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Abstract 

Natural and alkaline modified pumice stones were used for the adsorption of water 

hardening cations, Ca+2 and Mg+2. The adsorbents were characterized using XRF, XRD, SEM 

and FTIR instrumental techniques. At equilibrium time and for 150 mg/L of a given cation, 

removal efficiencies were 83% and 94% for calcium and 48% and 73% for magnesium for 

raw and modified pumices, respectively. The optimal pH for raw and modified pumices were 

found to be 6.0, leading to the removal of 79 and 96% of calcium and 51 and 93% of 

magnesium by 10 g/L of raw and modified pumice adsorbents, respectively. Maximum 

adsorption capacities were 57.27 and 62.34 mg/g for Ca+2 and 44.53 and 56.11 mg/g for Mg+2 

on the raw and modified pumices, respectively. Ca+2 and Mg+2 adsorption capacities of the 

pumice adsorbents decreased in the presence of competing cations. Less than 300 minutes 

were needed to achieve 99 and 92% desorption of the adsorbed Ca+2 and 100 and 89% of the 

adsorbed Mg+2 from the natural and modified pumices, respectively. After treating synthetic 

water solution simulating an actual water stream with the alkali-modified pumice, total 

hardness of the treated sample met the required standard for drinking water, namely below 

300 mg/L of CaCO3 (297.5 mg/L). The studied pumice adsorbents, and especially the treated 

pumice, can be therefore considered as promising low cost adsorbents, suitable for the 

removal of hardness ions from drinking water. 

 

Keywords: Calcium; Magnesium; Adsorption; Modification; Batch system  

 

 

 

 2



 

1. Introduction 

Most of the water resources should be treated for purification before consumption. In 

some countries, groundwater is the main safe drinking water resource [1]. In some cases, the 

resource does not satisfy to the desirable levels regarding their chemical properties, such as 

hardness, nitrate contamination, heavy metals, soluble iron, etc. [2]. Among them, water 

hardness can appear problematic in some cases; it can also be considered as an important 

aesthetic parameter. However, because public acceptance of hardness differs remarkably 

according to local conditions, a maximum acceptable level has not been defined. In general, 

water supplies with total hardness higher than 200 mg/L can be tolerated by consumers but 

are considered as poor resources; while values higher than 500 mg/L are not acceptable for 

most of the domestic consumptions. Hardness in water refers to existing divalent ions, such 

as iron, manganese, calcium and magnesium. Among them, calcium and magnesium are 

known as the dominant species for water hardening [3]. Although it has been shown that 

water hardness doesn’t have serious health impact, it has been demonstrated that hard water 

is responsible for the formation of deposits in boiler and household facilities, as well as 

diverse influence on cleaning performances of detergents [4]. Formation of precipitates may 

cause a decrease of heat transfer in boiler, a decrease of fluid rate, bursting of water pipeline, 

the formation of stain in dishes and clothes. Furthermore, high concentrations of magnesium 

in drinking water may induce a bitter taste [5]. In water purification and treatment plant, lime 

and soda ash are used for the removal of hardness. One of the main drawbacks of this process 

is the resulting waste, namely the large amount of liquid sludge produced, as well as the need 

for re-carbonation of the softened water [6, 7]. In addition, the use of additional chemicals to 

prevent sludge production is restricted and hence in most cases water hardness species cannot 

be fully removed [8]. Ion exchange processes have been considered as an alternative 
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approach which is commercially in use worldwide. However, high power consumption and 

periodical regeneration of saturated ion-exchanger resins are needed. Potential hazards of the 

effluent solutions resulting from the regeneration process should also be taken into account 

[9]. 

Recently, various methods including electrodeionization process [7], 

electromembrane processes [8], capacitive deionization [9], membrane and fluidized pellet 

reactor [10], ion exchange process [11-13] and adsorption [14, 15] have been studied for the 

removal of a wide variety of ionic and molecular species from various water streams, 

including those responsible for hardness (e.g. Ca+2 and Mg+2 cations). Amongst the 

developed processes, adsorption has been widely studied for the uptake of various ionic and 

molecular species form water. Although the efficiency of activated carbon (AC) as an 

adsorbent, it cost remains its main drawback. Hence, finding inexpensive and efficient 

adsorbents remains a topical matter to water treatment industries [16]. Pumice stone is a 

volcanic rock which corresponds to solidified frothy lava formed when highly pressurized 

and super-heated rock is vigorously erupted from a volcano. Pumice can also be formed from 

the mixing of hot lava with water. This unnatural formation is considered as a result of 

simultaneous rapid cooling and depressurization. The depressurization creates bubbles (i.e. 

pores) by lowering the solubility of water and CO2 molecules dissolved in the lava, causing a 

rapid release of gases. The simultaneous cooling and depressurization trap the bubbles inside 

the pumice matrix; resulting in highly porous pumice with a very low density (0.35-0.65 

g/cm3), a high water absorption capacity (20-30%) and mainly composed of SiO2 and Al2O3. 

