
HAL Id: hal-00915195
https://hal.science/hal-00915195

Submitted on 6 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed Algorithm for Constructing a Minimum
Diameter Spanning Tree

Marc Bui, Franck Butelle, Christian Lavault

To cite this version:
Marc Bui, Franck Butelle, Christian Lavault. A Distributed Algorithm for Constructing a Minimum
Diameter Spanning Tree. Journal of Parallel and Distributed Computing, 2004, 64 (5), pp.571–577.
�hal-00915195�

https://hal.science/hal-00915195
https://hal.archives-ouvertes.fr

A Distributed Algorithm for Constructing a Minimum
Diameter Spanning Tree

Marc Bui a Franck Butelle b ∗ Christian Lavault c

a LDCI, Université Paris 8, France b LIPN – CNRS 7030, Université Paris 13, France
c LIPN – CNRS UMR 7030, Université Paris-Nord

Abstract

We present a new algorithm, which solves the problem of distributively finding a mini-
mum diameter spanning tree of any (non-negatively) real-weighted graph G = (V, E, ω). As
an intermediate step, we use a new, fast, linear-time all-pairs shortest paths distributed algo-
rithm to find an absolute center of G. The resulting distributed algorithm is asynchronous,
it works for named asynchronous arbitrary networks and achieves O(|V |) time complexity
and O (|V | |E|) message complexity.
Keywords: Spanning trees; Minimum diameter spanning trees; Shortest paths; Shortest paths
trees; All-pairs shortest paths; Absolute centers.

1 Introduction
Many computer communication networks require nodes to broadcast information to other nodes
for network control purposes; this is done efficiently by sending messages over a spanning tree
of the network. Now, optimizing the worst-case message propagation over a spanning tree is
naturally achieved by reducing the diameter to a minimum.

The use of a control structure spanning the entire network is a fundamental issue in dis-
tributed systems and interconnection networks. Given a network, a distributed algorithm is said
to be total iff all nodes participate in the computation. Now, all total distributed algorithms
have a time complexity of Ω(D), where D is the network diameter (either in terms of hops, or
according to the wider sense given by Christophides in [9]). Therefore, having a spanning tree
with minimum diameter of arbitrary networks makes it possible to design a wide variety of time-
efficient distributed algorithms. In order to construct such a spanning tree, all-pairs shortest
paths in the graph are needed first. Several distributed algorithms already solve the problem
on various assumptions. However, our requirements are more general than the usual ones. For
example, we design a “process terminating” algorithm for (weighted) networks with no common
knowledge shared between the processes. (See assumptions in Subsection 1.2 below.)

1.1 Model, Notations and Definitions
A distributed system is a standard point-to-point asynchronous network consisting of n commu-
nicating processes connected by m bidirectional channels. Each process has a local non-shared

∗Corresponding author: LIPN, CNRS UPRES-A 7030, Université Paris-Nord, 99, Av. J.-B. Clément 93430
Villetaneuse, France. E-mail: butelle@lipn.univ-paris13.fr

1

memory and can communicate by sending messages to and receiving messages from its neigh-
bours. A single process can transmit to and receive from more than one neighbour at a time.

The network topology is described by a finite, weighted, connected and undirected graph
G = (V,E, ω), devoid of multiple edges and loop-free. G is a structure which consists of a finite
set of nodes V and a finite set of edges E with real-valued weights; each edge e is incident to
the elements of an unordered pair of nodes (u, v). In the distributed system, V represents the
processes, while E represents the (weighted) bidirectional communication channels operating
between neighbouring processes [18]. We assume that, for all (u, v) ∈ E, ω(u, v) = ω(v, u) and,
to shorten the notation, ω(u, v) = ω(e) denotes the real-valued weight of edge e = (u, v). (As-
sumptions on real-valued weights of edges are specified in the next two Subsections 1.2 and 1.3.)
Throughout, we let |V | = n, |E| = m and, according to the context, we use G to represent the
network or the weighted graph, indistinctly.

The weight of a path [u0, . . . , uk] of G (ui ∈ V, 0 ≤ i ≤ k) is defined as
∑

0≤i≤k−1 ω(ui, ui+1).
For all nodes u and v in V , the distance from u to v, denoted d(u, v) = dG(u, v) = d(v, u) =
dG(v, u), is the lowest weight of any path length from u to v in G. The largest (minimal) distance
from a node v to all other nodes in V , denoted ecc(v) = eccG(v), is the eccentricity of node v:
ecc(v) = maxu∈V d(u, v) [9]. An absolute center of G is defined as a node (not necessarily unique)
achieving the smallest eccentricity in G.

