
HAL Id: hal-00915254
https://hal.science/hal-00915254v1

Preprint submitted on 21 Dec 2013 (v1), last revised 3 Jan 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MOOC and mechanized grading
Christian Queinnec

To cite this version:

Christian Queinnec. MOOC and mechanized grading. 2013. �hal-00915254v1�

https://hal.science/hal-00915254v1
https://hal.archives-ouvertes.fr

MOOC and mechanized grading

Christian Queinnec

UPMC LIP6

Christian.Queinnec@lip6.fr

Keywords: MOOC, Mechanized grading

Abstract: As many others, we too are developping a Massive Online Open Course or MOOC. This MOOC will teach

recursive programming for beginnners and makes an heavy use of an already existing infrastructure for me-

chanical grading (Queinnec, 2010). This paper presents some ideas on how to combine these two components

along with some (untested) incentives for students in order to lessen teachers’ time and increase students’

involvement.

Developping a MOOC is now a common activity

in the Academia and so are we doing. This paper is

a position paper that presents the main characteristics

of our MOOC: it makes an heavy use of an infrastruc-

ture for the mechanized grading of students’ program.

How we intend to combine our MOOC with that in-

frastructure and how we want to create incentives for

the students in order to increase their involvement to

lessen teachers’time is addressed in this paper. Sec-

tion 1 presents the main lines of our MOOC and Sec-

tion 2 presents the grading infrastructure while its new

features appear in Section 3. Proposed incentives are

described in Section 4 and Section 5 will conclude

this position paper.

1 PREPARATION OF A MOOC

We are currently developping a MOOC on recur-

sive programming. The e-learning part is based on

a course created in 2000 (Brygoo et al., 2002) and

still delivered today at UPMC to hundreds of young

scientific students as an introductory course on Com-

puter Science. The course material was, from 2000

to 2003, provided as a physical CDrom then, from

2004 to 2006, as a CDrom image (300MB) download-

able from UPMC web servers. An innovative char-

acteristics of these CDroms was that they contained

a programming environment (based on DrScheme

(Felleisen et al., 1998)) with a local mechanized

grader, see (Brygoo et al., 2002) for details. The

students could then read the course documents, write

programs, run them and be graded without requiring

an Internet connection.

This new MOOC1, adequately named “Program-

mation récursive”, is an endeavour to extend this

course to a broader French-speaking audience, to ex-

periment with the related social aspects and, finally,

to collect and study students’ answers to the proposed

exercises in order to build appropriate error taxonomy

and thus better future editions of the MOOC.

Of course, the context has dramatically evolved

from 2000 to now. The mechanical grader of 2000

which was grading Scheme programs (Scheme is the

programming language used by that course) is now

a multi-language grading infrastructure running in

the cloud (Queinnec, 2010). The MOOC is hosted

on Google App Engine for elasticity. makes use of

YouTube for video streaming and a Google group for

forum.

The programming environment, named

MrScheme is now provided by a Scheme inter-

preter, written in Javascript by Frédéric Peschanski

and his colleagues (Peschanki, 2013), and thus able

to run locally in students’ browsers. With help of

MrScheme, students can test their programs (an habit

we enforce) before requesting their program to be

graded thus saving servers’ computing power. We

require students to write programs satisfying a given

specification but also to write their own tests for their

own programs. We don’t grade programs that fail

their own tests.

1http://programmation-recursive-1.appspot.com

A1

A2

S1

S2

MD1

MD2

MD3
(1)submit

(2)

(3)

servers

Storage

Acquisition

servers

Marking

drivers

(5)

(4) read grading report

Figure 1: Architecture of FW4EX infrastructure

2 GRADING INFRASTRUCTURE

The grading infrastructure is named FW4EX and

described in (Queinnec, 2010). This is a cloud-based

infrastructure controlled by REST protocols. Teach-

ers uploads exercises that are tar-gzipped sets of files

containing scripts to grade students’ programs. Stu-

dents submit their programs and receive a grading re-

port in return. The infrastructure also offers additional

services such as the whole history of their submis-

sions and their associated grading reports.

