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Abstract

This paper presents a three-dimensional implementation of the so-called µ(I) rheology to accurately and efficiently

compute steady state dense granular flows. The tricky pressure dependent visco-plastic behaviour within an incom-

pressible flow solver has been overcome using a regularisation technique along with a complete derivation of the

incremental formulation associated with the Newton-Raphson algorithm. The computational accuracy and efficiency

of the proposed numerical model have been assessed on two representative problems that have an analytical solution.

Then, two application examples dealing with actual lab experiments have also been considered: the first one concerns

a granular flow on a heap and the second one deals with the granular flow around a cylinder. In both configurations

the obtained computational results are in good agreement with available experimental data.
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1. Introduction

Dense granular flows are ubiquitous in geophysics, e.g. landslides, avalanches, debris flows, but also in many

industrial processes, e.g. pharmaceutical production, chemical industry, food and agricultural industries, energy pro-

duction. Over the last two decades, an important research effort [17, 12, 26, 16, 11] has led to the formulation of a

dense granular flow rheology (µ(I)) [14] that allows to describe most of the observations from different flow config-

urations [26, 16, 19, 13]. More recently, Jop et al. [20] have proposed a tensorial formulation of this rheology that

opens the way to three dimensional simulations of dense granular flows in complex configurations. The literature

survey shows only few publications concerning the implementation of the dense granular flows rheology in a multidi-

mensional numerical model [8, 21, 27]. However, such tools are awaited by industrial and geophysical communities

working with granular matter.

The dense granular flow rheology is of frictional nature meaning that the tangential stresses are proportional to

the normal ones, i.e. pressure, by an effective friction coefficient denoted as µ. From a rheological point of view it

exhibits a visco-plastic behaviour with a non-conventional shear thinning character. It has been demonstrated from the

dimensional analysis of plane shear for infinitely rigid particles that the only dimensionless parameter that controls the
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stress/shear rate relationship is the number I = d ‖ γ̇ ‖ /
√

p/ρ, designated as the inertial parameter [11], in which ‖ γ̇ ‖

is the modulus of the shear rate, p is the pressure exerted on the granular media, d and ρ represent the particles diameter

and density, respectively. From the analysis of discrete numerical simulations [11] and experimental measurements

[26] a master curve for the evolution of the friction coefficient µ against the inertial parameter I emerges, showing that

this dimensionless number is the relevant parameter controlling the mechanical behaviour of the dense granular flow

in the liquid regime [14]. This master curve has been fitted using a rational functional form (equation 4 in section

2) that corresponds to the dense granular flows rheology µ(I). This local rheology has since been applied with some

success to different flow configurations, e.g. inclined plane, flow on a pile, rotating drums, however it should be kept

in mind that some limitations still remain [14]. They are mainly linked to non-local effects such as correlated motions

with typical length scales greater than the particles diameter or in the gaseous regime in which particles velocity

fluctuations can be transported by the mean flow.

Concerning the numerical implementation of models related to dense granular flows, Chauchat and Médale [8]

have considered a Coulombian rheology (µ=constant) to study the configurations of an immersed granular media

submitted to a laminar shearing flow. Their three-dimensional Finite Element steady-state model was built using a

penalisation method and a simple regularisation technique, leading to quite slow convergence rates, despite using an

incremental formulation in the Newton-Raphson algorithm. Moreover, two quite restrictive assumptions were also

made in the previous work, considering fixed free surface location and a constant particle volume fraction inside the

bed layer. On the other hand, Lagrée et al. [21] have used a two-dimensional explicit in time Finite Volume solver

(projection method) and a simple viscosity clipping technique to deal with the µ(I) rheology. Using a two-phase

approach coupled with a Volume Of Fluid technique to capture the mesoscopic air-granular interface evolution the

authors have successfully applied their model to study the collapse of a dry granular column under gravity effect.

Both models have been validated against analytical solutions demonstrating the good implementation of the dense

granular flow rheology. However each model has its own main weaknesses: fixed free-surface and constant granular

concentration assumptions for Chauchat and Médale model [8] and weak computational efficiency to reach steady state

solutions involving rigid zones for Lagrée et al. model [21]. It should also be pointed out that the latter numerical

model would experience computational issues to simulate flow configurations involving re-circulation zones, since

as like most standard incompressible flow solver it will generate negative dynamical pressure in these locations,

meanwhile using an absolute value of the pressure in the inertial number definition. This point will be further discussed

in the present paper where a physically and computationally consistent solution is proposed.

The main objective of the present work is to accurately and efficiently compute three-dimensional dense granular

flows based on the µ(I) rheology. To reach this goal, a consistent and efficient regularisation technique has been

implemented in our finite element framework (section 2). Extensive validations and spatial convergence analyses

have been performed on two idealised test cases: the vertical chute flow and the flow down a rough inclined plane

(section 3). The capabilities of the present model are then illustrated on two application examples (section 4). The
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granular flow on a heap with sidewalls is presented and compared with existing experimental measurements [19] and

numerical simulations [20]. Finally, the granular flow around a cylinder is presented and the evolution of the drag

coefficient against the flow velocity are discussed.

2. Model formulations

2.1. Mathematical model

In the present model an idealised granular material constituted with mono-disperse spherical beads of diameter d

and density ρ is considered. Given a cartesian coordinate system (O, x, y, z) where x represents the horizontal direction,

y the spanwise direction and z the upward direction (x and z being likely tilted with an angle α from the horizontal

and vertical direction, respectively), the velocity vector and its cartesian components are denoted by −→u = (u, v,w),

respectively. The continuity and momentum equations read:

−→∇ · −→u = 0, (1)

ρφ

[

∂−→u
∂t
+
−→∇ · −→u ⊗ −→u

]

= −−−→∇p +
−→∇ · τ + ρφ−→g , (2)

where p and τ represent the pressure and the deviatoric part of the stress tensor (interganular stresses due to particle-

particle interactions), −→g is the gravity acceleration vector and φ denotes the volume fraction of particles. The latter is

assumed to be uniform and constant (φ = 0.6) in space and time in the present model. These governing equations (1)

and (2) are supplemented with initial and boundary conditions that will be presented for each case in section 3 and 4.