D = D(G) denotes the diameter of G, defined as D = maxv∈V ecc(v) (see [9]) and R = R(G)
denotes the radius of G, defined as R = minv∈V ecc(v). Finally, Ψ(u) = ΨG(u) represents the
shortest paths tree (SPT) of G rooted at node u: (∀v ∈ V) dΨ(u)(u, v) = d(u, v). Ψ(u) is chosen
uniquely among all the shortest paths trees of G rooted at node u; whenever there is a tie between
any two length paths d(u, v), it is broken by choosing the path with a second node of minimal
identity. The set of all SPTs of G is denoted Ψ = Ψ(G). When it is clear from the context, the
name of the graph is omitted.

In the remainder of the paper, we denote problems as “the (MDST) problem”, “the (MST)
problem”, “the (GMDST) problem”, etc. (see definitions in Subsection 1.4). Distributed algo-
rithms are denoted in italics, e.g. “algorithm MDST”. Finally, “MDST”, “APSPs” and “SPT”
abbreviate “minimum diameter spanning tree”, “all-pairs shortest paths” and “shortest paths
tree”, respectively.

1.2 The Problem
Given a weighted graph G = (V,E, ω), the (MDST) problem is to find a spanning tree of G
of minimum diameter D (according to the definition of D).

Note that the (MDST) problem assumes G to be a non-negatively real-weighted graph (i.e.,
∀e ∈ E ω(e) ∈ R+). Indeed, the (MDST) problem is known to be NP-hard if we allow negative
length cycles in G (cf. Camerini et al. [7]).

In spite of the fact that the (MDST) problem requires arbitrary non-negative real-valued
edges weights, our distributed MDST algorithm is process terminating (i.e., a proper distributed
termination is completed [18]). This is generally not the case on the above requirement. When
weights are assumed to be real-valued, a common (additional) knowledge of a bound on the size
of the network is usually necessary for APSPs algorithms to process terminate (see e.g. [1, 4, 17]).
By contrast, no “structural information” is assumed in our algorithm, neither topological (e.g.,
size or bound on the size of the network), nor a sense of direction, etc. (see Subsection 2.2).

2

1.3 Assumptions
In addition to the above general hypothesis of the (MDST) problem, we need the following
assumptions on the network.
• Processes are faultless, and the communication channels are faithful, lossless and order-

preserving (FIFO).
• All processes have distinct identities (IDs). (G is called a “named network”, by contrast

with “anonymous networks”.) We need distinct IDs to compute the APSPs routing tables
of G at each process of the network. For the sake of simplicity, IDs are also assumed to be
non-negative distinct integers.
Each process must distinguish between its ports, but has no a priori knowledge of its
neighbours IDs. Actually, any process knows the ID of a sending process after reception
of its first message. Therefore, we assume w.l.o.g. (and up to n − 1 messages at most)
that a process knows the ID of each of its neighbours from scratch (see protocol APSP in
Subsection 2.1.2).

• Of course, each node also knows the weights of its adjacent edges. However, edges weights
do not satisfy the triangular inequality.

• Let A be a distributed algorithm defined on G. A non-empty subset of nodes of V , called
initiators, simultaneously start algorithm A. In other words, an external event (such as
a user request, for example), impels the initiators to trigger the algorithm. Other (non-
initiating) nodes “wake up” upon receipt of a first message.

• In a reliable asynchronous network, we measure the communication complexity of an al-
gorithm A in terms of the maximal number of messages that are received, during any
execution of A. We also take into account the number of bits in the messages (or message
size): this yields the “bit complexity” of A. For measuring the time complexity of A, we
use the definition of standard time complexity given in [18, 19]. Standard time complexity
is defined on “Asynchronous Bounded Delay networks” (ABD networks): we assume an
upper bound transmission delay time of τ for each message in a channel; τ is then the
“standard time unit” in G.

1.4 Related Works and Results
The small amount of literature related to the (MDST) problem mostly deals either with graph
problems in the Euclidian plane (geometric minimum diameter spanning tree: the (GMDST)
problem), or with the Steiner spanning tree construction (see [14, 15]). The (MDST) problem is
clearly a generalization of the (GMDST) problem. The sequential problem has been addressed
by some authors (see for example [9]).

