Marc Bui

Franck Butelle
email: butelle@lipn.univ-paris13.fr

Christian Lavault

A Distributed Algorithm for Constructing a Minimum Diameter Spanning Tree

Keywords: Spanning trees, Minimum diameter spanning trees, Shortest paths, Shortest paths trees, All-pairs shortest paths, Absolute centers

We present a new algorithm, which solves the problem of distributively finding a minimum diameter spanning tree of any (non-negatively) real-weighted graph G = (V, E, ω). As an intermediate step, we use a new, fast, linear-time all-pairs shortest paths distributed algorithm to find an absolute center of G. The resulting distributed algorithm is asynchronous, it works for named asynchronous arbitrary networks and achieves O(|V |) time complexity and O (|V | |E|) message complexity.

Introduction

Many computer communication networks require nodes to broadcast information to other nodes for network control purposes; this is done efficiently by sending messages over a spanning tree of the network. Now, optimizing the worst-case message propagation over a spanning tree is naturally achieved by reducing the diameter to a minimum.

The use of a control structure spanning the entire network is a fundamental issue in distributed systems and interconnection networks. Given a network, a distributed algorithm is said to be total iff all nodes participate in the computation. Now, all total distributed algorithms have a time complexity of Ω(D), where D is the network diameter (either in terms of hops, or according to the wider sense given by Christophides in [START_REF] Christophides | Graph Theory: An algorithmic approach[END_REF]). Therefore, having a spanning tree with minimum diameter of arbitrary networks makes it possible to design a wide variety of timeefficient distributed algorithms. In order to construct such a spanning tree, all-pairs shortest paths in the graph are needed first. Several distributed algorithms already solve the problem on various assumptions. However, our requirements are more general than the usual ones. For example, we design a "process terminating" algorithm for (weighted) networks with no common knowledge shared between the processes. (See assumptions in Subsection 1.2 below.)

Model, Notations and Definitions

A distributed system is a standard point-to-point asynchronous network consisting of n communicating processes connected by m bidirectional channels. Each process has a local non-shared memory and can communicate by sending messages to and receiving messages from its neighbours. A single process can transmit to and receive from more than one neighbour at a time.

The network topology is described by a finite, weighted, connected and undirected graph G = (V, E, ω), devoid of multiple edges and loop-free. G is a structure which consists of a finite set of nodes V and a finite set of edges E with real-valued weights; each edge e is incident to the elements of an unordered pair of nodes (u, v). In the distributed system, V represents the processes, while E represents the (weighted) bidirectional communication channels operating between neighbouring processes [START_REF] Lavault | Évaluation des algorithmes distribués -analyse, complexité, méthode[END_REF]. We assume that, for all (u, v) ∈ E, ω(u, v) = ω(v, u) and, to shorten the notation, ω(u, v) = ω(e) denotes the real-valued weight of edge e = (u, v). (Assumptions on real-valued weights of edges are specified in the next two Subsections 1.2 and 1.3.) Throughout, we let |V | = n, |E| = m and, according to the context, we use G to represent the network or the weighted graph, indistinctly.

The weight of a path [u 0 , . . . , [START_REF] Christophides | Graph Theory: An algorithmic approach[END_REF]. An absolute center of G is defined as a node (not necessarily unique) achieving the smallest eccentricity in G. D = D(G) denotes the diameter of G, defined as D = max v∈V ecc(v) (see [START_REF] Christophides | Graph Theory: An algorithmic approach[END_REF]) and R = R(G) denotes the radius of G, defined as R = min v∈V ecc(v). Finally, Ψ(u) = Ψ G (u) represents the shortest paths tree (SPT) of G rooted at node u:

u k] of G (u i ∈ V, 0 ≤ i ≤ k) is defined as 0≤i≤k-1 ω(u i , u i+1). For all nodes u and v in V , the distance from u to v, denoted d(u, v) = d G (u, v) = d(v, u) = d G (v, u), is the lowest weight of any path length from u to v in G. The largest (minimal) distance from a node v to all other nodes in V , denoted ecc(v) = ecc G (v), is the eccentricity of node v: ecc(v) = max u∈V d(u, v)
(∀v ∈ V) d Ψ(u) (u, v) = d(u, v). Ψ(u) is chosen
uniquely among all the shortest paths trees of G rooted at node u; whenever there is a tie between any two length paths d(u, v), it is broken by choosing the path with a second node of minimal identity. The set of all SPTs of G is denoted Ψ = Ψ(G). When it is clear from the context, the name of the graph is omitted.