The infrastructure was carefully defined to scale

up, see Figure 1. Students submit to some acquisi-

tion servers which act as queueing servers that are

regularly polled by some marking drivers. As their

name implies it, marking drivers grade student’s sub-

mission and send the resulting grading reports to long

term storage servers (Amazon S3 for instance). Stor-

age servers are polled by the waiting students. Stu-

dent’s browsers choose the acquisition server which

in return tells where to fetch the produced grading re-

port.

Marking drivers also record into a centralized

database, when connected, the details of the grading

performed.

In 2011, we added a new service, see (Queinnec,

2011), that tries to rank students according to their

skills. To submit a program is considered as a move in

a game that the student plays against all other students

who try the same exercise. If a student gets a higher

mark in fewer attempts then the student wins over all

other students who got a lower mark or a similar mark

in more attempts. Using a ranking algorithm inspired

from Glicko (Glickman, 1995) or TrueSkill (Graepel

et al., 2007), it is then possible to rank students on a

scale bounded by two virtual students:

• the best student succeeds every exercise with the

right answer at first attempt

• and the worst student fails every exercise with one

more attempt than the worst real observed student.

This approach can only rank students having tried

a sufficient number of exercises in order to appreciate

their skill.

3 GRADING

When a student submits a program, this program

contains functions and their associated tests, let’s call

them fs and ts. For instance, the next snippet shows

a student’s submission for an exercise asking for the

perimeter of a rectangle:

(define (perimeter height width)

(* 2 (+ height width)))

(check perimeter

(perimeter 1 1) => 4

(perimeter 1 3) => 8)

This snippet contains the definition of the

perimeter function followed by a check clause (an

extension we made to the Scheme language) check-

ing perimeter on two different inputs. The check

clause implements unit testing. With other language,

Java for instance, we use the JUnit framework instead,

(Beck and Gamma, 2012).

The author of the exercise has also written a simi-

lar program that is, a function ft and some tests tt . The

grading infrastructure makes use of an instrumented

Scheme interpreter and execute the following steps:

1. ts(fs) should be correct. Student’s program that

fail student’s own tests are rejected. This ensures

that students don’t forget to check their own code.

We also check that the student does not cheat i.e.,

ts really calls function fs.

2. ts(ft) should be correct that is, student’s test

should be related to the problem. The number

of student’s tests and the number of time the

teacher’s function has been called are used to pro-

vide a partial mark.

3. tt(fs) should be correct that is, student’s function

should pass teacher’s tests. The number of suc-

cessfully passed tests also provide a partial mark.

4. The Scheme interpreter was instrumented in or-

der to be able to compute coverage profiles. Com-

paring the coverage of the student’s tests with re-

spect to teacher’s test provide the last component

of the final mark. Student’s tests should at least

execute all the code parts of their own code that

are used by teacher’s tests. This again provide a

partial mark.

5. All these partial marks are weighted and com-

bined to form the final mark.

While steps 1, 2 and 3 were already present in the

old CDroms, step 4 is new and measures the com-

pleteness of student’s test with respect to teacher’s

tests (which might be not perfect!).

The grading report returned to the student verbal-

izes what was submitted, which tests had been done

and which kind of results were obtained with stu-

dent’s code compared to teacher’s code. These reports

are often lengthy but reading them carefully to under-

stand the discrepancies develop students’ debugging

skill.

4 INCENTIVES

Equiped with such a grading machinery, we must

offer incentives to the students so they may progress

by themselves. Some incentives are being developped

and will be tested when the MOOC starts in 2014.

The rest of the Section describes these incentives and

describes the scientific challenges behind them which

are not completely solved today.