Surprisingly, despite the importance of having a MDST in arbitrary distributed systems,
only few papers have addressed the question of how to design algorithms which construct such
spanning trees. Finding and maintaining a minimum spanning tree (the (MST) problem) has
been extensively studied in the literature (e.g. [2, 3, 10, 12]). More recently, the problem of
maintaining a small diameter was however solved in [16], and the distributed (MDST) problem
was addressed in [5, 6].

1.5 Main contributions of the paper
Our algorithm APSP is a generalization of APSP algorithms on graphs with unit weights (weights
with value 1) to the case of non-negatively real-weighted graphs. To our knowledge, our MDST

3

finding algorithm is also the first which distributively solves the (MDST) problem [5]. The algo-
rithm MDST works for named arbitrary network topologies with asynchronous communications.
It achieves an “efficient” O(n) time complexity and O(nm(logn + logW)) bits communication
complexity, where W is the largest weight of a channel. (An O(n) time complexity may be con-
sidered “efficient”, though not optimal, since the construction of a spanning tree costs at least
Ω(D) in time).

The paper is organized as follows. In Section 2 we present a high-level description of the
protocol APSP, a formal design of the procedure Gamma star and the algorithm MDST. Section 3
is devoted to proofs and complexity analysis of the algorithm. Finally, concluding remarks are
given in Section 4.

2 The Algorithm
2.1 A High-Level Description
2.1.1 Main Issues

First, we recall in Lemma 2.1 that the (MDST) problem for a weighted graph G is (polynomially)
reducible to the absolute center problem for G. Then, we constructively find and compute an
absolute center of G by using its APSPs routing tables in Lemma 2.2.

In summary, given a positively weighted graph G, the main steps of our algorithm for the
(MDST) problem are the following:

1. The computation of APSPs in G;

2. The computation of an absolute center of G (procedure Gamma star(e) in Subsection 2.2);

3. The construction of a MDST of G, and the transmission of the knowledge of that MDST
to each node within the network G.

2.1.2 Construction of a MDST

The definition of the eccentricity is generalized as follows. We view an edge (u, v) with weight ω
as a continuous interval of length ω, and for any 0 < α < ω we allow an insertion of a “dummy
node” γ and replace the edge (u, v) by a pair of edges: (u, γ) with weight α and (γ, v) with
weight ω − α.

According to the definition, the eccentricity ecc(γ) of a general node γ (i.e., either an actual
node of V , or a dummy node) is clearly given by ecc(γ) = max

z∈V
d(γ, z). A node γ∗ such that

ecc(γ∗) = minγ ecc(γ) is called an absolute center of the graph. Recall that γ∗ always exists in
a connected graph and that it is not unique in general. Moreover, an absolute center of G is
usually one of the dummy nodes (see Fig. 1).

Similarly, the definition of Ψ(u) is also generalized to account for the dummy nodes. Finding
a MDST actually reduces to searching for an absolute center γ∗ of G: the SPT rooted at γ∗ is a
MDST of G. Such is the purpose of the following Lemma 2.1.

Lemma 2.1 [7] Given a weighted graph G, the (MDST) problem for G is (polynomially) re-
ducible to the problem of finding an absolute center of G.

4

MDST T ∗ of G
γ∗: absolute center of G

Figure 1: Example of a MDST T ∗ (D(G) = 22 and D(T ∗) = 27). T ∗ is neither a
shortest paths tree, nor a minimum spanning tree of G.

2.1.3 Computation of an absolute center of a graph

The idea of computing absolute p-centers was first introduced by Hakimi, see for example [13].
Here we address the computation of an absolute 1-center. According to the results in [9], we
need the following lemma (called Hakimi’s method) to find an absolute center of G.

Lemma 2.2 Let G = (V,E, ω) be a weighted graph. For each edge e ∈ E, let γe be the set of all
the general nodes of G which achieve a minimal eccentricity for e. A node achieving the minimal
eccentricity among all nodes in

⋃
e∈E

γe is an absolute center. Finding a minimum absolute center

of G is thus achieved in polynomial time.