In the remainder of the paper, we denote problems as "the (MDST) problem", "the (MST) problem", "the (GMDST) problem", etc. (see definitions in Subsection 1.4). Distributed algorithms are denoted in italics, e.g. "algorithm MDST ". Finally, "MDST", "APSPs" and "SPT" abbreviate "minimum diameter spanning tree", "all-pairs shortest paths" and "shortest paths tree", respectively.

The Problem

Given a weighted graph G = (V, E, ω), the (MDST) problem is to find a spanning tree of G of minimum diameter D (according to the definition of D).

Note that the (MDST) problem assumes G to be a non-negatively real-weighted graph (i.e., ∀e ∈ E ω(e) ∈ R +). Indeed, the (MDST) problem is known to be NP-hard if we allow negative length cycles in G (cf. Camerini et al. [START_REF] Camerini | Complexity of spanning tree problems: Part I[END_REF]).

In spite of the fact that the (MDST) problem requires arbitrary non-negative real-valued edges weights, our distributed MDST algorithm is process terminating (i.e., a proper distributed termination is completed [START_REF] Lavault | Évaluation des algorithmes distribués -analyse, complexité, méthode[END_REF]). This is generally not the case on the above requirement. When weights are assumed to be real-valued, a common (additional) knowledge of a bound on the size of the network is usually necessary for APSPs algorithms to process terminate (see e.g. [START_REF] Awerbuch | Complexity of network synchronization[END_REF][START_REF] Bertsekas | Data Networks[END_REF][START_REF] Lamport | An assertional correctness proof of a distributed algorithm[END_REF]). By contrast, no "structural information" is assumed in our algorithm, neither topological (e.g., size or bound on the size of the network), nor a sense of direction, etc. (see Subsection 2.2).

Assumptions

In addition to the above general hypothesis of the (MDST) problem, we need the following assumptions on the network.

• Processes are faultless, and the communication channels are faithful, lossless and orderpreserving (FIFO).

• All processes have distinct identities (IDs). (G is called a "named network", by contrast with "anonymous networks".) We need distinct IDs to compute the APSPs routing tables of G at each process of the network. For the sake of simplicity, IDs are also assumed to be non-negative distinct integers.

Each process must distinguish between its ports, but has no a priori knowledge of its neighbours IDs. Actually, any process knows the ID of a sending process after reception of its first message. Therefore, we assume w.l.o.g. (and up to n -1 messages at most) that a process knows the ID of each of its neighbours from scratch (see protocol APSP in Subsection 2.1.2).

• Of course, each node also knows the weights of its adjacent edges. However, edges weights do not satisfy the triangular inequality.

• Let A be a distributed algorithm defined on G. A non-empty subset of nodes of V , called initiators, simultaneously start algorithm A. In other words, an external event (such as a user request, for example), impels the initiators to trigger the algorithm. Other (noninitiating) nodes "wake up" upon receipt of a first message.

• In a reliable asynchronous network, we measure the communication complexity of an algorithm A in terms of the maximal number of messages that are received, during any execution of A. We also take into account the number of bits in the messages (or message size): this yields the "bit complexity" of A. For measuring the time complexity of A, we use the definition of standard time complexity given in [START_REF] Lavault | Évaluation des algorithmes distribués -analyse, complexité, méthode[END_REF][START_REF] Lynch | Distributed Algorithms[END_REF]. Standard time complexity is defined on "Asynchronous Bounded Delay networks" (ABD networks): we assume an upper bound transmission delay time of τ for each message in a channel; τ is then the "standard time unit" in G.