Following Jop et al. [20] and Forterre and Pouliquen [14] a frictional rheology based on the µ(I) law is assumed

for the modelling of the deviatoric part of the stress tensor:

τ = µ(I) p
γ̇

‖ γ̇ ‖
, (3)

where the rate of strain tensor γ̇ is defined as γ̇ = ∇−→u + (∇−→u )T and its magnitude is given by the square root of

its second invariant ‖ γ̇ ‖=
√

1

2
Tr

(

γ̇
2
)

. In equation (3), µ(I) represents the phenomenological friction coefficient that

depends on the inertial parameter I according to the following relationship:

µ(I) = µs +
∆µ

I0/I + 1
and I =

‖ γ̇ ‖ d
√

p/ρ
, (4)

and ∆µ = µ2 − µs. In relationship (4), µs stands for the static friction coefficient or the so-called tangent of the

repose angle, µ2 is a dynamical friction coefficient and I0 is an empirical coefficient of the rheology. These two last

parameters have been determined from experiments and discrete numerical simulations. Their respective values will

be given for each case in the following sections.
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Following our previous work on dense granular flows [8], one can define a particulate viscosity ηp as:

ηp =
µ(I) p

‖ γ̇ ‖
, (5)

such that the shear stress tensor can be rewritten in an usual way for fluid mechanics problems:

τ = ηp γ̇. (6)

In the following, the model equations are made dimensionless using d as the length scale,
√

d/g as the time scale

and φρgd as the stress scale:


























−→∇ ·
−→
u = 0

∂
−→
u

∂t
+
−→∇ ·
−→
u ⊗
−→
u = −

−→
∇ p +

−→
∇ ·

[

ηp

(

∇
−→
u + ∇

−→
u T

)]

− cos α −→ez + sin α −→ex,
(7)

where the bar notations represent dimensionless variables and ηp = µ(I) p/ ‖ γ̇ ‖ with I =‖ γ̇ ‖ /
√

φp. We point out

here that the final expression of I depends on the chosen dimensionless form of the equations. For the sake of clarity,

the bar notations are dropped in the following and all the variables correspond to their dimensionless counterparts.

2.2. Finite Element Model

In this section, a numerical model designed to solve for the coupled set of equations (7) in arbitrary three dimen-

sional computational domains is presented. The Finite Element Method (FEM) is used to build up the variational

formulation and the related spatial discretisation in view of a tractable algebraic system. Let us denote the computa-

tional domain by Ω and its boundary by ∂Ω. From the set of partial differential equations (7) the weak formulation of

the coupled mass conservation and momentum equations reads [7], [25]:

Find −→uh ∈ Uh and ph ∈ Qh satisfying (8) ∀ −→δu ∈ Vh and ∀ δp ∈ Qh where:

Uh = {−→uh ∈ H1(Ω) | −→u = −→u Dirichlet on ∂ΩDirichlet}

Qh = {δp ∈ L2(Ω)}

Vh = {
−→
δu ∈ H1

0
(Ω) | −→δu = −→0 on ∂ΩDirichlet}























































∫

Ω

δp

(−→∇ · −→uh − λp ph

)

dΩ = 0 ,

∫

Ω

−→
δu · D−→uh

Dt
dΩ −

∫

Ω

ph

(−→∇ · −→δu
)

dΩ +

∫

Ω

ηp

2
δγ̇ : γ̇h dΩ +

∫

Ω

−→
δu ·

(

cos α −→ez − sin α −→ex

)

dΩ

−
∫

∂ΩT

−→
δu · −→T

(

M,−→n
)

ds −
∫

∂ΩOBC

−→
δu ·

(

−ph1 + ηp γ̇h

)

−→n ds = 0 ,

(8)

where λp << 1 is the penalisation parameter, δγ̇ = ∇−→δu + ∇−→δuT , γ̇h = ∇−→uh + ∇−→uh
T , ∂ΩT is the boundary subset

where a prescribed stress
−→
T

(

M,−→n
)

is imposed, −→n is the outward unit normal and ∂ΩOBC is the boundary subset

where neither a prescribed Dirichlet
(−→u Dirichlet

)

nor prescribed Neumann

(−→
T

(

M,−→n
)

)

boundary condition is imposed

(∂ΩOBC = ∂Ω − ∂ΩDirichlet − ∂ΩT ). This later condition is encountered when the computational domain is arbitrarily

truncated with respect to the physical one, so that an appropriate numerical or open boundary condition has to be

provided implicitly [23] to behave as passively as possible.
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2.3. Regularisation technique

As reported in [8] the visco-plastic characteristic of the Coulomb’s granular rheology can be straightforwardly

implemented using a simple regularisation technique. In the present paper four different regularisation techniques have

been investigated to appropriately implement the µ(I) rheology in a computationally suitable, accurate and efficient

way. In the following, the particulate viscosity (5) is re-written in different regularised ways where λr << 1 stands for

the regularisation parameter:

• The simple regularisation presented in Frigaard and Nouar [15], transposed to the µ(I) rheology (denoted as

simple regularisation in the following):

ηs
p =

µs p

‖ γ̇ ‖ +λr

+
∆µ p

I0

√
φp+ ‖ γ̇ ‖ +λr

(9)

• The mixed Bercovier-Engelman [6] - simple regularisation, transposed to the µ(I) rheology (denoted as Bercovier-

Engelman regularisation in the following):

ηbe
p =

µs p
(

‖ γ̇ ‖2 +λ2
r

)1/2
+

∆µ p

I0

√
φp+ ‖ γ̇ ‖ +λr

. (10)

• The mixed Papanastasiou’s [24] - simple regularisation, transposed to the µ(I) rheology (denoted as Papanas-

tasiou regularisation in the following):

