribution of the middle term of the second line is negative and the inequality log N -(n N + 1)q log 2 ≤ log 2 (because (n N + 1)q log 2 ≥ log(N/2)), we find

K N ≤ C2 (p-q/2)nN ≤ CN p/q-1/2 .
We finally have checked that E(D p (µ N , µ)) ≤ CN -(q-p)/q + CN -1/2 N p/q-1/2 ≤ CN -(q-p)/q , which ends the proof when p = d/2.

Step 4: p ∈ (0, d/2). We then have, by (4) and Step 1,

E(D p (µ N , µ)) ≤C n≥0 2 pn min 2 -qn , 2 -qn(1-p/d) N -p/d .
If q > dp/(d -p), which implies that q(1 -p/d) > p, we immediately get an upper bound by CN -p/d , which ends the proof when p < d/2 and q > dp/(d -p)

If finally q ∈ (p, dp/(d -p)), we separate the sum in two parts n ≤ n N and n > n N with n N = ⌊log N/(q log 2)⌋ and we find a bound in CN -(q-p)/q as desired.

Concentration inequalities in the compact poissonized case

It is technically advantageous to first consider the case where the size of the sampling is Poisson distributed, which implies some independence properties. If we replace N (large) by a Poisson(N )distributed random variable, this should not change much the problem, because a Poisson(N )distributed random variable is close to N with high probability.

Notation 7. We introduce the functions f and g defined on (0, ∞) by

f (x) = (1 + x) log(1 + x) -x and g(x) = (x log x -x + 1)1 {x≥1} .
Observe that f is increasing, nonnegative, equivalent to x 2 at 0 and to x log x at infinity. The function g is positive and increasing on (1, ∞).

The goal of this section is to check the following. Proposition 8. Assume that µ is supported in (-1, 1] d . Let Π N be a Poisson measure on R d with intensity measure N µ and introduce the associated empirical measure Ψ N = (Π N (R d )) -1 Π N . Let p ≥ 1 and d ≥ 1. There are some positive constants C, c (depending only on d, p) such that for all N ≥ 1, all x ∈ (0, ∞),

P Π N (R d )D p (Ψ N , µ) ≥ N x ≤ C      exp(-N f (cx)) if p > d/2, exp (-N f (cx/ log(2 + 1/x))) if p = d/2, exp (-N f (cx)) + exp -cN x d/p if p ∈ [1, d/2).
We start with some easy and well-known concentration inequalities for the Poisson distribution. Finally, for x > 0, P(X > λx) ≤ P(X > 0) = 1 -e -λ ≤ λ.

We can now give the Proof of Proposition 8. We fix x > 0 for the whole proof. Recalling Notation 4-(a), we have

Π N (R d )D p (Ψ N , µ) = C ℓ≥1 2 -pℓ F ∈P ℓ |Π N (F ) -Π N (R d )µ(F )| ≤C|Π N (R d ) -N | + C ℓ≥1 2 -pℓ F ∈P ℓ |Π N (F ) -N µ(F )| ≤C|Π N (R d ) -N | + C(N + Π N (R d ))2 -pℓ0 + C ℓ0 ℓ=1 2 -pℓ F ∈P ℓ |Π N (F ) -N µ(F )|
for any choice of ℓ 0 ∈ N. We will choose ℓ 0 later, depending on the value of x. For any nonnegative family r ℓ such that

ℓ0 1 r ℓ ≤ 1, we thus have ε(N, x) :=P Π N (R d )D p (Ψ N , µ) ≥ N x ≤P |Π N (R d ) -N | ≥ cN x + P Π N (R d ) ≥ N (cx2 pℓ0 -1) + ℓ0 ℓ=1 P F ∈P ℓ |Π N (F ) -N µ(F )| ≥ cN x2 pℓ r ℓ . By Lemma 9-(c)-(d), since Π N (R d ) is Poisson(N )-distributed, P(Π N (R d ) ≥ N (cx2 pℓ0 -1)) ≤ exp(-N g(cx2 pℓ0 -1)) and P(|Π N (R d ) -N | ≥ cN x) ≤ 2 exp(-N f (cx)).
Next, using that the family (Π N (F )) F ∈P ℓ is independent, with Π N (F ) Poisson(N µ(F ))-distributed, we use Lemma 9-(a) and that #(P ℓ ) = 2 ℓd to obtain, for any θ > 0,

E exp θ F ∈P ℓ |Π N (F ) -N µ(F )| ≤ F ∈P ℓ
2e N µ(F )(e θ -θ-1) ≤ 2 2 dℓ e N (e θ -θ-1) .

Hence

P F ∈P ℓ |Π N (F ) -N µ(F )| ≥ cN x2 pℓ r ℓ ≤ exp -cθN x2 pℓ r ℓ 2 2 dℓ exp N (e θ -θ -1) .
Choosing θ = log(1 + cx2 pℓ r ℓ ), we find

P F ∈P ℓ |Π N (F ) -N µ(F )| ≥ cN x2 pℓ r ℓ ≤2 2 dℓ exp(-N f (cx2 pℓ r ℓ )).
We have checked that

ε(N, x) ≤ 2 exp(-N f (cx)) + exp(-N g(cx2 pℓ0 -1)) + ℓ0 ℓ=1 2 2 dℓ exp(-N f (cx2 pℓ r ℓ )).
At this point, the value of c > 0 is not allowed to vary anymore. We introduce some other positive constants a whose value may change from line to line.