Considering these physicochemical characteristics, it can be considered as a potential 

adsorbent for environmental applications [17]. Pumice has been tested for the removal of 

sulfur dioxide [18], chromium [19], phenol and 4-chlorophenol [20]. The main objective of 

this research was to evaluate a raw pumice stone and its alkali-modified form (i.e. NaOH-
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treated) for the removal of calcium and magnesium from a synthetic solution simulating the 

Karaj Water Supply System (Iran). 

2. Materials and Methods 

2.1. Chemicals and solutions 

All chemicals used in this work were obtained from Merck (Merck Co. Germany). 

0.05 M H2SO4 and 0.1 M NaOH were used for pH adjustment (Jenway, model 3510). 

MgSO4.7H2O and CaCl2 were used for the preparation of stock solutions using deionized 

water. The electrical conductivity of the stock solutions was in the range of 21–26 µs/cm 

(Jenway, model 4520). A solution containing chloride (450 mg/L), nitrate (25 mg/L) and 

sulfate (325 mg/L) was prepared. Conductivity and total dissolved solid (TDS) of water 

solutions were adjusted by adding 1150 mg/L sodium chloride leading to a conductivity of 

1850 µs/cm, which corresponded to that of the Karaj water supply system. Raw pumice stone 

was obtained from Tikmeh Dash Reign of East Azerbaijan (Azerbaijan, Iran). All 

experiments were conducted according to the Standard Methods for the Examination of 

Water and Wastewater [21]. 

2.2. Preparation of the Adsorbent 

Raw pumice stone was washed several times with distilled water before use in order 

to remove any impurities until the turbidity value became lower than 0.1 NTU. The adsorbent 

was then treated with 1 M solution of HCl for further purification by dissolving acid soluble 

components of the sample. It was then washed with deionized water to remove the excess of 

acid (pH= 7). Pumice was then dried at 55oC for 24 hours to evaporate the remaining water 

molecules. The dried pumice was then milled and sieved to achieve 10-30 meshes (2000 to 

841 microns). In order to modify the pumice stone with sodium hydroxide, it was treated with 

2 M NaOH for 24 hours at room temperature. During modification, the solution was stirred at 

200 rpm. The modified pumice was then filtered and calcined at 750°C for 6 h in an electrical 
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furnace (Lenton, England). The calcined sample was then washed several times with 

deionized water to remove the excess of NaOH. The modified adsorbent was then dried at 

55oC for 24 h before use.  

2.3. Batch Experiments 

All experiments were conducted in batch mode in 250 mL conical flasks. Several 

operating parameters including pH (2-10), temperature (10-50oC), adsorbent mass (2-10 g/L), 

initial calcium and magnesium concentrations (25-150 mg/L) and contact time were 

investigated. Optimized adsorption times for natural and modified pumice adsorbents were 

first examined by varying the contact time at room temperature, pH= 6.0 and for an adsorbent 

mass of 6 g per liter of solution. For this purpose, 6 g of adsorbent were added to 1 L of 

solution in a conical flask containing Ca+2 or Mg+2 cations at a concentration in the range of 

25 to 150 mg/L. The mixture was then shaken at 200 rpm (Hanna-Hi 190M, Singapore). 

Samples were taken at predetermined time intervals, filtered (0.45 µ, Wathman), centrifuged 

(Sigma-301, Germany) and the ion concentration was measured by a titration method [21]. 

The removal efficiency (RE) was determined as follows (Eq. 1): 

0

0 100)(
C

CCRE e                               (1) 

After investigation of the effect of the contact time and the initial ion concentration, the 

effects of pH and adsorbent mass were examined. The effect of temperature was then 

investigated in the optimal conditions for pH, adsorbent mass and  contact time, for three 

initial concentrations of Ca+2 or Mg+2 cations (50, 100 and 150 mg/L). 

2.4. Adsorbent effect on electrical conductivity (EC) and turbidity 

In order to measure the influence of adsorbents on EC and turbidity of water, 6 g/L of 

natural or modified adsorbent was poured into 250 mL of deionized water ( i.e. free from 

calcium and magnesium) at pH=6.0 and shaken for 200 min at 200 rpm. At predetermined 
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time intervals, samples were taken for conductivity and turbidity measurements (Jenway, 

Model 4520).   