η
papa
p = µs p

1 − e−‖γ̇‖/λr

‖ γ̇ ‖
+

∆µ p

I0

√
φp+ ‖ γ̇ ‖ +λr

. (11)

• The proposed regularisation, inspired from the Bercovier-Engelman’s regularisation [6] and transposed to the

µ(I) rheology:

ηmc
p =

















µs +
∆µ ‖ γ̇ ‖

I0

√
φp + ‖ γ̇ ‖

















p
(

‖ γ̇ ‖2 +λ2
r

)1/2
. (12)

The first term of the latter relationship represents the yield stress that determines the transition between rigid and

flowing regions, whereas the second one can be viewed as a Non-Newtonian viscous contribution to the stress. This

last term diverges only if p and ‖ γ̇ ‖ vanish together. This condition can be met, for example, at the free surface of a

granular flow where the pressure vanishes. It should also be noted that both the original Papanastasiou’s regularisation

[24] and its transposition to the µ(I) rheology (11) are not definite when ‖ γ̇ ‖ is strictly equal to zero.

2.4. Non-linear solution algorithm

As we are mainly interested in steady state solutions the advective terms and visco-plastic stress ones can induce

highly non-linear behaviour in the governing equations. For this purpose, a linearising stage based on the Newton-

Raphson algorithm has been introduced. Its incremental form is obtained by taking the first variation of the variational
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formulation (8). Owing to the presented regularisation techniques, a consistent tangent matrix can be derived for each

of them, leading to a high convergence rate of the steady state solution algorithm. The incremental form associated to

the proposed regularisation technique (12) reads:

I′ =

∫

Ω

−→
δu ·

(−→
u′h∇
−→uh +
−→uh∇
−→
u′h

)

dΩ −
∫

Ω

p′h

(−→∇ · −→δu
)

dΩ +

∫

Ω

1

2
δγ̇ :

(

ηmc
p γ̇

′
+ η

′mc
p γ̇

)

dΩ

−
∫

∂ΩOBC

−→
δu ·

(

−p′h 1 + ηmc
p γ̇

′
+ η

′mc
p γ̇

)

−→n ds

(13)

where

γ̇
′
= ∇
−→
u′ + ∇

−→
u′T ; ‖ γ̇ ′ ‖= γ̇ : γ̇

′

2 ‖ γ̇ ‖
(14)

and

η
′mc
p =

{

ηmc
p

p
− 1

2
A ‖ γ̇ ‖

}

p′ −



















ηmc
p

‖ γ̇ ‖

‖ γ̇ ‖2 +λ2
r

−A p



















‖ γ̇ ′ ‖ (15)

withA = ∆µI0

√
φp

(

I0

√
φp + ‖ γ̇ ‖

)2 (

‖ γ̇ ‖2 +λ2
r

)1/2

In all the previous relationships the prime superscript stands for an incremental quantity computed at every itera-

tion within the Newton-Raphson solution algorithm.

It is also noteworthy that the pressure term that appears in both ηmc
p and η

′mc
p (13) and (15) is the total pressure ptot =

phst + pdyn, i.e., the sum of hydrostatic phst and dynamic pdyn pressures. As in the present model the granular media is

assumed to be a continuum and the flow to be incompressible, the computed dynamical pressure is the one that satisfies

the incompressibility constraint. Therefore, as in almost all incompressible flow solvers, it is not positive definite. On

the other hand, the particulate viscosity must remain positive from basic physical consideration. Consequently, the

total pressure appearing in the definition of the particulate viscosity (13) and (15) has to be regularised as well. In the

present work we have introduced the following regularised expressions for that purpose:

pregu =
1

2

(

ptot +

√

p2
tot + λ

2
r

)

and p′regu =
p′

dyn

2

























1 +
ptot

√

p2
tot + λ

2
r

























. (16)

Therefore, the regularised pressure entering the µ(I) rheology is restricted by below to λr when the total pressure

becomes negative.

Applying this approach all along with the regularising and linearising stages, round-off errors, if any, take place

consistently in both Jacobian (tangent matrix) and residual computations. Using this method enables to achieve stable

and accurate computations even from such unfavourably ill-conditioned algebraic systems.

2.5. Implementation

The spatial discretisation of both the weak integral form (8) and its first variation (13) is performed with piece-

wise quadratic polynomial approximation for the velocity and piecewise linear discontinuous approximation for the

6



pressure. They have been implemented with 27-nodes iso-parametric hexahedra Lagrange finite elements built on

tri-quadratic Lagrange polynomials (H27) [22, 10].

The in-house research code has been implemented using the PETSc library [4, 5], which provides various parallel

iterative solvers and several interfaces to third party parallel direct solvers. This last feature is particularly welcomed

in the present problem as, on the one hand the incompressibility constraint is dealt with a penalisation method and on

the other hand the visco-plastic character of the dense granular flows rheology is dealt with regularisation techniques.

As a consequence, all the algebraic systems are highly ill-conditioned, so they have been solved by the MUMPS

parallel direct solver [1, 2, 3]. Moreover, the pressure term that appears in (12) and (15) is implemented according to

(16).

3. Validations

Several configurations representative of the three-dimensional µ(I) dense granular flow rheology can be considered

for the numerical verifications and validations of the four implemented regularisation techniques, but the two that have

been retained hereafter are in addition described by analytical solutions. The first one consists of the vertical chute

flow problem for which an original analytical solution is derived and used to perform a spatial convergence analysis.

The second test case corresponds to the dry granular flow over a rough inclined plane that corresponds to the so-called

Bagnold’s profile.

3.1. Dry granular vertical-chute flow

For the purpose of testing the numerical model the streamwise uniform flow between two rough parallel plates is

considered (figure 1). This flow is a simplified configuration representing the flow in a silo.

z y
-b/2 +b/2

Figure 1: Sketch of the vertical-chute flow.