Related Works and Results

The small amount of literature related to the (MDST) problem mostly deals either with graph problems in the Euclidian plane (geometric minimum diameter spanning tree: the (GMDST) problem), or with the Steiner spanning tree construction (see [START_REF] Ho | Minimum diameter spanning trees and related problems[END_REF][START_REF] Ihler | On shortest networks for classes of points in the plane[END_REF]). The (MDST) problem is clearly a generalization of the (GMDST) problem. The sequential problem has been addressed by some authors (see for example [START_REF] Christophides | Graph Theory: An algorithmic approach[END_REF]). Surprisingly, despite the importance of having a MDST in arbitrary distributed systems, only few papers have addressed the question of how to design algorithms which construct such spanning trees. Finding and maintaining a minimum spanning tree (the (MST) problem) has been extensively studied in the literature (e.g. [START_REF] Awerbuch | Optimal distributed algorithms for minimum weight spanning tree counting, leader election and related problems[END_REF][START_REF] Awerbuch | Communication-optimal maintenance of replicated information[END_REF][START_REF] Eppstein | Maintenance of a minimum spanning forest in a dynamic plane graph[END_REF][START_REF] Gallager | A distributed algorithm for minimum weight spanning trees[END_REF]). More recently, the problem of maintaining a small diameter was however solved in [START_REF] Italiano | Maintaining spanning trees of small diameter[END_REF], and the distributed (MDST) problem was addressed in [START_REF] Bui | Minimum diameter spanning tree[END_REF][START_REF] Butelle | A uniform self-stabilizing minimum diameter spanning tree algorithm[END_REF].

Main contributions of the paper

Our algorithm APSP is a generalization of APSP algorithms on graphs with unit weights (weights with value 1) to the case of non-negatively real-weighted graphs. To our knowledge, our MDST finding algorithm is also the first which distributively solves the (MDST) problem [START_REF] Bui | Minimum diameter spanning tree[END_REF]. The algorithm MDST works for named arbitrary network topologies with asynchronous communications. It achieves an "efficient" O(n) time complexity and O(nm(log n + log W)) bits communication complexity, where W is the largest weight of a channel. (An O(n) time complexity may be considered "efficient", though not optimal, since the construction of a spanning tree costs at least Ω(D) in time).

The paper is organized as follows. In Section 2 we present a high-level description of the protocol APSP, a formal design of the procedure Gamma star and the algorithm MDST. Section 3 is devoted to proofs and complexity analysis of the algorithm. Finally, concluding remarks are given in Section 4.

The Algorithm 2.1 A High-Level Description

Main Issues

First, we recall in Lemma 2.1 that the (MDST) problem for a weighted graph G is (polynomially) reducible to the absolute center problem for G. Then, we constructively find and compute an absolute center of G by using its APSPs routing tables in Lemma 2.2.

In summary, given a positively weighted graph G, the main steps of our algorithm for the (MDST) problem are the following:

1. The computation of APSPs in G;

2. The computation of an absolute center of G (procedure Gamma star(e) in Subsection 2.2); 3. The construction of a MDST of G, and the transmission of the knowledge of that MDST to each node within the network G.

Construction of a MDST

The definition of the eccentricity is generalized as follows. We view an edge (u, v) with weight ω as a continuous interval of length ω, and for any 0 < α < ω we allow an insertion of a "dummy node" γ and replace the edge (u, v) by a pair of edges: (u, γ) with weight α and (γ, v) with weight ω -α.

According to the definition, the eccentricity ecc(γ) of a general node γ (i.e., either an actual node of V , or a dummy node) is clearly given by ecc(γ) = max z∈V d(γ, z). A node γ * such that ecc(γ *) = min γ ecc(γ) is called an absolute center of the graph. Recall that γ * always exists in a connected graph and that it is not unique in general. Moreover, an absolute center of G is usually one of the dummy nodes (see Fig. 1).

Similarly, the definition of Ψ(u) is also generalized to account for the dummy nodes. Finding a MDST actually reduces to searching for an absolute center γ * of G: the SPT rooted at γ * is a MDST of G. Such is the purpose of the following Lemma 2.1.

Lemma 2.1 [START_REF] Camerini | Complexity of spanning tree problems: Part I[END_REF] Given a weighted graph G, the (MDST) problem for G is (polynomially) reducible to the problem of finding an absolute center of G. γ * : absolute center of G

Computation of an absolute center of a graph

The idea of computing absolute p-centers was first introduced by Hakimi, see for example [START_REF] Hakimi | On p-centers in networks[END_REF].