Case 1: cx > 2. Then we choose ℓ 0 = 1 and r 1 = 1. We have cx2 pℓ0 -1 = 2 p cx -1 ≥ (2 p -1)cx + 1 whence g(cx2 pℓ0 -1) ≥ g((2 p -1)cx + 1) = f ((2 p -1)cx). We also have

ℓ0 ℓ=1 2 2 dℓ exp(-N f (cx2 pℓ r ℓ )) = 2 2 d exp(-N f (2 p cx))
. We finally get ε(N, x) ≤ C exp(-N f (ax)), which proves the statement (in the three cases, when cx > 2).

Case 2: cx ≤ 2. We choose ℓ 0 so that (1 + 2/(cx)) ≤ 2 pℓ0 ≤ 2 p (1 + 2/(cx)), i.e.

ℓ 0 := ⌊log(1 + 2/(cx))/(p log 2)⌋ + 1.
This implies that cx2 pℓ0 ≥ 2 + cx. Hence g(cx2 pℓ0 -1) ≥ g(1 + cx) = f (cx). Furthermore, we have cx2 pℓ r ℓ ≤ cx2 pℓ0 ≤ 2 p (2 + cx) ≤ 2 p+2 for all ℓ ≤ ℓ 0 , whence f (cx2 pℓ r ℓ ) ≥ ax 2 2 2pℓ r 2 ℓ (because f (x) ≥ ax 2 for all x ∈ [0, 2 p+2 ]). We thus end up with (we use that 2 2 dℓ ≤ exp(2 dℓ ))

ε(N, x) ≤ 3 exp(-N f (cx)) + ℓ0 ℓ=1 exp(2 dℓ -N ax 2 2 2pℓ r 2 ℓ ).
Now the value of a > 0 is not allowed to vary anymore, and we introduce a ′ > 0, whose value may change from line to line.

Case 1.1: p > d/2. We take

r ℓ := (1 -2 -η )2 -ηℓ for some η > 0 such that 2(p -η) > d. If N x 2 ≥ 1, we easily get ε(N, x) ≤3 exp(-N f (cx)) + ℓ0 ℓ=1 exp(2 dℓ -N a ′ x 2 2 2(p-η)ℓ ) ≤3 exp(-N f (cx)) + C exp(-a ′ N x 2 ) ≤C exp(-N f (a ′ x)).
The last inequality uses that y 2 ≥ f (y) for all y > 0. If finally N x 2 ≤ 1, we obviously have

ε(N, x) ≤ 1 ≤ exp(1 -N x 2 ) ≤ C exp(-N x 2 ) ≤ C exp(-N f (x)).
We thus always have ε(N, x) ≤ C exp(-N f (a ′ x)) as desired.

Case 2.2: p = d/2. We choose r ℓ := 1/ℓ 0 . Thus, if aN (x/ℓ 0 ) 2 ≥ 2, we easily find

ε(N, x) ≤3 exp(-N f (cx)) + ℓ0 ℓ=1 exp(2 dℓ (1 -aN (x/ℓ 0 ) 2 ) ≤3 exp(-N f (cx)) + C exp(-a ′ N (x/ℓ 0 ) 2 ) ≤3 exp(-N f (cx)) + C exp(-N f (a ′ x/ℓ 0 )) ≤C exp(-N f (a ′ x/ℓ 0 )) because ℓ 0 ≥ 1 and f is increasing. If now aN (x/ℓ 0 ) 2 < 2, we just write ε(N, x) ≤ 1 ≤ exp(2 -aN (x/ℓ 0 ) 2 ) ≤ C exp(-aN (x/ℓ 0 ) 2 ) ≤ C exp(-N f (ax/ℓ 0 )). We thus always have ε(N, x) ≤ C exp(-N f (a ′ x/ℓ 0 )). Using that ℓ 0 ≤ C log(2 + 1/x), we immedi- ately conclude that ε(N, x) ≤ C exp(-N f (a ′ x/ log(2 + 1/x))) as desired. Case 2.3: p ∈ [1, d/2). We choose r ℓ := κ2 (d/2-p)(ℓ-ℓ0) with κ = 1/(1 -2 p-d/2 ). For all ℓ ≤ ℓ 0 , 2 dl -aN x 2 2 2pℓ r 2 ℓ = -aκ 2 N x d/p 2 2pℓ 2 (d-2p)(ℓ-ℓ0) x 2-d/p -2 (d-2p)ℓ /(N ax d/p ) ≤ -aκ 2 N x d/p 2 2pℓ b2 (d-2p)ℓ -2 (d-2p)ℓ /(N aκ 2 x d/p ) where the constant b > 0 is such that 2 -(d-2p)ℓ0 ≥ bx d/p-2 (the existence of b is easily checked). Hence if N aκ 2 x d/p ≥ 2/b, we find 2 dl -aN x 2 2 2pℓ r 2 ℓ ≤ -abκ 2 N x d/p 2 dℓ b/2 and thus, still using that N x d/p ≥ 2/(abκ 2 ), ℓ0 ℓ=1 exp(2 dℓ -N c 2 x 2 2 2pℓ r 2 ℓ ) ≤ C exp(-a ′ N x d/p ).
Consequently, we have ε(N, x) ≤ 3 exp(-N f (cx)) + C exp(-a ′ N x d/p ) if N aκ 2 x d/p ≥ 2/b. As usual, the case where N aκ 2 x d/p ≤ 2/b is trivial, since then

ε(N, x) ≤ 1 ≤ exp(2/b -N aκ 2 x d/p ) ≤ C exp(-a ′ N x d/p ).
This ends the proof.