An analytical solution for the dry granular vertical-chute flow based on the µ(I) rheology [18, 14] for the frictional

shear stress can be obtained. All the details concerning the derivation of the analytical solution are presented in
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appendix A and the resulting velocity profile expression reads as follows:

w(y) =











































































−I0

√
φp

































(

y − b

2

)

+ ∆µ p ln

































∆µ p − (y − y0)

∆µ p −
(

b

2
− y0

)

































































i f y ∈ [y0; b/2]

−I0

√
φp

































(

y0 −
b

2

)

+ ∆µ p ln

































∆µ p

∆µ p −
(

b

2
− y0

)

































































i f y ∈ [0; y0]

(17)

where y0 = µs p. It should be mentionned that this analytical solution exhibits some physical limitations in

the quasi-static limit (I → 0) [14] since it predicts zero thickness of the shear bands whereas they have finite size

in experimental observations. Therefore, in the following test case we have chosen parameter values to ensure the

granular flow to be in the liquid regime.

The spatial convergence analysis of the numerical solution is presented hereafter for this vertical-chute flow with

a particulate pressure fixed to p = 28 and a dimensionless domain width set to b = 28. The governing equations are

solved with a penalisation parameter λp = 10−6 when not otherwise mentioned and the rheological parameters are

fixed to µs = 0.383, ∆µ = 0.26 and I0 = 0.279, following the values reported by Jop et al. [19].

In the first part of this analysis the regularisation parameter is set to λr = 10−4 and the corresponding numerical re-

sults have been computed for the four regularisation techniques presented in section 2. Figure 2 shows the comparison

of the numerical results with the analytical solution for the velocity, inertial parameter, shear rate and tangential stress

profiles for a uniform mesh of size h = b/80. The very good agreement obtained for this flow configuration enables

us to validate the implementation of the µ(I) rheology with the four regularisation methods presented in section 2.

Figure 3a) plots the Root Mean Square (RMS) numerical error with respect of the analytical solution versus the

mesh size h for the four regularisation techniques. The simple regularisation method appears to be the worst one with

the highest errors and the worst spatial convergence. On the other hand, the Bercovier-Engelman’s regularisation,

the Papanastasiou’s one and the one introduced in this paper exhibit similar convergence properties for coarse and

medium mesh sizes, but for the finest meshes the proposed regularisation produces an error one order of magnitude

lower than the three others. Figure 3b) shows the evolution of the error against the analytical solution versus Newton-

Raphson iteration counts for the four regularisation techniques and h = b/160. The initial condition was set to a

uniform null velocity in the whole computational domain for three out of four regularisation methods, meanwhile

the Papanastasiou’s regularisation was initialised by the simple regularisation solution at convergence. So, it should

be pointed out that the iteration counts of the Papanastasiou’s regularisation has been shifted by the iteration counts

of the simple regularisation. The proposed method (12) is shown to converge faster than the Bercovier-Engelman

regularisation (10) and the Papanastasiou one (11) with similar global error. The simple regularisation (9) converges

at the same rate as the proposed regularisation but with a global error at convergence approximately one order of

magnitude higher. It is also noteworthy that the error reaches a minimum three to four times lower than the final

converged value. This latter error is a modelling one introduced by all the regularisation techniques in the central
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Figure 3: Vertical-chute flow test case with p = 28 and b = 28. a) Spatial convergence analysis of the four regularisation methods (Simple,

Bercovier-Engelman, Papanastasiou and Médale-Chauchat) with λr = 10−4, expressed in RMS error: e = 1/N
√

∑

N (wi − wex
i

)2. b) RMS error

versus Newton-Raphson iteration count for the four regularisation techniques (h = b/160).

zone, where a numerical creeping flow appears instead of a perfectly rigid plug. The magnitude of this artificial

creeping flow is of order of the regularisation parameter, which has been verified on velocity profiles at different

iteration numbers during the computations (not shown here).

In order to understand the deviation of the global error between the Bercovier-Engelman, the Papanastasiou and

the proposed regularisation, the same profiles as in figure 2 are presented in figure 4 for the finest mesh (h = b/320). It

appears that, for this mesh size, except the proposed regularisation technique all the others present spurious oscillations

on the velocity gradient and a significant deviation of the computed velocity profile compared with the analytical

solution. The error increase observed in figure 3a) is linked to these oscillations. This result supports the remark of

subsection 2.4 advocating that the proposed methodology enables to achieve stable and accurate computations.

In the second part of this analysis, the convergence of the proposed regularisation method with respect to the

regularisation parameter λr is analysed. Figure 5a) shows the evolution of the RMS error versus the mesh size h. For

sufficiently fine meshes a decrease of λr reduces substantially the error. This is better illustrated in figure 5b) where

the evolution of the numerical solution error against the regularisation parameter is presented. It clearly appears

from this figure that for low spatial resolution the global error is dominated by the discretisation error. When the

spatial resolution is high enough the global error is dominated by the regularisation of the dense granular rheology

and consequently the regularisation parameter strongly influence the error. For h = b/320 it is observed that the error

decreases linearly with the regularisation parameter. The simulations carried out with a penalisation parameter λp one

order of magnitude smaller than the previous one does not induce any improvement on the error. This results from the
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fact that the incompressibility constraint is not very restrictive in such flow configurations where the pressure field is

quite uniform. However, it is expected that the penalisation parameter will have a comparable influence on the error

as the regularisation parameter for complex flow configurations with non negligible dynamical pressure.
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Figure 5: Vertical-chute flow test case with p = 28 and b = 28, computed with the proposed regularisation method (12). a) Spatial convergence anal-
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RMS error: e = 1/N
√

∑
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3.2. Dry granular flow on an inclined plane: Bagnold’s profile

In this subsection, the numerical model is used to compute the dry granular flow over a rough inclined plane.

The analytical solution is the so-called Bagnold’s profile where the frictional granular shear stress is modelled using

the µ(I) rheology [16, 20, 14]. The analytical solution is recalled first and the spatial convergence analysis of the

numerical solution is presented afterwards.