2.5. Isotherm study 

Equilibrium experiments were conducted in 250 mL conical flasks by adding 6 g/L of 

natural or alkali modified pumice stone to 250 mL of magnesium or calcium solutions at 

concentrations ranging from 25 to 150 mg/L. The mixture was shaken at 200 rpm for 6 hours 

at 25oC to ensure that maximum sorption was achieved. The adsorption results were then 

analyzed by Langmuir, Freundlich and Temkin isotherm models. 

The Langmuir isotherm model is based on the assumption of a homogenous surface energy 

distribution. The non-linear (Eq. 2) and linear (Eq. 3) forms of the Langmuir model are 

described as follows: 
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Where is the equilibrium amount of adsorbate (mg/g),  the equilibrium concentration of 

adsorbate (mg/L),  the maximum adsorption capacity (mg/g) and b (L/mg) the Langmuir 

constant. The important feature of the Langmuir model can be described based on the RL 

parameter expressed by Eq. (4): 

eq eC

mq

)1(
1

0bCRL                                             (4) 

Adsorption is unfavorable for RL > 1, linear for RL = 1, favorable for 0 < RL < 1 and 

irreversible for RL = 0. 

 

The Freundlich isotherm model that is appropriate for heterogeneous systems is expressed by 

equations (5) and (6). 
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Where qe is the amount of adsorbate (mg/g), Ce is the equilibrium concentration of adsorbate 

(mg/L),  (mg1-1/nL1/n/g) and  are the Freundlich constants. Large values of  reveals 

high affinity of the adsorbate. For a favorable adsorption, the value of the Freundlich constant 

(n) should be in the range of 1 to 10. 

fK n/1 fK

 

The Temkin isotherm is also available for heterogeneous surface adsorption. The non-linear 

and linear forms of the Temkin model are given by Eq. (7) and Eq. (8): 

)ln()(
1

ete Ckb
RTq                          (7) 

)ln()ln( 11 ete CBkBq                   (8) 

Where B1=RT/b1, b1 is the adsorption heat (kJ/mol) and kt is the equilibrium binding constant 

(L/g) corresponding to the maximum binding energy. A high value of b1 shows a fast sorption 

of adsorbate at initial stage. Similarly, a low value of kt is related to weak bonding of 

adsorbate onto the medium. By plotting qe vs. ln(Ce) one can deduce b1 and kt from the slope 

and the intercept of this curve, respectively. 

2.6. Kinetic modeling 

Kinetic sorption of calcium and magnesium onto natural and alkali-modified pumice 

adsorbents were investigated by adding 6 g/L of natural and modified adsorbent into 250 mL 

solution containing 50, 100 and 150 mg/L of the considered cation. The pH of the solution 

was adjusted at 6.0 and shaken at 200 rpm until reaching equilibrium time. The kinetic of 

sorption was analyzed by means of the pseudo-second order model, which is expressed as 

follows: 

 8



 2
2 te

t qqkdt
dq                                          (9) 

Where k2 is the rate constant (g/mg min). Integration of Eq. (9) at the boundary, qt=0 at t=0 

and qt=qt at t=t and then rearrangement to a linear form gives (Eq. 10): 

tqqkq
t

eet

11
2

2

                                          (10) 

The value of k2 and qe can be determined from the slope and the intercept of the plot t/qt vs. t, 

respectively. 

2.7. Determination of the zero point charge 

The zero point charge was determined using 0.01 M solution of NaCl as an electrolyte 

and by adding 0.1 M solutions of NaOH or HCl. For this purpose, the pH of eight beakers 

containing 50 mL of electrolyte was set to the desirable values in the range of 2 to12. Then 

0.5 gram of adsorbent was added into each beaker and shaken for 48 hours. After completion 

of the reaction, the adsorbent was filtered and the final pH of each beaker was measured. By 

plotting the initial pH versus the pH after 48 hours of agitation, the zero point charges of the 

adsorbents were determined, which were found to be 6.3 and 6.5 for natural and modified 

pumices, respectively.  