Here we address the computation of an absolute 1-center. According to the results in [START_REF] Christophides | Graph Theory: An algorithmic approach[END_REF], we need the following lemma (called Hakimi's method) to find an absolute center of G. (1)

If we plot f + z (α) = α + d(u, z) and f - z (α) = -α + ω(u, v) + d(v, z)
in Cartesian coordinates for fixed z = z 0 , the real-valued functions f + z0 (α) and f - z0 (α) (separately depending on α in the range [0, ω(e)]) are represented by two line segments (S 1) z0 and (S -1) z0 , with slope +1 and -1, respectively. For a given z = z 0 , the smallest of the two terms f + z0 (α) and f - z0 (α) in (1) define a piecewise linear function f z0 (α) made of (S 1) z0 and (S -1) z0 .

Let B e (α) be the upper boundary (α ∈ [0, ω(e)]) of all the above f z (α) (∀z ∈ V). B e (α) is a curve made up of piecewise linear segments, which passes through several local minima (see Fig. 2). A point γ achieving the smallest minimal value (i.e. the global minimum) of B e (α) is an absolute center γ * e of the edge e. (ii) From the definition of γ * e , min γ ecc(γ) = min γ * e s(γ * e); and γ * achieves the minimal eccentricity. Therefore, an absolute center γ * of the graph is found at any point where the minimum of all ecc(γ * e)s is attained.

By Lemma 2.2, we may consider this method from an algorithmic viewpoint. For each e = (u, v) ∈ E, let

C e = (d 1 , d 2) | ∀z ∈ V d 1 = d(u, z) and d 2 = d(v, z) . (a i , b i) pairs of distances f + i (α) = α + a i f - i (α) = ω(u, v) -α + b i

All-Pairs Shortest Paths Algorithm (protocol APSP)

In §2.1.3, we consider the distances d(u, z) and d(v, z), for all z ∈ V and for each edge e = (u, v) ∈ E. The latter distances must be computed by a distributed (process terminating) routing algorithm; the protocol APSP is designed for that purpose in Subsection 2.2.

Construction and knowledge transmission of a MDST

At the end of the protocol APSP, every node knows the node u min with the smallest ID and a shortest path in G leading to u min . Now, consider the collection of all paths [u, . . . , u min] (computed by APSP), which start from a node u ∈ V and end at node u min . This collection forms a tree rooted at node u min and, since it is an SPT of G, the information is exchanged "optimally" in the SPT Ψ(u min)1 . Hence, the number of messages needed to search an extremum in the tree Ψ(u min) is at most O(n) (with message size O (log n + log W)).

When the computation of an absolute center γ * of G is completed, the endpoint of γ * 's edge having the smallest ID sends a message to u min carrying the ID of γ * . Upon receipt of the message, u min forwards the information all over Ψ(u min) (adding the same cost in time and messages). Therefore each node of G knows a route to γ * , and the MDST is built as a common knowledge for all nodes.

The APSP algorithm

We need an algorithm that computes the all-pairs shortest paths in G and does process terminate without any structural information (e.g., the knowledge an upper bound on n). Our algorithm is based on the Netchange algorithm (see the proof in [START_REF] Lamport | An assertional correctness proof of a distributed algorithm[END_REF]), the Bellman-Ford algorithm (see [START_REF] Bertsekas | Data Networks[END_REF]) and the α-synchroniser described in [START_REF] Awerbuch | Complexity of network synchronization[END_REF]. The three latter algorithms process terminate iff an upper bound on n is known. Otherwise, if the processes have no structural information, the above algorithms only "message terminate" (see [START_REF] Awerbuch | Complexity of network synchronization[END_REF][START_REF] Lavault | Évaluation des algorithmes distribués -analyse, complexité, méthode[END_REF]). However, proper distributed termination may be achieved without additional knowledge by using the same technique designed in [START_REF] Chandrasekaran | A message optimal algorithm for distributed termination detection[END_REF]. We now shortly describe the algorithm (from the viewpoint of node u, whose ID is id u).

The protocol APSP is organized in phases after the first initialization step. This step starts initializing sets and variables (id u is the selected ID): the distance to id u is set to 0, while all others distances are set to ∞ and the set Updatenodes is initialized to ∅. Next, every phase of the algorithm consists of three steps.

Step 1. Send to all neighbours the ID of the selected node and its distance to node u.

Step 2. Wait for reception of the same number of messages sent in step 1 minus the number of inactive neighbours (see next paragraph). Upon receipt of a message, update distance tables. If the estimate of the distance to a node changes, add this node to the set Updatenodes. If an Inactive message is received from a neighbour, mark it inactive. When the awaited number of messages is received, start step 3.