Depoissonization in the compact case

We next check the following compact version of Theorem 2.

Proposition 10. Assume that µ is supported in (-1, 1] d . Let p > 0 and d ≥ 1 be fixed. There are some positive constants C and c (depending only on p, d) such that for all N ≥ 1, all x ∈ (0, ∞),

P [D p (µ N , µ) ≥ x] ≤ 1 {x≤1} C      exp(-cN x 2 ) if p > d/2; exp -cN (x/ log(2 + 1/x)) 2 if p = d/2; exp -cN x d/p if p ∈ (0, d/2).
We will need the following easy remark.

Lemma 11. For all N ≥ 1, for X Poisson(N )-distributed, for all k ∈ {0, . . . , ⌊ √ N ⌋},

P[X = N + k] ≥ κ 0 N -1/2 where κ 0 = e -2 / √ 2.
Proof. By Perrin [START_REF] Perrin | Une variante de la formule de Stirling[END_REF], we have N ! ≤ e √ N (N/e) N . Thus

P[X = N + k] =e -N N N +k (N + k)! ≥ e -N -1 N N +k √ N + k((N + k)/e) N +k ≥ 1 √ 2N N N + k N +k e k-1 .
Since log(1 + x) ≤ x on (0, 1), we have (

(N + k)/N ) N +k ≤ exp(k + k 2 /N ) ≤ exp(k + 1), so that P[X = N + k] ≥ e -2 / √ 2N .
Proof of Proposition 10. The probability indeed vanishes if x > 1, since D p is smaller than 1 when restricted to probability measures on (-1, 1] d .

Step 1. We introduce a Poisson measure Π N on R d with intensity measure N µ and the associated empirical measure Ψ N = Π N /Π N (R d ). Conditionally on {Π N (R d ) = n}, Ψ N has the same law as µ n (the empirical measure of n i.i.d. random variables with law µ). Consequently,

P Π N (R d )D p (Ψ N , µ) ≥ N x = n≥0 P[Π N (R d ) = n]P [nD p (µ n , µ) ≥ N x] . By Lemma 11 (since Π N (R d ) is Poisson(N )-distributed), 1 √ N ⌊ √ N⌋ k=0 P [(N + k)D p (µ N +k , µ) ≥ N x] ≤ κ -1 0 P Π N (R d )D p (Ψ N , µ) ≥ N x ,
which of course implies that (for all N ≥ 1, all x > 0),

1 √ N ⌊ √ N ⌋ k=0 P [D p (µ N +k , µ) ≥ x] ≤ κ -1 0 P Π N (R d )D p (Ψ N , µ) ≥ N x .
Step 2. Here we prove that there is a constant A > 0 such that for any N ≥ 1, any k ∈ {0, . . . , ⌊ √ N ⌋}, any x > AN -1/2 ,

P [D p (µ N , µ) ≥ x] ≤ P [D p (µ N +k , µ) ≥ x/2] .
Build µ n for all values of n ≥ 1 with the same i.i.d. family of µ-distributed random variables (X k ) k≥1 . Then a.s.,

|µ N +k -µ N | T V ≤ k N (N + k) N 1 δ Xj T V + 1 N + k N +k N +1 δ Xj T V ≤ k N + k ≤ 1 √ N .
This obviously implies (recall Notation 4-(a)) that D p (µ N , µ N +k ) ≤ CN -1/2 a.s. (where C depends only on p). By the triangular inequality, D p (µ N , µ) ≤ D p (µ N +k , µ) + CN -1/2 , whence

P [D p (µ N , µ) ≥ x] ≤ P D p (µ N +k , µ) ≥ x -CN -1/2 ≤ P [D p (µ N +k , µ) ≥ x/2] if x -CN -1/2 ≥ x/2, i.e. x ≥ 2CN -1/2 .
Step 3. Gathering Steps 1 and 2, we deduce that for all N ≥ 1, all x > AN -1/2 ,

P [D p (µ N , µ) ≥ x] ≤ 1 √ N ⌊ √ N ⌋ k=0 P [D p (µ N +k , µ) ≥ x/2] ≤ CP Π N (R d )D p (Ψ N , µ) ≥ N x/2 .
We next apply Proposition 8. Observing that, for x ∈ (0, 1],

(i) exp(-N f (cx/2)) ≤ exp(-cN x 2 ) (case p > d/2), (ii) exp(-N f (cx/2 log(2 + 2/x))) ≤ exp(-cN (x/ log(2 + 1/x) 2 ) (case p = d/2), (iii) exp(-N f (cx/2)) + exp(cN (x/2) d/p ) ≤ exp(-cN x d/p ) (case p ∈ (0, d/2
)) concludes the proof when x > AN -1/2 . But the other case is trivial, because for x ≤ AN -1/2 ,

P[D p (µ N , µ) ≥ x] ≤ 1 ≤ exp(A 2 -N x 2 ) ≤ C exp(-N x 2 ),
which is also smaller than C exp(-N (x/ log(2 + 1/x)) 2 ) and than C exp(-N x d/p ) (if d > 2p).

Concentration inequalities in the non compact case

Here we conclude the proof of Theorem 2. We will need some concentration estimates for the Binomial distribution.

Lemma 12. Let X be Binomial(N, p)-distributed. Recall that f was defined in Notation 7.