2.8. Binary System Test  

Calcium and magnesium co-exist in actual water streams. Series of experiments were 

conducted to investigate the effects of one another regarding the adsorption behavior. 6 g/L 

of adsorbent was added to 250 mL solution containing calcium and magnesium (100 mg/L 

each). The solution was then shaken at 200 rpm at room temperature for 4 hours (as 

equilibrium time). Samples were taken at predetermined time intervals, filtered and calcium 

and magnesium concentrations were measured.  
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2.9. Regeneration of the spent adsorbents  

Regeneration tests for saturated natural and modified pumices were carried out by 

adding 6 g/L of spent adsorbent in 2 M solution of NaOH. For adsorbent saturation, 6 g/L of 

adsorbent were let in contact with 250 mL solution containing 100 mg/L calcium or 

magnesium and stirred at 200 rpm until equilibrium time was reached (240 minutes). The 

spent adsorbent was filtered, washed and dried at 55oC for 24 h. The dried spent adsorbent 

was let in contact of 2 N NaOH for 500 min; then filtered, washed several times with 

deionized water and dried at 550C for 24 h. The regenerated adsorbent was then tested for the 

adsorption of calcium and magnesium and the regeneration percentage was calculated based 

on the comparison of the removal efficiencies of fresh and regenerated adsorbents. 

 

3. Results and Discussion 

3.1. Adsorbent Characteristics 

Natural and modified adsorbents were characterized by means of various instrumental 

techniques including X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Scanning 

Electron Microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR). Chemical 

composition of the natural pumice, which was conducted by XRF, is shown in Table 1 [17, 

19]. The main chemical components of natural pumice were SiO2 (63.45%) and Al2O3 

(17.24%) resembling natural zeolite composition [22]. Alkali modification of the natural 

pumice by means of sodium hydroxide affected the SiO2 and Al2O3 contents, which increased 

to 66.34% and 23.32% respectively. 

The specific surface area of the adsorbents was measured using the BET technique. It 

showed a significantly higher specific surface area for the modified pumice if compared to 

the natural one, 36.30 and 2.34 m2/g respectively. The remarkable improvement of the 
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surface area can most likely be attributed to the removal of components occupying the pores 

of the pumice resulting in more accessible pores and consequently larger surface area.  

The XRD patterns of the natural and modified pumice adsorbents are illustrated in 

Fig.1. While the existence of crystalline phases in the natural and modified pumice samples 

can be ascribed to the peaks at 2θ=12.00, 26.00, 28.00, 32.50, 33.00, 33.50, 34.50 and 28.0o; the 

observed dome between 2θ= 20 to 40 can be considered as an evidence for the presence of 

some amorphous phase in both samples. However, the decrease of the dome’s height (i.e. 

area of the dome) in the modified sample can be attributed to a decrease of the amorphous 

phase in the modified pumice.    

SEM micrographs showing surface morphology of the natural and modified pumice 

adsorbents at magnification of 500X are displayed in Fig. 2. While the surface of the natural 

adsorbent showed irregular texture with larger grains and sharper edges, the alkali treated 

pumice showed a deeply re-structured texture with finer particles size and smoother surface. 

Fig. 3 shows the Fourier transform infrared spectroscopy (FTIR) of the natural (a) and 

modified (b) pumices at wavelengths in the range 400–4000 cm_1. The absorption band at 

~1043 cm-1 was the characteristic peak of (SiO4)
2- groups due to the symmetric stretching 

vibration of Si–O–Si. The peaks at ~784 and ~464cm-1 can be assigned to bending vibrations 

of Si–O–Si bond. The small peak at ~615 cm-1 can be assigned to the regional vibration of 

reductive carbon in crystal lattice. Other peaks can be assigned to adsorbed water molecules 

including the broadening peak at ~3449 cm-1 that belongs to the asymmetric stretching 

vibration of H-O bond and the peak at ~1640 cm-1 can be assigned to the bending vibration of 

H–O–H bond. Overall, a high similarity appeared between both IR spectra, in agreement with 

the available literature [23].  

3.2. Effect of the electrical conductivity (EC) and the turbidity 
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Partial dissolution of an adsorbent in the surrounding solution can influence the 

adsorption process impacting metal uptake capacity. EC and turbidity tests were conducted 

and showed an increase with time for both natural and modified pumices samples (Fig.4). EC 

for natural and modified pumices increased from 6 to 20 µs/cm and 11 to 36 µs/cm, 

respectively. This increase can be attributed to the presence of some soluble constituents from 

the adsorbents. Furthermore, the higher increase observed for the modified pumice may be 

attributed to the release of Na+ ions loaded during the modification process. Turbidity 

increased from 0.2 to 1.3 NTU and 0.3 to 1.2 NTU for the natural and modified pumice 

samples respectively, namely close to the standard values and hence may not influence the 

disinfection process. 

3.3. Effect of the contact time and the initial hardness agents concentration 

The effects of the initial calcium and magnesium concentrations and the contact time 

on the removal efficiency of pumice are illustrated in Figure 5. As it can be seen, adsorption 

efficiency was improved by increasing the contact time and the initial ions concentration. 