4.1 Pair programming

The first incentive is to provide an infrastructure for

two students to work conjunctly on an exercise. This

is pair programming as in the eXtreme Programming

trend (Beck, 2000). A pairing server will be provided

from which students will get a peer, the server will

then provide a shared Google doc or equivalent and

will let the two students work together and submit to-

gether. The server will choose a peer with roughly

the same skill as determined by the ranking algorithm

explained in Section 2. Of course, this might only

work if a sufficient number of students in need of a

peer are simultaneously present therefore, for every

week of the MOOC, we intend to define peering peri-

ods. This feature will also require a widget in shared

Google doc to submit the joint work and see the re-

sulting grading report. Coupling writing this shared

document with a Google hangout allowing to share

voice and/or video will probably be attractive.

4.2 Epsilon-better peeping

The second incentive is to propose to students hav-

ing obtained a mark m and eager to progress, two

other students’ submissions with slightly better marks

m+ ε. This will favour reading other’s code, another

important skill worth stressing since beginners often

think that they code for computers! The slightly better

mark may have been obtained by a better definition of

the function or by better tests. Reading them carefully

to determine why they are better may be eye-opening.

To prevent students to just copy-paste better solu-

tions, we will limit the number of times we provide

other’s submissions.

For students who stick to very low marks, we will

probably have to set the ε to a bigger value. If a huge

number of students attend this MOOC, we may try

various settings for this parameter to help students

climb the first step.

4.3 Recommendation

After being served other’s submissions, students will

have to tell whether one of these other’s submission

was useful or not. This is a kind of recommendation

system (or crowd ranking) from which the best help-

ing submissions should emerge. However, differently

from recommandation systems where a huge number

of persons recommand a few items (movies for in-

stance) here, we have a few students producing a huge

number of submissions. Therefore to select the most

appropriate submissions is a real challenge.

Accumulating students’ submissions should allow

to elaborate a taxonomy of programs and errors. This

taxonomy will help improving grading reports: they

may then include hints triggered by the kind of rec-

ognized error. The recommandation system to select

best helping submission may also use that taxonomy.

But this taxonomy will only be taken into account for

the next edition of the MOOC.

5 CONCLUSIONS

In this paper, we present some ideas that are cur-

rently under development for a MOOC teaching re-

cursive programming for beginners. This MOOC

will start in February 2014 hence results are not yet

known.

However and as far as we know, the conjunction

of a grading machinery, a skill ranking algorithm and

a recommendation system for help seems to be inno-

vative.

REFERENCES

Beck, K. (2000). eXtreme Programming.
http://en.wikipedia.org/wiki/Extreme_programming.

Beck, K. and Gamma, E. (2012). The JUnit framework,
v4.11. http:://junit.org/.

Brygoo, A., Durand, T., Manoury, P., Queinnec, C., and
Soria, M. (2002). Experiment around a training en-
gine. In IFIP WCC 2002 – World Computer Congress,
Montréal (Canada). IFIP.

Felleisen, M., Findler, R., Flatt, M., and Krishnamurthi, S.
(1998). The DrScheme Project: An Overview. SIG-
PLAN Notices, 33(6):17–23.

Glickman, M. (1995). The Glicko sys-
tem. Technical report, Boston University.
http://glicko.net/glicko.doc/glicko.html.

Graepel, T., Herbrich, R., and Minka, T.
(2007). TrueSkillTM: A bayesian skill
rating system. Technical report, Mi-
crosoft. http://research.microsoft.com/en-
us/projects/trueskill/.

Peschanki, F. (2013). MrScheme.
http:://github.com/fredokun/mrscheme.

Queinnec, C. (2010). An infrastructure for mechanised
grading. In CSEDU 2010 – Proceedings of the sec-
ond International Conference on Computer Supported
Education, volume 2, pages 37–45, Valencia, Spain.

Queinnec, C. (2011). Ranking students with help of mech-
anized grading. unpublished.