Step 3. Choose an active node from the set Updatenodes with the smallest distance to u and go to step 1. If no such node exists then send an Inactive messsage to each active neighbour; node u becomes an inactive node.

We need the following rules to make the algorithm process terminate.

(1) An inactive node forwards updating messages (if necessary) to its inactive neighbours.

(2) Only one Inactive message is sent from node u to a neighbour v and this message is the last message (of protocol APSP) from u to v.

(3) (from the previous rule) A node terminates only when two Inactive messages are received in each of its adjacent edges (one from each direction).

Thus, we designed a new distributed APSP protocol having a good message complexity: 2mn.

Procedure Gamma star

Assume the list L e (defined in §2.1.3) to be already constructed (e.g. with a heap) when the routing tables are computed. For any fixed edge e ∈ E, the next procedure returns a value γ * e .

Procedure Gamma star(e)

Var min, α: real;

Init min ← a 1 ; α ← 0; For i ← 1 to |L e | -1 do (* Compute the intersection (x, y) of segments f - i and f + i+1 *) x ← 1 2 ω(e) -a i+1 + b i ; y ← 1 2 ω(e) + a i+1 + b i ; if y <

Analysis

For the of the complexity analysis, let W ∈ R + be the largest weight of all edges in E: the number of bits in W is log 2 W . Therefore, the weight of an edge requires O(log W) bits and the weight of any path (with no cycle) uses O(log(nW)) bits.

The following Lemma 3.1 gives the complexity of the protocol APSP. Next, the Theorem 3.1 derives the time and the communication complexity of the algorithm MDST from Lemma 3.1.

Proof.

The protocol APSP is almost identical to the well-known distributed Bellman-Ford shortest-paths algorithm (except for the notion of active/inactive nodes). The following definitions are taken from [START_REF] Bertsekas | Data Networks[END_REF].

Let

S ⊆ V . A path [u 0 , . . . , u k] is called an S-path if for all i (0 ≤ i ≤ k), u i ∈ S. The S-distance from u to v, denoted d S (u, v), is the smallest weight of any S-path that joins u to v. When S = V , we write d(u, v) = d V (u, v). As a consequence, for all z ∈ V , (i) If S = S ∪ {z}, then for all u, v ∈ S, d S (u, v) def = min d S (u, v), d S (u, z) + d S (z, v) .
(

) 2
(ii) Let Neigh u be the set of neighbours of a node u ∈ V . For any v ∈ V ,

d(u, v) def = 0 if u = v min z∈N eighu ω(u, z) + d(z, v) otherwise. (3)
Since the algorithm is built from the definitions (2) and (3), it does converge to the shortest paths (see [START_REF] Bertsekas | Data Networks[END_REF][START_REF] Lamport | An assertional correctness proof of a distributed algorithm[END_REF]). Also, since the communication channels are assumed to be FIFO (see [START_REF] Chandrasekaran | A message optimal algorithm for distributed termination detection[END_REF] and Subsection 1.3), the algorithm process terminates. The above rules ensure that no message in the protocol APSP is sent to a terminating node. Our protocol is based on algorithms which are known to converge in n phases (see [START_REF] Bertsekas | Data Networks[END_REF][START_REF] Lamport | An assertional correctness proof of a distributed algorithm[END_REF]). For an active node, a phase takes at most two time units in an ABD network (see Subsection 1.3): sending a message to each neighbour and next receiving a message only from all active neighbours). To make the protocol APSP process terminate we need an Inactive message: in the worst case (for example when G is a line) exchanging Inactive messages between nodes takes O(n) time units.

The identity of each node is sent from each active node along each of its adjacent edges. The number of messages sent from every node v is thus O(nδ(v)), where δ(v) is the degree of v. Inactive nodes simply forward update messages to their inactive neighbours and they do not increase the message complexity. Therefore, the message complexity of protocol APSP is proportional to 2nm = v nδ(v) [START_REF] Lamport | An assertional correctness proof of a distributed algorithm[END_REF].