While for natural pumice sample, the equilibrium time was not reached even after 240 

minutes (Figs.5a and b), equilibrium was reached after 150 and 180 min for calcium and 

magnesium adsorption on the alkali-modified pumice (Figs.5c and d). Accordingly, for an 

initial metal concentration of 150 mg/L, 83% and 94% of calcium and 48% and 73% of 

magnesium were adsorbed by natural and modified pumices respectively, showing for both 

adsorbents a higher affinity for calcium over magnesium. Furthermore, alkali modification of 

pumice improved the adsorption capacity toward both tested cations. 

Surface adsorption and ion exchange can be considered as the driving forces of ion 

removal. While bonding of metal ions to the surface can be considered as the main 

mechanism responsible for metal uptake by natural pumice, in addition to surface adsorption, 

ion exchange can also be involved in the case of the alkali-modified pumice leading to a 
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remarkable enhancement of the adsorption capacity [19]. Furthermore, alkali modification 

can contribute to the removal of impurities, which can unblock some pores improving 

accessibility to the active adsorption and ion exchange sites of the modified sample. Removal 

efficiency also showed an increase with the initial metal concentration, which can be 

attributed to an increase of the concentration gradient increasing the driving force [24].  

Equilibrium data were analyzed by pseudo-first order, pseudo-second order and intra-

particle diffusion kinetic models. Fig.6 shows the fitting of equilibrium data onto pseudo-

second order kinetic model and the related parameters are listed in Table 2. Pseudo-first order 

and intra-particle diffusion kinetic models showed lower correlation coefficient (R2), and 

hence the corresponding data are not shown. Equilibrium data fitting confirmed that 

increasing the initial cations concentration increased sorption capacity of raw and modified 

adsorbents. As can be seen from Table 2, the experimental qe values were close to those 

calculated. In addition and for both adsorbents, the rate constants (k2) for calcium sorption 

were higher than those observed for magnesium, confirming the higher affinity of the studied 

adsorbents for calcium over magnesium.        

3.4. Effect of the pH and the adsorbent mass 

The pH of the solution should be considered as an important factor affecting metal 

adsorption process due to its impact on the degree of ionization of metal specie and the 

surface charge of the adsorbent. The effect of pH of the reaction mixture on the adsorption 

efficiency at various adsorbent doses was examined in order to optimize the adsorbent dosage 

and the pH. According to the results summarized in Fig.7, the highest adsorption capacity 

towards Ca+2 and Mg+2 ions was achieved at pH=6 for both natural and modified pumices 

and for all tested dosages. This optimal pH was in accordance with the zero point charge 

values (6.3 and 6.5 for natural and modified pumices respectively, see 2.7). As it is shown in 

Fig 7, at this pH 79 and 96% of calcium (Figs.7a and b) and 51 and 93% of magnesium 
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(Figs.7c and d) were removed by 10 g/L of the natural and modified pumice adsorbents, 

respectively. The lower removal efficiencies observed in acidic medium (i.e. pH in the range 

2-5) can be attributed to the protonation of adsorbent functional groups or competition of H+ 

with metal ions to bind and occupy the active sites of the adsorbents. On the other hand, in 

alkaline environment (i.e. pH in the range 8-10), the formation of metal hydroxide can be 

considered as the main reason for decreasing metal uptake [25]. Similar results were reported 

for the removal of magnesium by manganese oxide coated zeolite [26] and for the removal of 

calcium using raw sugar cane bagasse modified with tartaric acid and citric acid [27]. The 

highest removal capacity at pH=6, namely close to the zero point charges of natural and 

modified pumices, confirms that the studied pumice adsorbents can be considered as 

promising low cost adsorbents suitable for the removal of hardness ions from drinking water. 

The linear increase of the adsorption capacity for increasing adsorbent dosage indicated the 

accessibility of a larger number of sorption sites at higher dosage to adsorb calcium and 

magnesium ions. Contrarily, in the removal of calcium using raw and modified sugar cane 

bagasse, adsorption capacity remained constant above 100 mg adsorbent [27].  

3.5. Effect of the temperature 

The temperature effect in the range of 10oC to 60oC was studied and thermodynamic 

parameters were calculated and summarized in Table 3. As shown in Fig.8, while the effect 

of temperature on magnesium adsorption seemed to be negligible, a low maximum for the 

adsorption of calcium was observed at 20oC.    