(a)

P[|X -N p| ≥ N pz] ≤ (1 {p(1+z)≤1} + 1 {z≤1} ) exp(-N pf (z)) for all z > 0. (b) P[|X -N p| ≥ N pz] ≤ N p for all z > 1. (c) E(exp(-θX)) = (1 -p + pe -θ ) N ≤ exp(-N p(1 -e -θ )) for θ > 0. Proof. Point (c) is straightforward. Point (b) follows from the fact that for z > 1, P[|X -N p| ≥ N pz] = P[X ≥ N p(1 + z)] ≤ P[X = 0] = 1 -(1 -p) N ≤ pN .
For point (a), we use Bennett's inequality [START_REF] Bennett | Probability Inequalities for the Sum of Independent Random Variables[END_REF], see Devroye-Lugosi [17, Exercise 2.2 page 11], together with the obvious facts that

P[X -N p ≥ N pz] = 0 if p(1+z) > 1 and P[X -N p ≤ -N pz] = 0 if z > 1.
The following elementary tedious computations also works: write

P[|X -N p| ≥ N pz] = P(X ≥ N p(1 + z)) + P(N -X ≥ N (1 -p+ zp)) =: ∆(p, z)+ ∆(1 -p, zp/(1 -p)), observe that N -X ∼ Binomial(N, 1 -p). Use that ∆(p, z) ≤ 1 {p(1+z)≤1} exp(-θN p(1+z))(1-p+pe θ ) N and choose θ = log((1-p)(1+z)/(1-p-pz)), this gives ∆(p, z) ≤ 1 {p(1+z)≤1} exp(-N [p(1 + z) log(1 + z) + (1 -p -pz) log((1 -p -pz)/(1 -p))]).
A tedious study shows that ∆(p, z) ≤ 1 {p(1+z)≤1} exp(-N pf (z)) and that ∆(1 -p, zp/(1 -p)) ≤ 1 {z≤1} exp(-N pf (z)).

We next estimate the first term when computing D p (µ N , µ).

Lemma 13. Let µ ∈ P(R d ) and p > 0. Assume (1), ( 2) or (3). Recall Notation 4 and put

Z p N := n≥0 2 pn |µ N (B n ) -µ(B n )|. Let x 0 be fixed. For all x > 0, P[Z p N ≥ x] ≤ C exp(-cN x 2 )1 {x≤x0} + C      exp(-cN x α/p )1 {x>x0} under (1), exp(-c(N x) (α-ε)/p )1 {x≤x0} + exp(-c(N x) α/p )1 {x>x0} ∀ ε ∈ (0, α) under (2), N (N x) -(q-ε)/p ∀ ε ∈ (0, q) under (3).
Proof. Under (1) or (2), we assume that γ = 1 without loss of generality (by scaling), whence E α,1 (µ) < ∞ and thus µ(B n ) ≤ Ce -2 (n-1)α for all n ≥ 0. Under (3), we have µ(B n ) ≤ C2 -qn for all n ≥ 0. For η > 0 to be chosen later (observe that n≥0 (1 -2 -η )2 -ηn = 1), putting c := 1 -2 -η and z n := cx2 -(p+η)n /µ(B n ),

P (Z p N ≥ x) ≤   n≥0 1 {zn≤2} P [|N µ N (B n ) -N µ(B n )| ≥ N µ(B n )z n ]   ∧ 1 +   n≥0 1 {zn>2} P [|N µ N (B n ) -N µ(B n )| ≥ N µ(B n )z n ]   ∧ 1 =:   n≥0 I n (N, x)   ∧ 1 +   n≥0 J n (N, x)   ∧ 1.
From now on, the value of c > 0 is not allowed to vary anymore. We introduce another positive constant a > 0 whose value may change from line to line.

Step 1: bound of I n . Here we show that under (3) (which is of course implied by ( 1) or ( 2)), if η ∈ (0, q/2 -p), there is

A 0 > 0 such that n≥0 I n (N, x) ≤ C exp(-aN x 2 )1 {x≤A0} if N x 2 ≥ 1.
This will obviously imply that for all N ≥ 1, all x > 0,  leads us to

 n≥0 I n (N, x)   ∧ 1 ≤ C exp(-aN x 2 )1 {x≤A0} . First, n≥0 I n (N, x) = 0 if z n > 2 for all n ≥ 0. Recalling that µ(B n ) ≤ C2 -qn , this is the case if x ≥ (2C/c) sup n≥0 2 (p+η-q)n = (2C/c) := A 0 . Next, since N µ N (B n ) ∼ Binomial(N, µ(B n )),
I n (N, x) ≤ 21 {zn≤2} exp(-N µ(B n )f (z n )) ≤ 2 exp(-N µ(B n )z 2 n /4)), because f (x) ≥ x 2 /4 for x ∈ [0, 2]. Since finally µ(B n )z 2
n /4 ≥ ax 2 2 (q-2p-2η)n , we easily conclude, since q -2p -2η > 0 and since N x 2 ≥ 1, that n≥0

I n (N, x) ≤ C n≥0 exp(-aN x 2 2 (q-2p-2η)n )1 {x≤A0} ≤ C exp(-aN x 2 )1 {x≤A0} .
Step 2: bound of J n under (1) or (2) when x ≤ A. Here we fix A > 0 and prove that if η > 0 is small enough, for all x ∈ (0, A] such that N x 2 ≥ 1,

n≥0 J n (N, x) ≤C exp(-aN x 2 ) under (1), exp(-aN x 2 ) + exp(-a(N x) (α-ε)/p ) ∀ ε ∈ (0, α) under (2).
This will imply, as usual, that for all N ≥ 1, all x > 0,

  n≥0 J n (N, x)   ∧ 1 ≤C exp(-aN x 2 ) under (1), exp(-aN x 2 ) + exp(-a(N x) (α-ε)/p ) ∀ ε ∈ (0, α) under (2). By Lemma 12-(a)-(b) (since z n > 2 implies 1 {µ(Bn)(1+zn)≤1} + 1 {zn≤1} ≤ 1 {zn≤1/µ(Bn)} ), J n (N, x) ≤1 {2<zn≤1/µ(Bn)} min {exp(-N µ(B n )f (z n )), N µ(B n )} ≤1 {znµ(Bn)≤1} min {exp (-aN µ(B n )z n log[2 ∨ z n ]) , N µ(B n )}
because f (y) ≥ ay log y ≥ ay log[2 ∨ y] for y > 2. Since µ(B n ) ≤ Ce -2 (n-1)α , we get