Proof. (The proof is constructive.)
(i) For each edge e = (u, v), let α = d(u, γ). Since the distance d(γ, z) is the length of a path

[γ, u, . . . , z] or a path [γ, v, . . . , z],

ecc(γ) = max
z∈V

d(γ, z) = max
z∈V

min
(
α+ d(u, z), ω(u, v)− α+ d(v, z)

)
. (1)

If we plot f+
z (α) = α + d(u, z) and f−z (α) = −α + ω(u, v) + d(v, z) in Cartesian coordinates

for fixed z = z0, the real-valued functions f+
z0

(α) and f−z0
(α) (separately depending on α in the

range [0, ω(e)]) are represented by two line segments (S1)z0 and (S−1)z0 , with slope +1 and −1,
respectively. For a given z = z0, the smallest of the two terms f+

z0
(α) and f−z0

(α) in (1) define a
piecewise linear function fz0(α) made of (S1)z0 and (S−1)z0 .

Let Be(α) be the upper boundary (α ∈ [0, ω(e)]) of all the above fz(α) (∀z ∈ V). Be(α) is
a curve made up of piecewise linear segments, which passes through several local minima (see
Fig. 2). A point γ achieving the smallest minimal value (i.e. the global minimum) of Be(α) is
an absolute center γ∗e of the edge e.

(ii) From the definition of γ∗e , minγ ecc(γ) = minγ∗e s(γ
∗
e); and γ∗ achieves the minimal

eccentricity. Therefore, an absolute center γ∗ of the graph is found at any point where the
minimum of all ecc(γ∗e)s is attained. �

By Lemma 2.2, we may consider this method from an algorithmic viewpoint. For each
e = (u, v) ∈ E, let

Ce =
{

(d1, d2) | ∀z ∈ V d1 = d(u, z) and d2 = d(v, z)
}
.

5

(ai, bi) pairs of distances
f+
i (α) = α+ ai
f−i (α) = ω(u, v)− α+ bi

Figure 2: Example of an upper boundary Be(α)

Now, a pair (d1’, d2’) is said to dominate a pair (d1, d2) iff d1 ≤ d1’ and d2 ≤ d2’; namely, the
function fz′(α) defined by (d1’, d2’) is over fz(α) defined by (d1, d2). Any such pair (d1, d2)
will be ignored when it is dominated by another pair (d1’, d2’). The local minima of the upper
boundary Be(α) (numbered from 1 to 3 in Figure 2) are located at the intersection of the
segments f−i (α) and f+

i+1(α), when all dominated pairs are removed. Sorting the set Ce in
descending order, with respect to the first term of each remaining pair (d1, d2), yields the list
Le = ((a1, b1), . . . , (a|Le|, b|Le|)) consisting of all such ordered dominating pairs. Hence, the
smallest minimum of Be(α) for a given edge e clearly provides an absolute center γ∗e (see the
Procedure Gamma star(e) in Subsection 2.2). By Lemma 2.2, once all the γ∗e s are computed,
we can obtain an absolute center γ∗ of the graph G. Last, by Lemma 2.1, finding a MDST of G
reduces to the problem of computing γ∗.

2.1.4 All-Pairs Shortest Paths Algorithm (protocol APSP)

In §2.1.3, we consider the distances d(u, z) and d(v, z), for all z ∈ V and for each edge e =
(u, v) ∈ E. The latter distances must be computed by a distributed (process terminating)
routing algorithm; the protocol APSP is designed for that purpose in Subsection 2.2.

2.1.5 Construction and knowledge transmission of a MDST

At the end of the protocol APSP, every node knows the node umin with the smallest ID and
a shortest path in G leading to umin. Now, consider the collection of all paths [u, . . . , umin]
(computed by APSP), which start from a node u ∈ V and end at node umin. This collection
forms a tree rooted at node umin and, since it is an SPT of G, the information is exchanged
“optimally” in the SPT Ψ(umin)1. Hence, the number of messages needed to search an extremum
in the tree Ψ(umin) is at most O(n) (with message size O (logn+ logW)).

When the computation of an absolute center γ∗ of G is completed, the endpoint of γ∗’s edge
having the smallest ID sends a message to umin carrying the ID of γ∗. Upon receipt of the
message, umin forwards the information all over Ψ(umin) (adding the same cost in time and
messages). Therefore each node of G knows a route to γ∗, and the MDST is built as a common
knowledge for all nodes.