The Arrhenius equation was used to evaluate the nature of the adsorption (either physical (5–

40 kJ/mol) or chemical (40–800 kJ/mol) : 

                             (11) 

Where Ao is the temperature independent factor called “frequency factor,” Ea the activation 

energy (kJ/mol), R is the gas law constant (8.314 J/mol.K), and T is the absolute temperature 
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(K). A plot of ln k versus 1/T yields to a straight line, from which the Ea and Ao can be 

obtained from the slope and the intercept, respectively. In the present work, the values of Ea 

and Ao were observed to be 175.32 kJ/mol and 144.45 kJ/mol for calcium and 135.82 kJ/mol 

and 122.53 kJ/mol for magnesium adsorption on the natural and modified pumice adsorbents 

respectively, indicating chemical adsorption rather than physisorption.  

Thermodynamic parameters were determined for temperatures ranging from 20 to 

60°C using the equilibrium constant kd (qe/Ce). The change in free energy (∆Go) was 

determined as follows (Eq. 12): 

d
o KRTG ln     (12) 

Where, ΔGo is the standard free energy (kJ/mol). The parameters of enthalpy ∆Ho (kJ/mol) 

and entropy ∆So (kJ/mol) related to the adsorption process were calculated from the following 

equation (Eq. 13): 

RT

H

R

S
K
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d





ln     (13) 

The parameters of enthalpy (∆Ho) and entropy (∆So) can be calculated from the slope and the 

intercept of the linear plot of ln kd versus 1/T. Fig.9 shows the thermodynamic plots and the 

related parameters are collected in Table 3. The values of ∆Ho were positive for all systems; 

showing that the sorption reaction was endothermic in nature. The negative ∆So value 

characterized a decrease in randomness at the solid/liquid interface during the sorption 

process. In addition, the values of standard free energy (∆Go) were positive indicating that the 

sorption of metals was not thermodynamically spontaneous. 

3.6. Adsorption Isotherms 

Langmuir, Freundlich and Temkin models were used to evaluate the results of 

adsorption tests. The different adsorption isotherms are illustrated in Fig.10 and the 

corresponding calculated data are collected in Table 4. The Fitting of equilibrium data onto 
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isotherm models shows that the Freundlich isotherm gave the highest regression coefficients 

for calcium and magnesium adsorption compared to Temkin and Langmuir isotherms. 

However, the closeness of the regression values indicated the relevance of the three isotherm 

models. The surface of the adsorbent contained most likely heterogeneous moieties which 

were uniformly distributed on the surface, accounting for Langmuir, Freundlich and Temkin 

isotherms [28]. The values of the separation factor (RL) were calculated for various initial 

metal concentrations for raw and modified pumice adsorbents and were found between 0 and 

1 (0.0176 to 0.0030 and 0.0292 to 0.0050 for calcium adsorption, 0.0400 to 0.0069 and 

0.0320 to 0.0055 for magnesium adsorption on raw and modified pumice adsorbents, 

respectively), indicating a favorable adsorption process, as confirmed from the values of the 

Freundlich factor (n) which were in the range 1-10 (Table 4). 

Maximum sorption capacities according to the Langmuir constant (qmax) for calcium 

and magnesium adsorption using various natural adsorbents are listed in Table 5 to allow 

comparison with the results from the present work. Maximum sorption capacities by raw and 

modified pumices were 62.34 and 57.27 mg/g for calcium and 44.53 and 56.11 mg/g for 

magnesium respectively, namely higher than those reported in Table 5, except for the 

adsorption of magnesium on pecan nutshell.  

3.7. Binary System 

In order to study the interfering effect of Ca+2 and Mg+2 ions one another, adsorption 

tests were conducted in the optimal conditions using a mixture of Ca+2 and Mg+2 cations (100 

mg/L each) (Fig.11). Cation uptake was 63% and 74% for calcium and 27% and 59% for 

magnesium on the natural and modified pumices, respectively. It can be noticed that 

equilibrium time and adsorption efficiency were lower compared to the values observed in 

single ion adsorption tests, which can be attributed to a competition between the two cations 

for occupying the active sites leading to a faster saturation of the adsorbent in the 
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simultaneous presence of calcium and magnesium. Nevertheless and similarly to the single 

ion adsorption tests, calcium showed higher adsorption compared to magnesium indicating a 

higher selectivity of the adsorbents for calcium. These results also showed the efficiency of 

natural and modified pumices for the removal of calcium and magnesium from water streams. 