Considering the steady flow of a granular material over an infinite rough inclined plane only the longitudinal

velocity component u does not vanish and depends only on the vertical upward direction (z = 0 at the bottom and

z = H at the free surface). This problem has an analytical solution, the so-called Bagnold’s profile, for which the

detailed derivation is given in appendix B. The resulting velocity profile expression is only recalled here:

u(z) =
2

3
Iα

√

φ0 cosα
[

H3/2 − (H − z)3/2
]

, (18)

where Iα is given by the following relationship:

Iα = I0

tanα − µs

µs + ∆µ − tanα
. (19)
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The spatial convergence analysis of the numerical solution against the Bagnold’s profile is presented hereafter for

a tilt angle set to α = 0.406 rad (≈ 23 degree) and a dimensionless granular layer thickness set to H = 14. The

rheological parameters are: µs = 0.383, ∆µ = 0.26 and I0 = 0.279, as in Jop et al. [19]. The governing equations are

solved with a penalisation parameter λp = 10−6 and the µ(I) rheology is regularised using the proposed method (12)

with a regularisation parameter set to λr = 10−8.

Figure 6 shows the validation of the numerical model against the Bagnold’s analytical solution in terms of stream-

wise velocity component, vertical velocity gradient and shear stress profiles with h = H/40. The very good agreement

obtained with respect to the analytical solution validate qualitatively and quantitatively the numerical model.
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Figure 6: Granular flow over an inclined rough plane for α = 0.406 rad and H = 14. Comparison of computed (h = H/40) and analytical solution

profiles in the layer: u-velocity component (left), vertical velocity gradient du/dz (center) and shear stress τ (right).

Figure 7 shows the spatial convergence analysis obtained on six successively refined meshes h ∈ {H/5,H/10,H/20,

H/40,H/80,H/160} expressed in RMS error and infinity norm. The best fit obtained on the four coarsest meshes gives

an effective order of convergence of 2.46 for the RMS error and 1.5 for the infinity norm. Despite, this could be thought

to be far from the optimal theoretical values for a smooth C0 problem (3 and 2, respectively), it is however not so bad

for a penalised and regularised problem. The slightly lower values obtained with the model on the present test case

are almost certainly due to the regularisation of the µ(I) rheology and agree perfectly with previous studies [8, 21].

The numerical results presented in figure 7 have been computed with a requested residual per degree of freedom of

10−12. The corresponding Newton-Raphson iteration counts and CPU time per iteration are summarised in Table 1.

Figure 8 shows the evolution of the velocity at the surface for both numerical and analytical solutions as a function

of the tilt angle α where the analytical solution is given by (31) and (32) with z = H. The numerical model is able to

reproduce fairly well the evolution of the surface velocity for a wide range of slope angle and more importantly the

numerical model is able to capture the threshold of motion at αc ≈ 0.37 rad.
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h H/5 H/10 H/20 H/40 H/80 H/160

Degrees of freedom 297 567 1107 2187 4347 8667

Newton-Raphson iteration counts 10000 10000 13 9 8 8

CPU time (s) 109.56 149.16 2.68 2.28 2.63 3.6

(s/iteration) 0.011 0.015 0.21 0.25 0.33 0.45

Table 1: Granular flow over an inclined rough plane for α = 0.406 rad and H = 14. Newton-Raphson iteration counts and CPU time obtained with

λr = 10−8

3.3. Discussion

The verification and validation of our numerical model that implements the µ(I) rheology have been performed on

two representative problems that possess an analytical solution. These two test cases are relevant for benchmarking the

µ(I) rheology implementation as they contain most of the specific features exhibited by dense granular flows: onset of

motion, plastic-rigid transition, shear-dependent rheology, etc. Among the four regularisation techniques presented in

section 2.3 the simple one always performs the worst, both for the global error at convergence and the effective order

of convergence. The Papanastasiou, the Bercovier-Engelmann and the proposed regularisation techniques produce,

approximately, all the same solution error at convergence for appropriate mesh size and regularisation parameter.

However, contrarily to the others the Papanastasiou regularisation does not bear neither an initial null velocity field nor

any rigid motion flow, so we arbitrarily initialised it with the solution provided by the simple regularisation technique.

The proposed regularisation method (12) performs the best in achieving small global errors at the lowest computational

cost (Newton-Raphson iteration counts at convergence). The results obtained in these two test cases evidence that the

proposed regularisation method is the most consistent way to regularise the µ(I) rheology in our Finite Element

framework, as it enables to achieve the most stable and accurate computations from such unfavourably ill-conditioned

algebraic systems. The various sensitivity analyses performed in this paper reveal that it exists an optimal value of

the combination between the regularisation parameter and mesh size (∝ λr h3) below which any subsequent reduction

leads to intractable ill-conditioned algebraic systems that deteriorates the overall solution quality, even with a robust

direct solver such as MUMPS [1, 2, 3]. This explains why the actual order of spatial convergence observed in these

two test cases always deteriorates for the smallest mesh sizes for a given value of the regularisation parameter.

Unfortunately, the two analytic solutions used herein are only one-dimensional, as only one velocity component

is not null and only varies along one spatial direction (the transverse one). However, it should be reminded that

three-dimensional analytic solutions are extremely few for fluid flows, even for the Newtonian constitutive law, which

is linear. So, one can figure out how cumbersome could be the work of designing a full three-dimensional analytic

solution that integrates the highly non-linear µ(I) rheology. Nevertheless, based on the previous analysis more complex

three-dimensional flow configurations can be computed using the proposed regularisation technique for which the

solution accuracy is controlled by the numerical constant: εh
r ∝ λr h3.
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4. Applications

In this section, the numerical model presented in section 2 is applied to two configurations: the surface granular

flow on a heap and the granular flow around an immersed cylinder. These two applications illustrates the capabilities

of the proposed model to compute dense granular flows in rather complex configurations.