J n (N, x) ≤ C min{exp(-aN x2 -(p+η)n log[2 ∨ (ax2 -(p+η)n e 2 (n-1)α )]), N e 2 -(n-1)α }.
A straightforward computation shows that there is a constant K such that for n ≥ n 1 := ⌊K(1 + log log(K/x))⌋, we have log(ax2 -(p+η)n e 2 (n-1)α ) ≥ 2 (n-1)α /2. Consequently,

n≥0 J n (N, x) ≤Cn 1 exp(-aN x2 -(p+η)n1 ) + C n>n1 min exp(-aN x2 (α-p-η)n ), e -2 (n-1)α =CJ 1 (N, x) + CJ 2 (N, x).
We first show that J 1 (N, x) ≤ Ce -aN x 2 (here we actually could get something much better). First, since n 1 = ⌊K + K log log(K/x)⌋ and x ∈ [0, A], we clearly have e.g. x2 -(p+η)n1 ≥ ax 3/2 . Next, N x 2 ≥ 1 implies that 1/x ≤ (N x 3/2 ) 2 . Thus

J 1 (N, x) ≤ C(1 + log log(C(N x 3/2 ) 2 )) exp(-aN x 3/2 ) ≤ C exp(-aN x 3/2 ) ≤ exp(-aN x 2 ).
We now treat J 2 (N, x).

Step 2.1. Under (1), we immediately get, if η ∈ (0, α -p) (recall that x ∈ [0, A]),

J 2 (N, x) ≤ n≥0 exp(-aN x2 (α-p-η)n ) ≤ C exp(-aN x) ≤ C exp(-aN x 2 ),
where we used that x ≤ A and N x 2 ≥ 1 (whence N x ≥ 1/A).

Step 2.2. Under (2), we first write

J 2 (N, x) ≤ n≥0 min exp(-aN x2 (α-p-η)n ), e -2 (n-1)α ≤ n 2 exp(-cN x2 (α-p-η)n2 ) + N e -2 (n 2 -1)α .
We choose n 2 := ⌊log(N x)/((p + η) log 2)⌋, which yields us to 2 (n2-1)α ≥ (N x) α/(p+η) /2 2α and (N x)2 (α-p-η)n2 ≤ (N x) α/(p+η) . Consequently (recall that x ∈ (0, A]), J 2 (N, x) ≤C(1 + log(N x) + N ) exp(-a(N x) α/(p+η) ) ≤ C(1 + N ) exp(-a(N x) α/(p+η) ).

For any fixed ε ∈ (0, α), we choose η > 0 small enough so that α/(p + η) ≥ (α -ε)/p and we conclude that (recall that N x ≥ 1/A because N x 2 ≥ 1 and x ≤ A)

J 2 (N, x) ≤C(1 + N ) exp(-a(N x) (α-ε)/p ) ≤ C exp(-a(N x) (α-ε)/p ).
The last inequality is easily checked, using that N x 2 ≥ 1 implies that N ≤ (N x) 2 .

Step 3: bound of J n under (3). Here we show that for all ε ∈ (0, q), if η > 0 is small enough,

n≥0 J n (N, x) ≤ CN 1 N x (q-ε)/p if N x ≥ 1.
As usual, this will imply that for all x > 0, all N ≥ 1,

  n≥0 J n (N, x)   ∧ 1 ≤ CN 1 N x (q-ε)/p .
Exactly as in Step 2, we get from Lemma 12-(a)-(b) that

J n (N, x) ≤ min {exp (-aN µ(B n )z n log[2 ∨ z n ]) , N µ(B n )} .
Hence for n 3 to be chosen later, since aN µ(

B n )z n = aN x2 -(p+η)n , n≥0 J n (N, x) ≤C n3 n=0 exp(-aN x2 -(p+η)n ) + CN n>n3 2 -qn ≤Cn 3 exp(-aN x2 -(p+η)n3 ) + CN 2 -qn3 .
We choose n 3 := ⌊(q -ε) log(N x)/(pq log 2)⌋, which implies that 2 -qn3 ≤ 2 q (N x) -(q-ε)/p and that 2 -(p+η)n3 ≥ (N x) -(q-ε)(p+η)/(pq) . Hence

n≥0 J n (N, x) ≤C log(N x) exp(-a(N x) 1-(q-ε)(p+η)/(pq) ) + CN (N x) -(q-ε)/p .
If η ∈ (0, pε/(q -ε)), then 1 -(q -ε)(p + η)/(pq) > 0, and thus

log(N x) exp(-a(N x) 1-(q-ε)(p+η)/(pq) ) ≤ C(N x) -(q-ε)/p .
This ends the step.