3.8. Effect of other co-existing anions 

Actual water samples contain a wide range of anionic species that may influence on 

the adsorption of calcium and magnesium ions. In order to study the performance of the 

pumice adsorbents in actual situation, a synthetic water sample containing chloride (450 

mg/L), nitrate (25 mg/L) and sulfate (325 mg/L), as well as 100 mg/L of calcium and 100 

mg/L of magnesium, was prepared. This sample simulated the actual water of the Karaj 

Water Supply system. The total dissolved solid (TDS) of the water sample was 1150 mg/L 

and the conductivity was adjusted by sodium chloride to 1850 µs/cm (according to the Karaj 

water supply system). The adsorption tests were conducted using 6 g/L of either natural or 

modified pumice adsorbents at pH 6 for 240 minute at room temperature. According to the 

results, counter ions (i.e. anions) decreased the adsorption capacity of the adsorbents for Ca2+ 

and Mg2+ cations, since removal efficiencies decreased to 53% and 61% for calcium and to 

24% and 51% for magnesium for the natural and modified adsorbents, respectively. From 

this, the total remaining hardness in the treated water sample by using the natural and 

modified pumice adsorbents should be 429 and 297.5 mg/L as CaCO3 respectively, namely 

close to the advocated value, since the total hardness for drinking water should be less than 

300 mg/L as CaCO3 (AWWA, 2005); hence the alkali modified pumice can be considered as 

a promising adsorbent for water softening. In addition, nitrate, chloride and sulfate 

concentrations were also measured after treatment. Removal efficiencies were 5.6 and 33% 

for nitrate, 33 and 63% for chloride and 51 and 59% for sulfate for natural and modified 

pumices, respectively.  
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Furthermore, the conductivity of the water sample treated with the natural and 

modified adsorbents increased to 1975 and 1936 µs/cm, respectively. This should be related 

to the increase of the total dissolved solid, which were 1234 and 1221 mg/L after water 

treatment with the natural and modified pumices respectively, most likely due to partial 

dissolution of the adsorbents. Overall, although the co-existing ions can interfere in the 

sorption of calcium and magnesium, final total hardness can meet the required standard level 

when the alkali modified pumice was used as an adsorbent. 

3.9. Regeneration of the saturated adsorbents  

Regeneration experiments were conducted to study the reusability of the spent 

adsorbents, which is a very important parameter in terms of economical feasibility of the 

developed process. Regeneration using sodium hydroxide solution was carried out on the 

spent natural and modified pumice samples. Regeneration percentage of the spent adsorbent 

versus reaction time is illustrated in Fig.12. Maximum recovery of the adsorbed calcium and 

magnesium was achieved in less than 300 minutes leading to 99 and 92% desorption of the 

adsorbed calcium and 100 and 89% of the adsorbed magnesium from the natural and 

modified pumices, respectively. Furthermore, maximum cation desorption for saturated 

natural pumice was observed after 510 min of regeneration, while only 300 min of 

regeneration was needed to achieve maximum cation desorption of the saturated modified 

pumice adsorbent. It should be noticed that even if the modified pumice stone showed higher 

sorption capacity for magnesium rather than natural pumice, its regeneration potential was 

lower than that of the natural pumice. 

4. Conclusion 

Softening of hard water by removing Ca2+ and Mg2+ cations was studied using  

natural and alkali-modified pumices as adsorbents. Increasing the mass of adsorbent, the 

contact time or the initial ions concentration led to an increase of cations removal. The 
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studied pumice adsorbents showed a higher selectivity for calcium adsorption if compared to 

magnesium. For both adsorbents, an increase of EC and turbidity was shown, which can be 

attributed to a partial dissolution of the adsorbent; this increase remained however limited. 

After treating synthetic water solution simulating an actual water stream with the alkali 

modified pumice, total hardness of the treated sample met the required standard for drinking 

water. 
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Figure Captions 

Fig.1. XRD patterns of natural pumice (a) and alkali modified pumice (b) 

Fig.2. SEM images of natural pumice (a) and alkali modified pumice (b) 

Fig.3. FTIR spectra of natural pumice (a) and alkali modified pumice (b) 

Fig.4. Effect of natural and modified pumices on conductivity and turbidity (6 g/L adsorbent, 

pH 6.5, room temperature, agitation speed 200 rpm, 5 µs/cm initial EC and approximately 

zero initial turbidity) 

Fig.5. Effect of initial cation concentrations and contact time on the removal efficiency, (a) 

Ca2+ on natural pumice, (b) Ca2+ on modified pumice, (c) Mg2+ on natural pumice, (d) Mg2+ 

on modified pumice (experimental conditions: pH=6.5, adsorbent dose 6 g/L, room 

temperature, 200 rpm agitation speed). 

Fig.6. Fitting of equilibrium data onto pseudo-second order kinetic model, (a) Ca2+ on natural 

pumice, (b) Ca2+ on modified pumice, (c) Mg2+ on natural pumice, (d) Mg2+ on modified 

pumice  

Fig.7. Effect of pH and adsorbent dosage on calcium and magnesium removals, (a) Ca2+ on 

natural pumice, (b) Ca2+ on modified pumice, (c) Mg2+ on natural pumice, (d) Mg2+ on 
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modified pumice (contact time 210 min, ions concentration 100 mg/L, room temperature, 200 

rpm agitation). 