4.1. Dry granular flow on a heap

The surface flow of a dry granular material on a heap has been investigated experimentally by Jop et al. [19] (see

figure 9). In their experiments the authors measured four quantities: the mean flow rate per unit of width Q (m2.s−1),

the inclination of the free surface with the horizontal α, the thickness of the flowing layer h(y), and the free-surface

velocity Vsurf(y) measured at different lateral positions y in the channel. In the experiments, the control parameter is

the mean flow rate Q. The following physical parameters have been used d ≈ 0.53 mm, ρ = 2450 kg.m−3, W = 140 d

and Q∗ ∈ {14.9; 40.2; 90.1} where W denote the width of the channel and Q∗ = Q/d
√

gd is the dimensionless flow

rate. The rheological parameters are fixed to µs = 0.383, ∆µ = 0.26 and I0 = 0.279 as in the previous test cases. The

experiments selected for the comparison with the numerical model have been performed with rough side walls so that

no-slip lateral boundary conditions for the velocity can be assumed.

Gate

Plate

�

Figure 9: Sketch of the heap-flow experimental configuration [19]

The proposed numerical model is used to simulate this configuration using 70x100 H27 finite elements in the y

and z directions respectively, for symmetry reasons only one half of the domain is discretised. The total height of

the domain is fixed to H/d = 50. Boundary conditions are imposed as follows: no-slip at the bottom, no-slip at the
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lateral wall, symmetry condition at the vertical median plane, and inflow-outflow conditions at the inlet and outlet

respectively. The penalisation parameter is fixed to λp = 10−7 and the regularisation parameter is fixed to λr = 10−5.

Following the methodology used by Jop et al. [20], the inclination angle α is imposed and the flow rate is computed a

posteriori. The tilt angle is chosen from trial and errors to get a flow rate comparable with the measurements. By doing

so a typical error of less than 2% is achieved. Figure 10 shows comparisons of the free-surface velocity profiles and of

the thickness of the flowing layer between experiments from Jop et al. [19], numerical simulations from Jop et al. [20]

and the present model solutions. The proposed model reproduces quantitatively the experiments for both quantities

even if the thickness of the flowing layer is slightly overestimated in the present numerical results. Nevertheless, one

can observe differences in the velocity profiles close to the wall between computations from Jop et al. (2006) and

those from the present ones. They could be due to: i) different spatial resolutions (70 grid points for Jop et al. and 281

nodes in our computations), ii) different spatial discretisation schemes of the governing equations (Finite Difference

versus Finite Element methods) and iii) different numerical approximation of the particulate hydrostatic pressure

that enters the rheology. As stated by the authors, these results show that the proposed rheology gives quantitative

agreement for this complex three-dimensional flow. Moreover, from a computational point of view, this comparison

allows to validate the choice of a regularisation technique to deal with complex granular flows involving moving-static

transition. As an illustration, figure 11 shows the longitudinal velocity profile in a cross section of the channel for the

three dimensionless flow rate Q∗ ∈ {14.85 ; 39.71 ; 88.72}.
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Figure 10: Granular flow on a heap. a) Surface velocity profiles; b) Depths of the flowing layer across the channel width. Present numerical results

(mesh of 1x70x100 H27 FE on the half domain, λp = 10−7, λr = 10−5, dashed line - - -), numerical solutions from Jop et al. [20] (grid size of

71x80 on the full domain, solid line —) and experimental results from Jop et al. [19] (circles ◦).
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Figure 11: Velocity profiles obtained with the present model (Grid size: 1x70x100, half domain, penalisation parameter: λp = 10−7 and regulari-

sation parameter: λr = 10−5) for three different dimensionless flow rate (Q∗ ∈ {14.85 ; 39.71 ; 88.72}).

4.2. Dry granular chute flow over a cylinder

The second application example concerns a dry granular chute flow over a horizontal cylinder. This study aims

at investigating the influence of the applied external force and confining pressure onto the granular flow rate and

the induced drag force acting on the cylindrical obstacle. To conduct this parametric study the cylinder diameter

denoted as D is used as the reference length scale and the particles are assumed to have a dimensionless diameter

of d∗ = d/D = 0.1 and a uniform volume fraction φ = 0.6. The computational domain is Lx/D = 20 large in the

crossflow direction, Ly/D = 0.1 thick in the spanwise direction (quasi two-dimensional problem) and Lz/D = 30 long

in the vertical streamwise direction. The cylinder axis is aligned in the spanwise direction and located at the centre of

the computational domain. The granular media is submitted to a driving body force acting downwards in the vertical

direction, together with a confining pressure (pext). A no slip boundary condition (−→u = −→0 ) is imposed both along

the cylinder wall and the two lateral confining walls, an outflow boundary condition is applied (implicit Neumann

boundary condition [23]) at the outlet, and finally a symmetry boundary condition (v = 0) is prescribed over the two

other walls.

The parametric study is conducted with the proposed regularisation model ((12), (14) and (16) with µs = 0.4,

∆µ = 0.25, I0 = 0.3, λp = 10−8 and λr = 10−6) for five confining pressures. The mesh is made up of 42200 H27 finite

elements organised in a single layer (only one element) in the spanwise direction. The mesh size is graded toward the

cylinder around which 160 elements are disposed with a thickness of D/50. The mesh is built onto 509220 nodes so

the resulting algebraic system contains 1527660 velocity unknowns.