1In Ψ(umin), the information is transmitted “optimally” in terms of time and messages, in the sense that each
edge weight may be regarded as the message transmission delay of a channel.

6

2.2 The Design of the Algorithm MDST
2.2.1 Main Procedure

The distributed algorithm MDST finds a MDST of an input weighted graph G = (V,E, ω) by
computing an absolute center of G.

The algorithm is described from a node point of view. The algorithm assumes that each
node u performs the following steps.
Step 1. Node u participates in the computation of the APSP. This computation gives the

diameter and the radius of the graph G. Moreover it also gives umin, the minimum node
identity in the graph. (See §2.1.5.)

Steps 2 & 3. An adjacent edge selection procedure is implemented by discarding heavy edges.
The computation of the local minimum is accelerated with the help of an upper bound
test. Note that the variable ϕ, used in the test, is a data structure with four fields: the
best distance α from the first edge end, the upper bound value associed to α, the identities
of the first and second edge ends. (Edge ends are ordered by increasing identities.)

Steps 4, 5 & 6. Node u participates in finding the minimum of all values ϕ.
Step 7 The best ϕ is finally computed at the root of the tree Ψ(umin) and next, it is broadcast

to all nodes through Ψ (umin).
For the sake of clarity, we use abstract record data types (with dot notation).

Algorithm MDST (for node u)
Type elt: record

alpha best, upbound: EdgeWeight;
id1, id2: NodeIdentity;
end;

Var ϕ, ϕ∗u: elt;
Diam, Radius, α, localmin: EdgeWeight;
umin: NodeIdentity;
du: array of EdgeWeight; (* after step 1, du[v] = d(u, v) *)

(1) For all v ∈ V Compute du[v], Diam, Radius and umin; (* from protocol APSP *)

(2) ϕ.upbound← Radius;
(3) While ϕ.upbound > Diam/2 do for each edg e = (u, v) s.t. v > u

(a) (α, localmin)← Gamma star(e);
(b) If localmin < ϕ.upbound then ϕ← (α, localmin, u, v);

(4) ϕ∗u ← ϕ;
(5) Wait for reception of ϕ from each child of u in Ψ(umin) and do

if ϕ∗u.upbound < ϕ.upbound then ϕ∗u ← ϕ;

(6) Send ϕ∗u to parent in Ψ(umin);
(7) If u = umin then Send ϕ∗u to all its children

else Wait for reception of ϕ∗ from its parent then Send ϕ∗ to all its children

Now we describe the basic procedures used in the algorithm: first the protocol APSP and
next the procedure Gamma star(e).

7

2.2.2 The APSP algorithm

We need an algorithm that computes the all-pairs shortest paths in G and does process terminate
without any structural information (e.g., the knowledge an upper bound on n). Our algorithm is
based on the Netchange algorithm (see the proof in [17]), the Bellman-Ford algorithm (see [4]) and
the α-synchroniser described in [1]. The three latter algorithms process terminate iff an upper
bound on n is known. Otherwise, if the processes have no structural information, the above
algorithms only “message terminate” (see [1, 18]). However, proper distributed termination may
be achieved without additional knowledge by using the same technique as designed in [8]. We
now shortly describe the algorithm (from the viewpoint of node u, whose ID is idu).

The protocol APSP is organized in phases after the first initialization step. This step starts
initializing sets and variables (idu is the selected ID): the distance to idu is set to 0, while all
others distances are set to ∞ and the set Updatenodes is initialized to ∅. Next, every phase of
the algorithm consists of three steps.

Step 1. Send to all neighbours the ID of the selected node and its distance to node u.

Step 2. Wait for reception of the same number of messages sent in step 1 minus the number
of inactive neighbours (see next paragraph). Upon receipt of a message, update distance
tables. If the estimate of the distance to a node changes, add this node to the set Updaten-
odes. If an 〈Inactive〉 message is received from a neighbour, mark it inactive. When the
awaited number of messages is received, start step 3.

Step 3. Choose an active node from the set Updatenodes with the smallest distance to u and
go to step 1. If no such node exists then send an 〈Inactive〉 messsage to each active
neighbour; node u becomes an inactive node.

We need the following rules to make the algorithm process terminate.

(1) An inactive node forwards updating messages (if necessary) to its inactive neighbours.

(2) Only one 〈Inactive〉 message is sent from node u to a neighbour v and this message is
the last message (of protocol APSP) from u to v.