Step 4. We next assume (1) and prove that for all

x ≥ A 1 := 2 p [M p (µ) + (2 log E α,1 (µ)) p/α ], Pr[Z p N ≥ x] ≤ C exp(-aN x α/p ).
A simple computation shows that for any ν

∈ P(R d ), n≥0 2 pn ν(B n ) ≤ 2 p M p (ν), whence Z p N ≤ 2 p M p (µ) + 2 p N -1 N 1 |X i | p ≤ 2 p M p (µ) + 2 p [N -1 N 1 |X i | α ] p/α . Thus Pr[Z p N ≥ x] ≤ Pr N -1 N 1 |X i | α ≥ [x2 -p -M p (µ)] α/p .
Next, we note that for y ≥ 2 log E α,1 (µ),

Pr N -1 N 1 |X i | α ≥ y ≤ exp(-N y + N log E α,1 (µ)) ≤ exp(-N y/2).
The conclusion easily follows, since x ≥ A 1 implies that y

:= [x2 -p -M p (µ)] α/p ≥ 2 log E α,1 (µ) and since y ≥ [x2 -p-1 ] α/p -[M p (µ)] α/p .
Step 5. Assume (2) and put δ := 2p/α -1. Here we show that for all x > 0, N ≥ 1,

Pr[Z p N ≥ x] ≤ C exp(-a(N x) α/p ) + C exp(-aN x 2 (log(1 + N )) -δ ).
Step 5.1. For R > 0 (large) to be chosen later, we introduce the probability measure µ R as the law of X1 {|X|≤R} . We also denote by µ R N the corresponding empirical measure (coupled with µ N in that the X i 's are used for µ N and the X i 1 {|Xi|≤R} 's are chosen for µ R N ). We set

Z p,R N := n≥0 2 pn |µ R N (B n ) -µ R (B n )| and first observe that |Z p N -Z p,R N | ≤ 2 p N -1 N 1 |X i | p 1 {|Xi|>R} + 2 p {|x|>R} |x| p µ(dx). On the one hand, {|x|>R} |x| p µ(dx) ≤ exp(-R α /2) |x| p e |x| α /2 µ(dx) ≤ C exp(-R α /2) by (2) (with γ = 1). On the other hand, since α ∈ (0, p], N 1 |X i | p 1 {|Xi|>R} ≤
This is very satisfying: we get the same estimate as in the independent case. The case n≥0 ρ n = ∞ can also be treated (but then the upper bounds will be less good and depend on the rate of decrease of ρ). Actually, the ρ-mixing condition is slightly too strong (we only need the covariance inequality when f = g is an indicator function), but it is best adapted notion of mixing we found in the litterature.

Proof. We first check that for any Borel subset

A ⊂ R d , E[|µ N (A) -µ(A)|] ≤ min{2µ(A), Cµ(A)N -1/2 }. But this is immediate: E[µ N (A)] = µ(A) (whence E[|µ N (A) -µ(A)|] ≤ 2µ(A)) and Var µ N (A) = 1 N 2 i,j≤N Cov (1 A (X i ), 1 A (X i )) ≤ 1 N 2 i,j≤N ρ |i-j| Var (1 A (X 1 )) ≤ µ(A)(1 -µ(A)) N 2 i,j≤N ρ |i-j| .
This is smaller than Cµ(A)/N as desired, since i,j≤N ρ |i-j| ≤ N k≥0 ρ k = CN . Once this is done, it suffices to copy (without any change) the proof of Theorem 1.

Markov chains.

Here we consider a R d -valued Markov chain (X n ) n≥1 with transition kernel P and initial distribution ν ∈ P(R d ) and we set µ N := N -1 N 1 δ Xn . We assume that it admits a unique invariant probability measure π and the following L 2 -decay property (usually related to a Poincaré inequality)

∀ n ≥ 1, ∀ f ∈ L 2 (π), P n f -π(f ) L 2 (π) ≤ Cρ n f -π(f ) L 2 (π) (8) 
for some sequence (ρ n ) n≥1 decreasing to 0. Theorem 15. Let p ≥ 1, d ≥ 1 and r > 2 be fixed. Assume that our Markov chain (X n ) n≥0 satisfies (8) with a sequence (ρ n ) n≥1 satisfying n≥1 ρ n < ∞. Assume also that the initial distribution ν is absolutely continuous with respect to π and satisfies dν/dπ L r (π) < ∞. Assume finally that M q (π) < ∞ for some q > pr/(r -1). Setting q r := q(r -1)/r and d r = d(r + 1)/r, there is a constant C such that for all N ≥ 1,

E ν (T p (µ N , π)) ≤ C      N -1/2 + N -(qr-p)/qr
if p > d r /2r and q r = 2p, N -1/2 log(1 + N ) + N -(qr -p)/qr if p = d r /2r and q r = 2p,

N -p/d + N -(qr -p)/qr if p ∈ (0, d r /2) and q r = d r /(d r -p).
Once again, we might adapt the proof to get a complete picture corresponding to other decay than L 2 -L 2 and to slower mixing rates (ρ n ) n≥1 .

Proof. We only have to show that for any ℓ ≥ 0, any n ≥ 0,

∆ N n,ℓ := F ∈P ℓ E ν (|µ N (2 n F ∩ B n ) -π(2 n F ∩ B n )|) ≤C min (π(B n )) (r-1)/r , [2 drℓ (π(B n )) (r-1)/r /N ] 1/2 .
Since M q (π) < ∞ (whence π(B n ) ≤ C2 -qn ), we will deduce that ∆ N n,ℓ ≤ C min 2 -qr n , 2 drℓ/2 (2 -qr n /N ) 1/2 . Then the rest of the proof is exactly the same as that of Theorem 1, replacing everywhere q and d by q r and d r .