For every confining pressure the steady state problem solutions are computed from an uniformly null initial solu-
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tion. Then, the dimensionless vertical body force (Fv
adim
=
ρφgLx

pext
) is incrementally applied in a continuation procedure

up to the unsteadiness limit. Plotting the dimensionless drag force (FD =
∫

Cyl

−→
T · −→e z ds) versus the Froude number

in figure 12 (left panel) (Fr = U/
√

gD , where U = Qv

√
gD/(D2 Lx Ly) and Qv is the computed volumetric gran-

ular flow rate) reveals that for the highest Froude numbers considered the dynamical contribution to the drag force

reaches the same magnitude as the static one. A slope break is observed on the curve at Froude numbers around 0.005

that corresponds to the limit between the artificial creeping flow regime induced by the regularisation and the actual

flowing one as revealed in the close-up view. Finally, the drag coefficient, defined as CD = FD/(1/2 ρφU2), is plotted

versus the Froude number based on the effective cylinder diameter in figure 12 (right panel) for values higher than

0.005 that corresponds to the validity domain of the present numerical solution. In this regime, the numerical results

are in quite good agreement with the experimental ones reported in Chehata et al. [9]. The best results are obtained

with the highest external pressure (pext = 10 ρφgD). Even if the numerical results are not strictly quantitative the

dependency of the drag coefficient to the Froude number is quite well reproduced. As shown by Chehata et al. [9], in

such slow granular flow, the drag force is almost independent of the flow velocity corresponding to drag coefficient

proportional to U−2. This behavior is also confirmed on the drag force versus Froude number evolution where the

drag force tends to an asymptotic value as the Froude number increases. The nice collapse of the drag coefficient

divided by the external pressure versus the Froude number observed in the close-up view of the right panel shows

the linear dependency of the drag force to the external pressure. A better agreement with the experimental data could

certainly be obtained by adjusting the empirical parameters of the rheology and/or modifying the geometry and the

boundary conditions (such as the no-slip boundary conditions at the side walls). However, it is not our objective here

to reproduce exactly this configuration. Our point is more to demonstrate the reliability of the proposed numerical

model to compute dense granular flows in such complex configurations.

In order to get a deeper insight of this dense granular flows the relevant primary variable fields are plotted for

a dimensionless external loading of Fv
adim
= 0.054 in figures 13 (whole computational domain) and in figures 14

(obstacle vicinity). The regularised pressure field plotted in figure 13(a) displays the highest pressures at the upstream

obstacle stagnation region and a very low pressure zone downstream the obstacle. The fields of streamwise and

crossflow velocity components are plotted in figures 13(b) and 13(c), respectively. Close-up views in the obstacle

vicinity (figures 14) reveal that very thin boundary layers develop in regions where the tangential velocity is the

highest. Moreover, wiggles also appear in the cylinder wake, as the granular flow approaches the steady-state limit for

these parameter values. Indeed, owing to the assumption of incompressible granular flow at constant volume fraction

the dynamical pressure is negative and justifies the use of the regularised pressure relationship (16) in the µ(I) rheology

implementation. This can be clearly seen in figure 15 where both the dynamical pressure, the total pressure and the

regularized one are plotted along the left half cylinder perimeter (−π ≤ θ ≤ 0) versus the azimuthal angle (θ = 0 at the

downstream stagnation point), along with the normal and tangential stresses and their regularised counterparts which

are plotted on the right half perimeter (0 ≤ θ ≤ π). It turns out that within the present assumptions the dynamical

pressure behind the cylinder can no longer be directly used to compute the granular viscosity in the µ(I) rheology.
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Figure 12: Granular chute flow around a cylinder for different confining pressures: drag force divided by external pressure (FD/pext) versus

Froude number U/
√

gD (left panel) and drag coefficient (CD = FD/(1/2 ρφU2) versus Froude number based on the effective cylinder diameter

U/
√

g(D + d) (right panel). In the close-up view the drag coefficient is divided by the external pressure whereas the horizontal axis is the modified

Froude number. The symbols represent experimental data reported in Chehata et al. [9]

(a) regularised pressure. (b) Streamwise velocity component. (c) Crosswise velocity component.

Figure 13: Granular chute flow around a cylinder, iso-values of the primary variables for a dimensionless external loading of Fv
adim
= 0.054.
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(a) Close-up of the regularised pressure. (b) Close-up of streamwise velocity component. (c) Close-up of crosswise velocity component.

Figure 14: Granular chute flow around a cylinder, close-up in the vicinity of the cylinder of the iso-values of the primary variables for a dimension-

less external loading of Fv
adim
= 0.054.
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Figure 15: Granular chute flow around a cylinder for Fv
adim
= 0.054. Plots along the cylinder perimeter versus the azimuthal angle of the dynamical

pressure, total pressure, regularized one (plotted for −π ≤ θ ≤ 0), normal and tangential stresses and their regularised counterparts (plotted for

0 ≤ θ ≤ π).
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On the other hand, the regularised particulate viscosity (12) is plotted in figure 16(c) along with its static and

dynamic components, plotted in figures 16(a) and 16(b), respectively, for two dimensionless external loadings of

Fv
adim
= 0.044 and 0.054. The static component spans over seven orders of magnitude between the rigid body motion

far from the motionless rigid walls and the highly sheared zones close to them. On the other hand the dynamical

component is maximum in the cylinder wake and varies only within one order of magnitude. Therefore the regularised

particulate viscosity (figure 16(c)) tends to a very tiny value in the cylinder wake as the pressure tends to its regularised

value (close to zero) in this region.

(a) Static component µs/(‖ γ̇ ‖2 +λ2
r )1/2. (b) Dynamic component ∆µ/(I0

√
φp + ‖ γ̇ ‖). (c) Particulate viscosity (12).

Figure 16: Granular chute flow around a cylinder, regularised particulate viscosity fields for or two dimensionless external loadings of Fv
adim
= 0.044

(half left) and 0.054 (half right).

5. Concluding remarks

This paper presents a full three-dimensional implementation to accurately and efficiently compute steady state

dense granular flows. The physical model considered in the present work is based on a continuum and incompressible

approach supplied with the so-called µ(I) rheology to represent dense granular flows. The key points to get a successful

implementation enabling accurate and efficient computations for this kind of models are twofolds: i) the way to deal

with the tricky pressure dependent visco-plastic rheology within an incompressible flow solver; ii) the capability to

solve efficiently such very stiff non-linear algebraic systems. To achieve these goals four regularised µ(I) relationships

have been proposed, implemented and tested against various representative problems with analytical solutions (vertical

chute flow and flow over an inclined plane). It turned out that, in our finite element framework, the one of eq. (12) is
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not only the most accurate and efficient one, but also the most stable and robust as the problem becomes extremely stiff.

