
HAL Id: hal-00915254
https://hal.science/hal-00915254v2

Preprint submitted on 3 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MOOC and mechanized grading
Christian Queinnec

To cite this version:

Christian Queinnec. MOOC and mechanized grading. 2013. �hal-00915254v2�

https://hal.science/hal-00915254v2
https://hal.archives-ouvertes.fr

MOOC and mechanized grading

Christian Queinnec

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

Christian.Queinnec@lip6.fr

Keywords: MOOC, Mechanized grading

Abstract: As many others, we too are developping a Massive Online Open Course or MOOC. This MOOC will teach

recursive programming to beginners and will heavily use an already existing infrastructure for mechanical

grading (Queinnec, 2010). This position paper discusses how these two components are combined in order to

increase students’ involvement.

Developping a MOOC is now a common activity

in the Academia and so are we doing. This paper is a

position paper that presents the main characteristics of

our MOOC: it makes an heavy use of an infrastructure

to mechanically grade students’ programs. How we

intend to combine our MOOC with that infrastructure

and how we want to create incentives for the students

in order to increase their involvement is addressed in

this position paper.

Programming exercises are proposed in between

the videos of the course. These programming exer-

cises are mechanically graded and grading reports are

sent back to the students. Reading grading reports al-

lows students to evolve their programs but additional

incentives may better help students. They may pro-

gram in pair: video-chatting around a shared pro-

gram, that both students can edit, recreates convivi-

ality. Epsilon-better peeping propose to peep slightly

better programs from other students’ and learn from

them. Finally, recommending programs that were

helpful, benefit to all.

Section 1 presents the main lines of our MOOC

and Section 2 presents the grading infrastructure

while its new features appear in Section 3. Proposed

incentives are described in Section 4 and Section 5

concludes this position paper.

1 PREPARATION OF A MOOC

We are currently developping a MOOC on recur-

sive programming. The e-learning part is based on a

course created in 2000 (Brygoo et al., 2002) and since

then delivered every year at UPMC to hundreds of

young scientific students as an introduction to Com-

puter Science. The course material was, from 2000

to 2003, provided as a physical CDrom then, from

2004 to 2006, as a CDrom image (300MB) download-

able from UPMC web servers. An innovative char-

acteristics of these CDroms was that they contained

a programming environment (based on DrScheme

(Felleisen et al., 1998)) with a local mechanized

grader, see (Brygoo et al., 2002) for details. The

students could then read the course documents, write

programs, run them and be graded without requiring

an Internet connection.

This new MOOC1, adequately named “Program-

mation récursive”, is an endeavour to extend this

course to a broader French-speaking audience, to ex-

periment with the aspects related to social networks

and, finally, to collect and study students’ answers to

the proposed exercises in order to build appropriate

error taxonomy and thus better future editions of the

MOOC.

Of course, the context has dramatically evolved

from 2000 to now. The mechanical grader of 2000

which was grading Scheme programs (Scheme is

the programming language used by that course) has

now evolved into a multi-language grading infras-

tructure running in the cloud (Queinnec, 2010). The

MOOC uses CourseBuilder (Google, 2013), is hosted

on Google App Engine for elasticity, uses YouTube

for video streaming and a Google group for forum.

The programming environment, named

MrScheme is now provided as a Scheme inter-

preter, written in Javascript by Frédéric Peschanski

and his colleagues (Peschanki, 2013). This pro-

gramming environment runs locally in students’

browsers. With help of MrScheme, students can

1http://programmation-recursive-1.appspot.com

A1

A2

S1

S2

MD1

MD2

MD3
(1)submit

(2)

(3)

servers

Storage

Acquisition

servers

Marking

drivers

(5)

(4) read grading report

Figure 1: Architecture of FW4EX infrastructure

test their programs (an habit we enforce) before

requesting their program to be graded thus saving

servers’ computing power. We require students to

write programs satisfying a given specification but

also to write their own tests for their own programs.

We don’t grade programs that fail their own tests.

2 GRADING INFRASTRUCTURE

The grading infrastructure is named FW4EX and

described in (Queinnec, 2010). This is a cloud-based

infrastructure controlled by REST protocols. Teach-

ers uploads exercises that are tar-gzipped sets of files

containing scripts to grade students’ programs. Stu-

dents submit their programs and receive a grading re-

port in return. The infrastructure also offers additional

services such as the whole history of their submis-

sions and their associated grading reports.