(3) (from the previous rule) A node terminates only when two 〈Inactive〉messages are received
in each of its adjacent edges (one from each direction).

Thus, we designed a new distributed APSP protocol having a good message complexity: 2mn.

2.2.3 Procedure Gamma star

Assume the list Le (defined in §2.1.3) to be already constructed (e.g. with a heap) when the
routing tables are computed. For any fixed edge e ∈ E, the next procedure returns a value γ∗e .

Procedure Gamma star(e)

Var min, α: real; Init min← a1; α← 0;
For i← 1 to |Le| − 1 do (* Compute the intersection (x, y) of segments f−

i and f+
i+1 *)

x← 1
2
(
ω(e)− ai+1 + bi

)
;

y ← 1
2
(
ω(e) + ai+1 + bi

)
;

if y < min then min← y; α← x ;
Return(α,min)

8

Remark 1 Recall that for each edge e = (u, v) of G with weight ω(e) and for any given z ∈ V , d1
and d2 are the distances d1 = d(u, z) and d2 = d(v, z). Moreover, all pairs (ai, bi) (1 ≤ i ≤ |Le|)
are those ordered pairs (d1, d2) of the list Le which are dominating pairs (see the proof of
Lemma 2.1).

3 Analysis
For the purpose of the complexity analysis, let W ∈ R+ be the largest weight of all edges in E:
the number of bits in W is dlog2W e. Therefore, the weight of an edge requires O(logW) bits
and the weight of any path (with no cycle) uses O(log(nW)) bits.

The following Lemma 3.1 gives the complexity of the protocol APSP. Next, the Theorem 3.1
derives the time and the communication complexity of the algorithm MDST from Lemma 3.1.

Lemma 3.1 The All-Pairs Shortest Paths protocol APSP process terminates. It runs in O(n)
time and uses O(nm) messages to compute the routing tables at each node of G. Its message size
is at most O(logn+ log(nW)).

Proof. The protocol APSP is almost identical to the well-known distributed Bellman-
Ford shortest-paths algorithm (except for the notion of active/inactive nodes). The following
definitions are taken from [4].

Let S ⊆ V . A path [u0, . . . , uk] is called an S-path if for all i (0 ≤ i ≤ k), ui ∈ S. The
S-distance from u to v, denoted dS(u, v), is the smallest weight of any S-path that joins u to v.
When S = V , we write d(u, v) = dV (u, v). As a consequence, for all z ∈ V ,

(i) If S′ = S ∪ {z}, then for all u, v ∈ S,

dS
′
(u, v) def= min

(
dS(u, v), dS

′
(u, z) + dS

′
(z, v)

)
. (2)

(ii) Let Neighu be the set of neighbours of a node u ∈ V . For any v ∈ V ,

d(u, v) def=
{

0 if u = v
minz∈Neighu

(
ω(u, z) + d(z, v)

)
otherwise. (3)

Since the algorithm is built from the definitions (2) and (3), it does converge to the shortest
paths (see [4, 17]). Also, since the communication channels are assumed to be FIFO (see [8] and
Subsection 1.3), the algorithm process terminates. The above rules ensure that no message in
the protocol APSP is sent to a terminating node.

Our protocol is based on algorithms which are known to converge in n phases (see [4, 17]).
For an active node, a phase takes at most two time units in an ABD network (see Subsection 1.3):
sending a message to each neighbour and next receiving a message only from all active neigh-
bours). To make the protocol APSP process terminate we need an 〈Inactive〉 message: in the
worst case (for example when G is a line) exchanging 〈Inactive〉 messages between nodes takes
O(n) time units.

The identity of each node is sent from each active node along each of its adjacent edges.
The number of messages sent from every node v is thus O(nδ(v)), where δ(v) is the degree of
v. Inactive nodes simply forward update messages to their inactive neighbours and they do
not increase the message complexity. Therefore, the message complexity of protocol APSP is
proportional to 2nm =

∑
v

nδ(v) [17].

9

From the rules of the protocol (in Subsection 2.2), adding all 〈Inactive〉 messages makes
exactly 2m. Finally, the message complexity of protocol APSP isO(nm). Note that each message
carries the ID of the sending node, the ID of the selected node and the distance between both
nodes. �

Theorem 3.1 The algorithm MDST solves the (MDST) problem for any distributed pos-
itively weighted network G in O(n) time. The communication complexity of MDST is
O (nm (logn+ log(nW))) bits, and its space complexity is at most O (n (logn+ log(nW))) bits
(at each node). The number of bits used for the ID of a node is O(logn), and the weight of a
path ending at that node is O (lognW).