We first check that ∆ N n,ℓ ≤ C(π(B n )) (r-1)/r . Using that dν/dπ L r (π) < ∞, we write

E ν (µ N (B n )) = 1 N N i=1 E π dν dπ (X 0 )1 {Xi∈Bn} ≤ dν/dπ L r (π) π(B n ) (r-1)/r .
We next consider a Borel subset A of R d and check that E ν (|µ N (A) -π(A)|) ≤ C(π(A)) (r-1)/(2r) N -1/2 .

To do so, as is usual when working with Markov chains or covariance properties (see [START_REF] Boissard | On the mean speed of convergence of empirical and occupation measures in Wasserstein distance[END_REF]), we introduce f = 1 A -π(A) and write

E ν (|µ N (A) -π(A)|) = 1 N E ν N i=1 f (X i ) ≤ 1 N   N i,j=1 E ν (f (X i )f (X j ))   1/2
.

For j ≥ i, it holds that

E ν (f (X i )f (X j )) =E ν [f (X i )P j-i f (X i )] = E π dν dπ (X 0 )f (X i ).P j-i f (X i ) .
Using the Hölder inequality (recall that dν/dπ L r (π) < ∞ with r > 2) and ( 8), we get E ν (f (X i )f (X j )) ≤ dν/dπ L r (π) f L 2r/(r-2) (π) P j-i f L 2 (π) ≤ Cρ j-i f L 2r/(r-2) (π) f L 2 (π) .

But for s > 1, f L s (π) ≤ C s (π(A) + (π(A)) s ) 1/s ≤ C s (π(A)) 1/s , we find E ν (f (X i )f (X j )) ≤ Cρ j-i (π(A)) (r-1)/r and thus as desired. We used that N i,j=1 ρ |i-j| ≤ CN . We can finally conclude that ∆ N n,ℓ ≤CN -1/2 F ∈P ℓ (π(2 n F ∩ B n )) (r-1)/(2r) ≤ CN -1/2 2 drℓ/2 (π(B n )) (r-1)/(2r)

by the Hölder inequality (and because #P ℓ = 2 dℓ ), where d r = d(r + 1)/r as in the statement. dX t = √ 2dB t -∇V (X t )dt -∇W * u t (X t )dt, X 0 = x where u t = Law(X t ) and (B t ) is and R d -Brownian motion. This is a probabilistic representation of the so-called Mc Kean-Vlasov equation, which has been studied in particular by Carillo-Mac Cann-Villani [START_REF] Carrillo | Kinetic equilibration rates fro granular media and related equations: entropy dissipation and mass transportation[END_REF], Malrieu [START_REF] Malrieu | Convergence to equlibrium for granular media equations[END_REF] and Cattiaux-Guillin-Malrieu [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non uniformly convex case[END_REF] to which we refer for further motivations and existence and uniqueness of solutions. We will mainly consider here the case where V and W are convex (and if V = 0 the center of mass is fixed) and W is even. To fix the ideas, let us consider only two cases: (a) Hess V ≥ βId > 0, Hess W ≥ 0. (b) V (x) = |x| α for α > 2, Hess W ≥ 0.

The particle system introduced to approximate the nonlinear equation is the following. Let (B i t ) t≥0 be N independent Brownian motion. For i = 1, . . . , N , set X i,N 0 = x and

dX i,N t = √ 2dB i t -∇V (X i,N t )dt - 1 N j ∇W (X i,N t -X j,N t )dt.
Usual propagation of chaos property is usually concerned with control of W 2 (Law(X , as in Bolley-Guillin-Villani [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF].

To do so, and inspired by the usual proof of propagation of chaos, let us consider nonlinear independent particles dX i t = √ 2dB i t -∇V (X i t )dt -∇W * u t (X i t )dt, X i 0 = x (driven by the same Brownian motions as the particle system) and the corresponding empirical measure u N t = 1 N N i=1 δ X i t . We then have W 2 (û N t , u t ) ≤ W 2 (û N t , u N t ) + W 2 (u N t , u t ). Then following [START_REF] Malrieu | Convergence to equlibrium for granular media equations[END_REF] in case (a) and [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non uniformly convex case[END_REF] in case (b), one easily gets (for some time-independent constant C)

E(W 2 2 (û N t , u N t )) ≤ 1 N E N i=1 |X i,N t -X i t | 2 ≤ Cα(N )
where α(n) = N -1 in case (a) and α(N ) = N -1/(α-1) in case (b). It is not hard to prove here that the nonlinear particles have infinitely many moments (uniformly in time) so that combining Theorem 1 with the previous estimates gives 

Lemma 9 .

 9 For λ > 0 and X a Poisson(λ)-distributed random variable, we have (a) E(exp(θX)) = exp(λ(e θ -1)) for all θ ∈ R;(b) E(exp(θ|X -λ|)) ≤ 2 exp(λ(e θ -1 -θ)) for all θ > 0; (c) P(X > λx) ≤ exp(-λg(x)) for all x > 0; (d) P(|X -λ| > λx) ≤ 2 exp(-λf (x)) for all x > 0; (e) P(X > λx) ≤ λ for all x > 0.Proof. Point (a) is straightforward. For point (b), write E(exp(θ|X -λ|)) ≤ e θλ E(exp(-θX)) + e -θλ E(exp(θX)), use (a) and that λ(e -θ -1 + θ) ≤ λ(e θ -1 -θ). For point (c), write P(X > λx) ≤ e -θλx E[exp(θX)], use (a) and optimize in θ. Use the same scheme to deduce (d) from (b).