Fig.8. Effect of the temperature on the removal efficiency (ions concentration 100 mg/L, 

adsorbent 6 g/L, pH 6.5, contact time 210 min) 

Fig.9. Thermodynamic illustration for calcium and magnesium adsorption on natural and 

modified pumices 

Fig.10. Fitting of equilibrium data onto isotherm models, (a) Freundlich, (b) Langmuir, (c) 

Temkin 

Fig.11.  Sorption of calcium and magnesium in binary system (adsorbent 6 g/L, pH 6.5, ions 

concentration 100 mg/L, room temperature, 200 rpm agitation speed) 

Fig.12. Regeneration of the saturated adsorbents (spent adsorbent: 6 g/L, initial calcium and 

magnesium concentration: 100 mg/L each and 2 N NaOH used for regeneration). 
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Table 1 Chemical compaction of raw used adsorbent (w/w) 

Component % Component % 

SiO2 63.45 SrO 0.09 

Al2O3 17.24 MgO 1.03 

TiO2 0.37 K2O 2.16 

P2O5 0.21 SO3 0.16 

CaO 3.22 Na2O 2.00 

Fe2O3 2.86 Cl- 0.30 
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Table 2 Pseudo second order kinetic parameters for the present work  

 Calcium on raw adsorbent Calcium on modified adsorbent 

 k2 qe, calc qe, exp R2 k2 qe, calc qe, exp R2 

50 mg/L 0.63 5.59 5.25 0.98 0.71 6.30 5.91 0.97 

100 mg/L 0.67 8.99 8.83 0.99 0.82 17.82 15.33 0.98 

150 mg/L 0.73 16.05 15.75 0.98 0.89 25.70 23.50 0.99 

 Magnesium on raw adsorbent  Magnesium on modified adsorbent 

 k2 qe, calc qe, exp R2 k2 qe, calc qe, exp R2 

50 mg/L 0.57 2.61 2.33 0.99 0.60 5.77 4.25 0.97 

100 mg/L 0.59 3.61 3.16 0.98 0.61 13.26 10.83 0.98 

150 mg/L 0.61 14.49 12.33 0.97 0.65 21.83 18.25 0.97 
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Table 3 Parameters collected from the thermodynamic model 

ΔG0 ΔS0 ΔH0  

333 323 313 303 293 283   T (K) 

4292 4054 3929 3596 3068 3063-10.13 0.493 Raw-Ca+2 

2614 2536 2332 2258 1816 1993-6.41 0.257 Modified-Ca+2 

8305 8056 7521 7148 6787 6555-22.51 0.418 Raw-Mg+2 

4066 3944 3822 3596 3478 3359-11.73 0.088 Modified-Mg+2 
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Table 4 Parameters collected from isotherm models 

Modified-Mg+2 Raw- Mg+2 Modified- Ca+2 Raw-Ca+2 parameter 
Isotherm 

Model 

0.989 0.989 0.996 0.991 r2 

7.35 7.9 9.24 7.23 Kf 

0.294 0.384 0.357 0.263 n 

 

Freundlich 

0.949 0.965 0.911 0.960 r2 

56.11 44.53 57.27 62.34 qm 

1.21 0.96 1.33 2.23 b 

 

Langmuir 

0.911 0.906 0.937 0.905 r2 

79.02 109.03 82.44 68.31 b1 

0.66 0.53 1.69 0.8 kt 

 

Temkin 
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Table 5 Maximum sorption capacity of some adsorbents for calcium and magnesium 

qmax (mg/g) Adsorbent 

Ca+2 Mg+2 

Reference 

Black carrot residues ------- 3.871 [25] 

Activated Chilean zeolites ------ 0.774 [26] 

Natural zeolite ------- 0.259 [26] 

Manganese oxide coated zeolite ------- 1.123 [26] 

Sugar cane bagasse modified with  citric acid 26.52 ------- [27] 

Sugar cane bagasse modified with tartaric acid 14.72 ----- [27] 

Green tomato husk ------ 6.76 [29] 

Chemically modified cellulose 15.6 13.5 [30] 

Sugar cane bagasse 46.1 23.50 [30] 

Rice husk ------- 3.87 [31] 

Pecan nutshell ------ 103.8 [32] 

Kaolinite ------- 0.446 [33] 

Raw pumice 57.27 44.53 Present work 
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Modified pumice 62.34 56.11 Present work 
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(d)
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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