Christian Queinnec
email: christian.queinnec@lip6.fr

MOOC and mechanized grading

Keywords:

come

Developping a MOOC is now a common activity in the Academia and so are we doing. This paper is a position paper that presents the main characteristics of our MOOC: it makes an heavy use of an infrastructure to mechanically grade students' programs. How we intend to combine our MOOC with that infrastructure and how we want to create incentives for the students in order to increase their involvement is addressed in this position paper.

Programming exercises are proposed in between the videos of the course. These programming exercises are mechanically graded and grading reports are sent back to the students. Reading grading reports allows students to evolve their programs but additional incentives may better help students. They may program in pair: video-chatting around a shared program, that both students can edit, recreates conviviality. Epsilon-better peeping propose to peep slightly better programs from other students' and learn from them. Finally, recommending programs that were helpful, benefit to all.

Section 1 presents the main lines of our MOOC and Section 2 presents the grading infrastructure while its new features appear in Section 3. Proposed incentives are described in Section 4 and Section 5 concludes this position paper.

PREPARATION OF A MOOC

We are currently developping a MOOC on recursive programming. The e-learning part is based on a course created in 2000 [START_REF] Brygoo | Experiment around a training engine[END_REF] and since then delivered every year at UPMC to hundreds of young scientific students as an introduction to Com-puter Science. The course material was, from 2000 to 2003, provided as a physical CDrom then, from 2004 to 2006, as a CDrom image (300MB) downloadable from UPMC web servers. An innovative characteristics of these CDroms was that they contained a programming environment (based on DrScheme [START_REF] Felleisen | The DrScheme Project: An Overview[END_REF]) with a local mechanized grader, see [START_REF] Brygoo | Experiment around a training engine[END_REF] for details. The students could then read the course documents, write programs, run them and be graded without requiring an Internet connection.

This new MOOC1 , adequately named "Programmation récursive", is an endeavour to extend this course to a broader French-speaking audience, to experiment with the aspects related to social networks and, finally, to collect and study students' answers to the proposed exercises in order to build appropriate error taxonomy and thus better future editions of the MOOC.

Of course, the context has dramatically evolved from 2000 to now. The mechanical grader of 2000 which was grading Scheme programs (Scheme is the programming language used by that course) has now evolved into a multi-language grading infrastructure running in the cloud [START_REF] Queinnec | An infrastructure for mechanised grading[END_REF]. The MOOC uses CourseBuilder (Google, 2013), is hosted on Google App Engine for elasticity, uses YouTube for video streaming and a Google group for forum.

The programming environment, named MrScheme is now provided as a Scheme interpreter, written in Javascript by Frédéric Peschanski and his colleagues [START_REF] Peschanki | MrScheme[END_REF]. This programming environment runs locally in students' browsers. With help of MrScheme, students can test their programs (an habit we enforce) before requesting their program to be graded thus saving servers' computing power. We require students to write programs satisfying a given specification but also to write their own tests for their own programs. We don't grade programs that fail their own tests.

GRADING INFRASTRUCTURE

The grading infrastructure is named FW4EX and described in [START_REF] Queinnec | An infrastructure for mechanised grading[END_REF]. This is a cloud-based infrastructure controlled by REST protocols. Teachers uploads exercises that are tar-gzipped sets of files containing scripts to grade students' programs. Students submit their programs and receive a grading report in return. The infrastructure also offers additional services such as the whole history of their submissions and their associated grading reports.

The infrastructure was carefully defined to scale up, see Figure 1. Students submit (1) to some acquisition servers which act as queueing servers that are regularly polled (2) by some marking drivers. As their name implies it, marking drivers grade student's submission and send (3) the resulting grading reports to long term storage servers (Amazon S3 for instance). Finally storage servers are polled (4) by the waiting students. Student's browsers choose the acquisition server which in return tells where to fetch the resulting future grading report.

Marking drivers are isolated, they cannot be queried. Moreover they run inner virtual machines to run the grading scripts. This allows to confine (possibly malicious) students' and teachers' programs in memory, time, cpu, access to Internet, etc.

Marking drivers also record (5), when connected, the details of the performed grading into a centralized database. Acquisition and storage servers don't perform heavy computations but there are more than one in order to offer some redundancy to ensure continuity of service. The number of marking drivers is handled elastically that is proportionally to the number of submissions to grade. To grade a submission more than once is not a problem: this is the price to pay to absorb grading peaks.