The infrastructure was carefully defined to scale

up, see Figure 1. Students submit (1) to some acqui-

sition servers which act as queueing servers that are

regularly polled (2) by some marking drivers. As their

name implies it, marking drivers grade student’s sub-

mission and send (3) the resulting grading reports to

long term storage servers (Amazon S3 for instance).

Finally storage servers are polled (4) by the waiting

students. Student’s browsers choose the acquisition

server which in return tells where to fetch the result-

ing future grading report.

Marking drivers are isolated, they cannot be

queried. Moreover they run inner virtual machines to

run the grading scripts. This allows to confine (pos-

sibly malicious) students’ and teachers’ programs in

memory, time, cpu, access to Internet, etc.

Marking drivers also record (5), when connected,

the details of the performed grading into a central-

ized database. Acquisition and storage servers don’t

perform heavy computations but there are more than

one in order to offer some redundancy to ensure con-

tinuity of service. The number of marking drivers is

handled elastically that is proportionally to the num-

ber of submissions to grade. To grade a submission

more than once is not a problem: this is the price to

pay to absorb grading peaks.

In 2011, we added a new service, see (Queinnec,

2011), that tries to rank students according to their

skills. To submit a program is considered as a move

in a game that this student plays against all other stu-

dents who try the same exercise. If a student gets a

higher mark in fewer attempts then the student wins

over all other students who got a lower mark or a

similar mark but in more attempts. Using a ranking

algorithm inspired from Glicko (Glickman, 1995) or

TrueSkill (Graepel et al., 2007), it is then possible to

rank students on a scale bounded by two virtual stu-

dents:

• the best student succeeds every exercise with the

right answer at first attempt

• and the worst student fails every exercise with one

more attempt than the worst real observed student.

This approach can only rank students having tried

a sufficient number of exercises in order to appreciate

their skill.

3 GRADING PROCESS

When a student submits a program, this program

contains functions and their associated tests, let’s call

them fs and ts. For instance, the next snippet shows

a student’s submission for an exercise asking for the

perimeter of a rectangle:

(define (perimeter height width)

(* 2 (+ height width)))

(check perimeter

(perimeter 1 1) => 4

(perimeter 1 3) => 8)

This snippet contains the definition of the

perimeter function followed by a check clause (an

extension we made to the Scheme language) check-

ing perimeter on two different inputs. The check

clause implements unit testing. With other languages,

Java for instance, we use the JUnit framework instead,

(Beck and Gamma, 2012).

The author of the exercise (a teacher) has also

written a similar program that is, a function ft and

some tests tt . The grading infrastructure uses an in-

strumented Scheme interpreter and executes the fol-

lowing steps:

1. ts(fs) should be correct. Student’s program that

fail student’s own tests are rejected. This ensures

that students don’t forget to check their own code.

We also check that the student does not obviously

cheat i.e., ts really calls function fs.

2. ts(ft) should be correct that is, student’s tests

should be related to the problem solved by ft . The

number of student’s successful tests and the num-

ber of time the teacher’s function has been called

are used to provide a partial mark.

3. tt(fs) should be correct that is, student’s function

should pass teacher’s tests. The number of suc-

cessfully passed tests also provides a partial mark.

4. The Scheme interpreter was instrumented in or-

der to compute coverage profiles. Comparing

the coverage of the student’s tests with respect to

teacher’s test provide the last component of the fi-

nal mark. Student’s tests should at least execute

all the code parts of their own code that are ex-

ecuted by teacher’s tests. This again provides a

partial mark.

5. All these partial marks are weighted and com-

bined to form the final mark.

While steps 1, 2 and 3 were already present in the

old CDroms, step 4 is new and measures the com-

pleteness of student’s tests with respect to teacher’s

tests (which might be not perfect!).

The grading report returned to the student verbal-

izes what was submitted, which tests had been done

and which kind of results were obtained with stu-

dent’s code compared to teacher’s code. These reports

are often lengthy but reading them carefully to under-

stand the discrepancies develop students’ debugging

skill.

4 INCENTIVES

Equiped with such a grading machinery, we must

offer incentives to the students so they may progress

by themselves. Some incentives are currently un-

der development and will be tested when the MOOC

starts in 2014. The rest of the Section describes these

incentives and the scientific challenges behind them

which are not completely solved today.