Moreover, the pressure term arising in all these regularised µ(I) relationships needs also to be regularised as it is not

necessarily positive definite while computed within an incompressible flow solver. Finally, the computational accuracy

and efficiency of the proposed steady state solution algorithm has been obtained thanks to complete derivations of the

incremental formulations associated with the Newton-Raphson algorithm.

Further to comprehensive validations on academic configurations, two application examples that exhibit the pecu-

liarities of dense granular flows have also been considered. The first one is the granular flow on a heap which has been

previously investigated experimentally and numerically elsewhere. Our computational results agree qualitatively well

with both experiments and previous numerical ones, assessing the present model capability to reproduce pronounced

3D effects. The second application example deals with the vertical chute flow over a cylinder. This configuration

points out the necessity to perform a pressure regularisation to obtain a computationally reliable µ(I) implementation

when dealing with dense granular flows over or around obstacles. The obtained results demonstrate that the imple-

mented model is able to qualitatively reproduce the main trends of this particular configuration (flow rate and cylinder

drag force) along with some more intricate ones such as the upstream-douwnstream asymmetry induced by the strong

coupling between the dynamical pressure and the granular effective viscosity.

However, a closer quantitative agreement with experiments should probably require some fitting of the numerical

parameters that enter the µ(I) rheology and its implementation along with more appropriated boundary conditions at

solid walls instead of the trivial no slip condition. Moreover, several other improvements will be undertaken in the

near future to broaden the validity domain of the proposed model. A very interesting feature would be to account for

variable particle volume fraction within the computational domain, assuming a constant particle volume fraction is no

longer relevant in many actual situations. Finally, another attractive direction for industrial or geophysical applications

is to model free surface flows, but the way to go is still long.
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A. Analytical solution of the dry granular chute flow

The analytical solution of the dry granular vertical-chute flow based on the µ(I) rheology [16, 20, 14] for the

frictional shear stress is presented. Considering the steady flow of a granular material between two vertical parallel

plates only the vertical downward velocity component w is not vanishing that only depends on y, the transverse

24



direction between the two plates (y ∈ [−b/2; b/2]). z denote the vertical upward direction as shown in figure 1. The

dimensionless momentum equations reduce to:

0 =
∂τyz

∂y
− 1 ; 0 = −∂p

∂y
(20)

The mechanical equilibrium is simple, the shear stress balances the vertical component of the gravity and the

pressure is constant across the section. The y-component of the momentum equation gives a constant distribution of

the pressure: p = constant. The pressure is a free parameter that controls the velocity and the flow rate. Integrating

the z-momentum equation over y gives:

τyz = y +C (21)

where C is an integration constant that should be zero for symmetry reasons. Considering the linear evolution of the

shear stress (21) its maximum arises at the wall y = b/2. Since the granular media exhibits a plastic threshold, given

by µs p, two cases has to be distinguished, if µs p ≥ b/2, the shear stress τyz is always lower than the threshold value

and the granular media is not sheared accordingly with the viscoplastic granular rheology. The solution is trivial in

this case: w(y) = 0 for y ∈ [−b/2 ; b/2]. On the contrary, if µs p < b/2, for y ≥ µs p = y0 the material is sheared

whereas it is not for values of y ≤ y0. The velocity profile exhibits a plug in the central region of the flow.

Therefore, for p < b/(2µs) and assuming a µ(I) frictionnal rheology for the shear stress τyz = µ(I) p the z-

component of the momentum equation (20) reads:

µ(I)p = y, (22)

Introducing the expression µ(I) = µs + ∆µ/(I0/I + 1) in the previous equation gives:

µs p +
∆µp

I0

I
+ 1

= y. (23)

Using the definition y0 = µs p and after some algebra the analytical profile for the inertial number I reads:

I = I0

y − y0

∆µ p − (y − y0)
. (24)

Introducing the expression for I = ‖ γ̇ ‖/
√

φp in the previous equation gives an equation for ‖ γ̇ ‖= |dw/dy|:
∣

∣

∣

∣

dw

dy

∣

∣

∣

∣

= I0

√

φp
y − y0

∆µ p − (y − y0)
. (25)

For y ∈ [y0; b/2], |dw/dy| and w are negative therefore integrating over y, gives:

w(y) = −I0

√

φp
[

y − y0 + ∆µ p ln (∆µ p − (y − y0))
]

+C∗ (26)
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and with no-slip boundary condition at the wall (y = b/2), the following velocity profile is found:

w(y) =


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B. Analytical Bagnold profile

Considering the steady flow of a granular material on an infinite inclined plane only the longitudinal velocity

component u is not vanishing and depends only on z the vertical upward direction (z = 0 at the bottom and z = H at

the free surface). The mechanical equilibrium in this case is very simple, the shear stress balances the longitudinal

component of the gravity and the pressure balances its vertical component. The momentum equations in dimensionless

form reduce to:

0 =
∂τ

∂z
+ sinα ; 0 = −∂p

∂z
− cosα (28)

The z-component of the momentum equation gives an hydostatic distribution of the pressure: p =
(

H − z
)

cosα

(with p = 0 at z = H). Assuming a µ(I) frictionnal rheology for the shear stress τ = µ(I) p , the x-component of the

momentum equation (28) simplifies as:

0 = −µ(I) cosα + sinα, (29)

and at last µ(I) = tanα (constant with z). Using the definition of the inertial number I =‖ du/dz ‖ /
√

p , one can write

the analytical expression for the vertical velocity gradient:

du

dz
= Iα

√

φ0 cosα
(

H − z
)1/2
, (30)

and by integrating on z with u(z = 0) = 0 as boundary condition, one obtains the Bagnold velocity profile:

u =
2

3
Iα

√

φ0 cosα

[

H
3/2 −

(

H − z
)3/2

]

(31)

Introducing the expression µ(I) = µs + ∆µ/1 + I0/I, one finds the following expression for Iα:

Iα = I0

tanα − µs

µs + ∆µ − tanα
(32)
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