From the rules of the protocol (in Subsection 2.2), adding all Inactive messages makes exactly 2m. Finally, the message complexity of protocol APSP is O(nm). Note that each message carries the ID of the sending node, the ID of the selected node and the distance between both nodes. Theorem 3.1 The algorithm MDST solves the (MDST) problem for any distributed positively weighted network G in O(n) time. The communication complexity of MDST is O (nm (log n + log(nW))) bits, and its space complexity is at most O (n (log n + log(nW))) bits (at each node). The number of bits used for the ID of a node is O(log n), and the weight of a path ending at that node is O (log nW).

Proof. The proof derives readily from the previous lemma and Subsection 2.1.5

Concluding Remarks

Given a positively weighted graph G, our algorithm MDST constructs a MDST of G and distributively forwards the control structure over the named network G. This new algorithm is simple and natural. It is also time and message efficient: complexity measures are O(n) and O(nm), respectively, which, in some sense, is "almost" the best achievable (though not optimal) in a distributed setting.

By contrast, the space complexity seems to be far from satisfactory. This is a drawback to the very general assumptions used in the algorithm, especially the assumptions on universal (APSPs) routings in arbitrary network topologies. For example, algorithm MDST needs a grand total of O n 2 (log n + log(nW)) bits to store all routing tables in the entire network. Now, it was recently shown that reasonable APSP routing schemes require at least Ω n 2 bits [START_REF] Fraigniaud | Memory requirement for universal routing schemes[END_REF]. This is only a logarithmic factor away from the space complexity of algorithm MDST.

Figure 1 :

 1 Figure 1: Example of a MDST T * (D(G) = 22 and D(T *) = 27). T * is neither a shortest paths tree, nor a minimum spanning tree of G.

Lemma 2 . 2

 22 Let G = (V, E, ω) be a weighted graph. For each edge e ∈ E, let γ e be the set of all the general nodes of G which achieve a minimal eccentricity for e. A node achieving the minimal eccentricity among all nodes in e∈E γ e is an absolute center. Finding a minimum absolute center of G is thus achieved in polynomial time. Proof. (The proof is constructive.) (i) For each edge e = (u, v), let α = d(u, γ). Since the distance d(γ, z) is the length of a path [γ, u, . . . , z] or a path [γ, v, . . . , z], ecc(γ) = max z∈V d(γ, z) = max z∈V min α + d(u, z), ω(u, v) -α + d(v, z) .

Figure 2 :

 2 Figure 2: Example of an upper boundary B e (α)

Remark 1

 1 min then min ← y; α ← x ; Return(α,min) Recall that for each edge e = (u, v) of G with weight ω(e) and for any given z ∈ V , d 1 and d 2 are the distances d 1 = d(u, z) and d 2 = d(v, z). Moreover, all pairs (a i , b i) (1 ≤ i ≤ |L e |) are those ordered pairs (d 1 , d 2) of the list L e which are dominating pairs (see the proof of Lemma 2.1).

Lemma 3 . 1

 31 The All-Pairs Shortest Paths protocol APSP process terminates. It runs in O(n) time and uses O(nm) messages to compute the routing tables at each node of G. Its message size is at most O(log n + log(nW)).

In Ψ(u min), the information is transmitted "optimally" in terms of time and messages, in the sense that each edge weight may be regarded as the message transmission delay of a channel.

The Design of the Algorithm MDST

Main Procedure

The distributed algorithm MDST finds a MDST of an input weighted graph G = (V, E, ω) by computing an absolute center of G.

The algorithm is described from a node point of view. The algorithm assumes that each node u performs the following steps.

Step 1. Node u participates in the computation of the APSP. This computation gives the diameter and the radius of the graph G. Moreover it also gives u min , the minimum node identity in the graph. (See §2.1.5.)

Steps 2 & 3. An adjacent edge selection procedure is implemented by discarding heavy edges.

The computation of the local minimum is accelerated with the help of an upper bound test. Note that the variable ϕ, used in the test, is a data structure with four fields: the best distance α from the first edge end, the upper bound value associed to α, the identities of the first and second edge ends. (Edge ends are ordered by increasing identities.)

Steps 4, 5 & 6. Node u participates in finding the minimum of all values ϕ.

Step 7 The best ϕ is finally computed at the root of the tree Ψ(u min) and next, it is broadcast to all nodes through Ψ (u min).

For the sake of clarity, we use abstract record data types (with dot notation).

Algorithm MDST (for node u)