In 2011, we added a new service, see [START_REF] Queinnec | Ranking students with help of mechanized grading[END_REF], that tries to rank students according to their skills. To submit a program is considered as a move in a game that this student plays against all other students who try the same exercise. If a student gets a higher mark in fewer attempts then the student wins over all other students who got a lower mark or a similar mark but in more attempts. Using a ranking algorithm inspired from Glicko [START_REF] Glickman | The Glicko system[END_REF] or TrueSkill [START_REF] Graepel | TrueSkill TM : A bayesian skill rating system[END_REF], it is then possible to rank students on a scale bounded by two virtual students:

• the best student succeeds every exercise with the right answer at first attempt

• and the worst student fails every exercise with one more attempt than the worst real observed student.

This approach can only rank students having tried a sufficient number of exercises in order to appreciate their skill.

When a student submits a program, this program contains functions and their associated tests, let's call them f s and t s . For instance, the next snippet shows a student's submission for an exercise asking for the perimeter of a rectangle:

(define (perimeter height width) (* 2 (+ height width)))

(check perimeter (perimeter 1 1) => 4 (perimeter 1 3) => 8)

This snippet contains the definition of the perimeter function followed by a check clause (an extension we made to the Scheme language) checking perimeter on two different inputs. The check clause implements unit testing. With other languages, Java for instance, we use the JUnit framework instead, [START_REF] Beck | The JUnit framework[END_REF].

The author of the exercise (a teacher) has also written a similar program that is, a function f t and some tests t t . The grading infrastructure uses an instrumented Scheme interpreter and executes the following steps: 5. All these partial marks are weighted and combined to form the final mark.

While steps 1, 2 and 3 were already present in the old CDroms, step 4 is new and measures the completeness of student's tests with respect to teacher's tests (which might be not perfect!).

The grading report returned to the student verbalizes what was submitted, which tests had been done and which kind of results were obtained with student's code compared to teacher's code. These reports are often lengthy but reading them carefully to understand the discrepancies develop students' debugging skill.

INCENTIVES

Equiped with such a grading machinery, we must offer incentives to the students so they may progress by themselves. Some incentives are currently under development and will be tested when the MOOC starts in 2014. The rest of the Section describes these incentives and the scientific challenges behind them which are not completely solved today.

Pair programming

The first incentive is to provide an infrastructure for pair of students to work conjunctly on an exercise. This is pair programming as advocated by eXtreme Programming [START_REF] Beck | eXtreme Programming[END_REF]. A pairing server will be provided from which students will get a peer, the server will then provide a shared (Google) doc or equivalent and will let the two students work together and submit together. The server will choose a peer with roughly the same skill as determined by the ranking algorithm explained in Section 2. Of course, this might only work if a sufficient number of students in need of a peer are simultaneously present therefore, for every week of the MOOC, we intend to define peering periods. This feature will also require a widget in the shared doc to submit the joint work and see the resulting grading report. Accompanying this shared document with a Google hangout allowing to share voice and/or video will probably be attractive.

The quality of the peering process depends on the accuracy of the skill ranking.

Epsilon-better peeping

The second incentive is to propose to students having obtained a mark m and eager to progress, two other students' submissions with slightly better marks i.e., m + ε. This will favour reading other's code, another important skill worth stressing since beginners often think that they code for computers and not for humans! The slightly better mark may have been obtained by a better definition of the function or by better tests. Both allow to improve students' work. Read-ing these others' submission carefully and determine why they are better may be eye-opening.

To prevent students to just copy-paste better solutions, we will limit the number of times students may peep at other's submissions.

For students who stick to very low marks, we will probably have to set ε to a bigger value. If a huge number of students attend this MOOC, we may try various settings for this parameter to help students climb the first step.

Recommendation

After being served other's submissions, students will have to tell whether one of these other's submission was useful or not. This is a kind of recommendation system (or crowd ranking) from which the best helping submissions should emerge. However, differently from recommandation systems where a huge number of persons recommand a few items (movies for instance) here, we have a few students producing a huge number of submissions. Therefore to select the most appropriate submissions is a real challenge.

Accumulating students' submissions should allow to elaborate a taxonomy of programs and errors. This taxonomy will help improving grading reports. Reports may include hints triggered by the kind of recognized error. The recommandation system that select the best helping submissions, may also use that taxonomy. But this taxonomy will only be taken into account for the next edition of the MOOC.

CONCLUSIONS

In this paper, we present some ideas that are currently under development for a MOOC teaching recursive programming for beginners. This MOOC will start in February 2014 hence results are not yet known.

However and as far as we know, the conjunction of a grading machinery, a skill ranking algorithm and a recommendation system for help seems to be innovative and worth studying.

Figure 1 :

 1 Figure 1: Architecture of FW4EX infrastructure

http://programmation-recursive-1.appspot.com