4.1 Pair programming

The first incentive is to provide an infrastructure for

pair of students to work conjunctly on an exercise.

This is pair programming as advocated by eXtreme

Programming (Beck, 2000). A pairing server will

be provided from which students will get a peer, the

server will then provide a shared (Google) doc or

equivalent and will let the two students work together

and submit together. The server will choose a peer

with roughly the same skill as determined by the rank-

ing algorithm explained in Section 2. Of course, this

might only work if a sufficient number of students

in need of a peer are simultaneously present there-

fore, for every week of the MOOC, we intend to de-

fine peering periods. This feature will also require a

widget in the shared doc to submit the joint work and

see the resulting grading report. Accompanying this

shared document with a Google hangout allowing to

share voice and/or video will probably be attractive.

The quality of the peering process depends on the

accuracy of the skill ranking.

4.2 Epsilon-better peeping

The second incentive is to propose to students having

obtained a mark m and eager to progress, two other

students’ submissions with slightly better marks i.e.,

m+ ε. This will favour reading other’s code, another

important skill worth stressing since beginners often

think that they code for computers and not for hu-

mans! The slightly better mark may have been ob-

tained by a better definition of the function or by bet-

ter tests. Both allow to improve students’ work. Read-

ing these others’ submission carefully and determine

why they are better may be eye-opening.

To prevent students to just copy-paste better solu-

tions, we will limit the number of times students may

peep at other’s submissions.

For students who stick to very low marks, we will

probably have to set ε to a bigger value. If a huge

number of students attend this MOOC, we may try

various settings for this parameter to help students

climb the first step.

4.3 Recommendation

After being served other’s submissions, students will

have to tell whether one of these other’s submission

was useful or not. This is a kind of recommendation

system (or crowd ranking) from which the best help-

ing submissions should emerge. However, differently

from recommandation systems where a huge number

of persons recommand a few items (movies for in-

stance) here, we have a few students producing a huge

number of submissions. Therefore to select the most

appropriate submissions is a real challenge.

Accumulating students’ submissions should allow

to elaborate a taxonomy of programs and errors. This

taxonomy will help improving grading reports. Re-

ports may include hints triggered by the kind of rec-

ognized error. The recommandation system that se-

lect the best helping submissions, may also use that

taxonomy. But this taxonomy will only be taken into

account for the next edition of the MOOC.

5 CONCLUSIONS

In this paper, we present some ideas that are cur-

rently under development for a MOOC teaching re-

cursive programming for beginners. This MOOC

will start in February 2014 hence results are not yet

known.

However and as far as we know, the conjunction

of a grading machinery, a skill ranking algorithm and

a recommendation system for help seems to be inno-

vative and worth studying.

REFERENCES

Beck, K. (2000). eXtreme Programming.
http://en.wikipedia.org/wiki/Extreme_programming.

Beck, K. and Gamma, E. (2012). The JUnit framework,
v4.11. http://junit.org/.

Brygoo, A., Durand, T., Manoury, P., Queinnec, C., and
Soria, M. (2002). Experiment around a training en-
gine. In IFIP WCC 2002 – World Computer Congress,
Montréal (Canada). IFIP.

Felleisen, M., Findler, R., Flatt, M., and Krishnamurthi, S.
(1998). The DrScheme Project: An Overview. SIG-
PLAN Notices, 33(6):17–23.

Glickman, M. (1995). The Glicko sys-
tem. Technical report, Boston University.
http://glicko.net/glicko.doc/glicko.html.

Google (2013). CourseBuilder.
https://code.google.com/p/course-builder/.

Graepel, T., Herbrich, R., and Minka, T.
(2007). TrueSkillTM: A bayesian skill
rating system. Technical report, Mi-
crosoft. http://research.microsoft.com/en-
us/projects/trueskill/.

Peschanki, F. (2013). MrScheme.
http://github.com/fredokun/mrscheme.

Queinnec, C. (2010). An infrastructure for mechanised
grading. In CSEDU 2010 – Proceedings of the sec-
ond International Conference on Computer Supported
Education, volume 2, pages 37–45, Valencia, Spain.

Queinnec, C. (2011). Ranking students with help of mecha-
nized grading. See http://hal.archives-ouvertes.fr/hal-
00671884/.