Proof. The proof derives readily from the previous lemma and Subsection 2.1.5 �

4 Concluding Remarks
Given a positively weighted graph G, our algorithm MDST constructs a MDST of G and dis-
tributively forwards the control structure over the named network G. This new algorithm is
simple and natural. It is also time and message efficient: complexity measures are O(n) and
O(nm), respectively, which, in some sense, is “almost” the best achievable (though not optimal)
in a distributed setting.

By contrast, the space complexity seems to be far from satisfactory. This is a drawback
to the very general assumptions used in the algorithm, especially the assumptions on universal
(APSPs) routings in arbitrary network topologies. For example, algorithm MDST needs a grand
total of O

(
n2 (logn+ log(nW))

)
bits to store all routing tables in the entire network. Now, it

was recently shown that reasonable APSP routing schemes require at least Ω
(
n2) bits [11]. This

is only a logarithmic factor away from the space complexity of algorithm MDST.

References
[1] B. Awerbuch, Complexity of network synchronization, J. ACM, 32:804–823, 1985.

[2] B. Awerbuch, Optimal distributed algorithms for minimum weight spanning tree counting,
leader election and related problems, Proc. ACM STOC, 230–240, 1987.

[3] B. Awerbuch, I. Cidon and S. Kutten, Communication-optimal maintenance of replicated
information, Proc. IEEE FOCS, 492–502, 1990.

[4] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, 2nd edition, 1992.

[5] M. Bui and F. Butelle, Minimum diameter spanning tree, Proc. Int. Workshop on Principles
of Parallel Computing (OPOPAC’93), 37–46, Hermes Science ed., 1993.

[6] F. Butelle, C. Lavault and M. Bui, A uniform self-stabilizing minimum diameter spanning
tree algorithm, Proc. 9th Int. Workshop on Distributed Algorithms (WDAG’95), LNCS
972.257-272, Springer-Verlag, 1995

[7] P. M. Camerini, G. Galbiati and F. Maffioli, Complexity of spanning tree problems: Part I,
European J. of Operational Research, 5:346-352, 1980.

[8] S. Chandrasekaran and S. Venkatesan, A message optimal algorithm for distributed termi-
nation detection, J. of Parallel and Distributed Computing, 8(3):245-252, 1990.

10

[9] N. Christophides, Graph Theory: An algorithmic approach, Computer Science and Applied
Mathematics, Academic Press, 1975.

[10] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook and M. Yung, Mainte-
nance of a minimum spanning forest in a dynamic plane graph, J. of Algorithms, 13:33-54,
1992.

[11] P. Fraigniaud and C. Gavoille, Memory requirement for universal routing schemes, Technical
report, LIP 95-05, ENSL, 1995.

[12] R. G. Gallager, P. A. Humblet and P. M. Spira, A distributed algorithm for minimum weight
spanning trees, ACM TOPLAS, 5(1):66-77, 1983.

[13] S. L. Hakimi and J. G. Pierce and E. F. Schmeichel, On p-centers in networks, Transportation
Sci., 12:1-15, 1978.

[14] J.-M. Ho, D. T. Lee, C.-H. Chang and C. K. Wong, Minimum diameter spanning trees and
related problems, SIAM J. on Computing, 20(5):987-997, 1991.

[15] E. Ihler, G. Reich and P. Widmayer, On shortest networks for classes of points in the plane,
Proc. Int. Workshop on Computational Geometry – Methods, Algorithms and Applications,
Lecture Notes in Computer Science. 103-111, 1991

[16] G. F. Italiano and R. Ramaswani, Maintaining spanning trees of small diameter, Proc.
ICALP’94, 227-238, 1994.

[17] L. Lamport, An assertional correctness proof of a distributed algorithm, Sci. Computer
Programming, 2:175-206, 1982.

[18] C. Lavault, Évaluation des algorithmes distribués – analyse, complexité, méthode, Hermes
Science ed., 1995.

[19] N. Lynch, Distributed Algorithms, Morgan Kauffman, 1996.

11