E 2 ≤

 2 ν (|µ N (F ) -π(F )|) C(π(F )) (r-1)/(2r) N -1/2

7. 3 .

 3 Mc Kean-Vlasov particles systems. Particle approximation of nonlinear equations has attracted a lot of attention in the past thirty years. We will focus here on the following R d -valued nonlinear S.D.E.

  sup t≥0 E(W 2 (û N t , u t )) ≤ C(α(N ) + β(N ))whereβ(N ) = N -1/2 if d = 1, β(N ) = N -1/2 log(1 + N ) if d = 2 and β(N ) = N -1/d if d ≥ 3.

( N 1 |X i | α 1 {|Xi|>R} ) p/α . Hence if x ≥ A exp(-R α /2), where A := 2 p+1 C,

Observing that

) by ( 2) and using that log(1 + u) ≤ u, we deduce that for all x ≥ 2 p+1 C exp(-R α /2),

With the choice ( 5)

we finally find

As usual, this immediately extends to any value of x > 0.

Step 5.2. To study Z p,R N , we first observe that since

R, so that we may use Steps 1, 2 and 4 (with p = α/2 < α) to deduce that for all x > 0, Pr(Z α/2,R N ≥ x) ≤ C exp(-aN x 2 ). Consequently, Pr(Z p,R N ≥ x) ≤ C exp(-aN (x/R p-α/2 ) 2 ). Recalling [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF] and that δ := 2p/α -1, we see that that Pr(Z p,R N ≥ x) ≤ C exp(-aN x 2 (log(1 + N )) -δ ). This ends the step. Conclusion. Recall that x 0 > 0 is fixed.

First assume [START_REF] Adamczak | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF]. By Step 4, Pr[Z p N ≥ x] ≤ C exp(-aN x α/p ) for all x ≥ A 1 . We deduce from Steps 1 and 2 that for x ∈ (0, A 1 ), Pr[Z p N ≥ x] ≤ C exp(-aN x 2 ). We easily conclude that for all

Assume finally (3). By Steps 1 and 3, Pr

We can now give the Proof of Theorem 2. Using Lemma 5, we write

By Lemma 13 (choosing

), these quantities being defined in the statement of Theorem 2. We now check that there is A > 0 such that for all x > 0,

This will end the proof, since one easily checks that a(N, x)1 {x≤A} ≤ a(N, x)1 {x≤1} + b(N, x) (when allowing the values of the constants to change).

Let us thus check [START_REF] Boissard | Simple Bounds for the Convergence of Empirical and Occupation Measures in 1-Wasserstein Distance[END_REF]. For η > 0 to be chosen later, we set c := (1 -2 -η )/(2κ p,d ) and

From now on, the value of c > 0 is not allowed to vary anymore. We introduce another positive constant a > 0 whose value may change from line to line. We only assume (3) (which is implied by (1) or ( 2)). We now show that if η > 0 is small enough,

where h(x) = x 2 if p > d/2, h(x) = (x/ log(2 + 1/x)) 2 if p = d/2 and h(x) = x d/p if p < d/2. This will obviously imply as usual that for all x > 0,

and thus conclude the proof of [START_REF] Boissard | Simple Bounds for the Convergence of Empirical and Occupation Measures in 1-Wasserstein Distance[END_REF]. We thus only have to prove [START_REF] Boissard | On the mean speed of convergence of empirical and occupation measures in Wasserstein distance[END_REF].

we may apply Proposition 10 and obtain

by . But the condition z n ≤ 1 implies that h(z n ) is bounded (by a constant depending only on p and d), whence

Next, we see that θ → θh(x/θ) is decreasing, whence for all x ≤ A,

We now treat separately the three cases.

Step

Step 2

≤C exp(-aN h(x))

if N h(x) ≥ 1. The third inequality only uses that log 2 (2 + 1/(x2 n(q-p-η) )) ≤ log 2 (2 + 1/x).

Step 3: case p < d/2. Here h(x) = x d/p . Since p < d/2 and q > 2p, it holds that q(1-p/d)-p > 0. We thus may take η ∈ (0, q(1 -p/d) -p) (so that q(d/p -1) -d -dη/p > 0) and we get n≥0

The dependent case

We finally study a few classes of dependent sequences of random variables. We only give some moment estimates. Concentration inequalities might be obtained, but this should be much more complicated.

7.1. ρ-mixing stationary sequences. A stationary sequence of random variables (X n ) n≥1 with common law µ is said to be ρ-mixing, for some ρ : N → R + with ρ n → 0, if for all f, g ∈ L 2 (µ) and all i, j ≥ 1

We refer for example to Rio [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF], Doukhan [START_REF] Doukhan | Mixing: properties and examples[END_REF] or Bradley [START_REF] Bradly | Introduction to strong mixing conditions[END_REF].

Theorem 14. Consider a stationary sequence of random variables (X n ) n≥1 with common law µ and set µ N := N -1 N 1 δ Xi . Assume that this sequence is ρ-mixing, for some ρ : N → R + satisfying n≥0 ρ n < ∞. Let p > 0 and assume that µ ∈ M q (R d ) for some p > q. There exists a constant C depending only on p, d, q, M q (µ), ρ such that, for all N ≥ 1,

N -1/2 + N -(q-p)/q if p > d/2 and q = 2p, N -1/2 log(1 + N ) + N -(q-p)/q if p = d/2 and q = 2p, N -p/d + N -(q-p)/q if p ∈ (0, d/2) and q = d/(d -p).