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Abstract. The present wind turbine is a small one which can be used on roofs or in gardens. 

This turbine has a vertical axis. Each turbine blade combines a rotating movement around its 

own axis and around the main rotor axis. Due to this combination of movements, flow around 

this turbine is highly unsteady and needs to be modelled by unsteady calculation. The present 

work is an extended study starting in 2009. The benefits of combined rotating blades have been 

shown. The performance coefficient of this kind of turbine is very good for some blade stagger 

angles. Spectral analysis of unsteady results on specific points in the domain and temporal 

forces on blades was already presented for elliptic blades. The main aim here is to compare two 

kinds of blades in case of the best performances.  

1.  Nomenclature 

Cp Power coefficient    2// 3

0
SPC

effp
  (-) 

D Diameter of turbine zone  (m) 

p* non-dimensional pressure  2// 2

1

2* Rpp   (-) 

Peff Real power  (W) 

R Radius of axis of blades,  (=0.62 m) 

Re Reynolds number based on length of blade /
0
LVR

e
  (-) 

S Captured swept area  (m
2
) 

V0 Wind velocity  (=8 m/s) 

 Initial blade stagger angle  (degrees) 

 Blade or tip blade speed ratio  
01

/VR   (-) 

 Density of air  (kg/m
3
) 

 Azimuth angle of blade 1   (degrees) 

1 Angular velocity of turbine    (rad/s) 

2 Angular velocity of pales 2/
12

   (rad/s) 

2.  Introduction 

All wind turbines can be classified in two great families ([8]) (i) horizontal-axis wind turbine 

(HAWTs) and (ii) vertical-axis wind turbine (VAWTs). VAWTs work at low speed ratios. A lot of 

works was published on VAWTs like Savonius or Darrieus rotors ([7], [10]…) but few works were 
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published on VAWTs with relative rotating blades ([1] to [6], [12]). Some inventors discovered this 

kind of turbine in the same time on different places (Cooper and Dieudonné for example) and made 

studies these last ten years on this kind of VAWTs.  

The present study concerns this kind of VAWT technology in which each blade combines a 

rotating movement around its own axis and a rotating movement around turbine’s axis. The blade 

sketch needs to have two symmetrical planes because the leading edge becomes the trailing edge when 

each blade rotates once time around the turbine’s axis.  

In previous studies ([1, 2]) the benefit of rotating elliptic and straight blades was shown: the 

performance of this kind of turbine was very good and better than those of classical VAWTs for some 

specific initial blade stagger angles between 0 and 15 degrees. It was shown that each blade’s behaviour 

has less influence on flow stream around next blade and on power performance. The maximum mean 

numerical coefficient is about 38% (figure 1). 

A significant influence of sketch of blades, of blade speed ratios and of initial blade stagger angles 

(figure 3) was demonstrated. It was also demonstrated that the Reynolds number has low influence. 

 

 

 

  

 

Figure. 1 Mean power coefficients Cp for all test 

cases with blade speed ratios  

 
Figure. 2 Sketch of the VAWT 

studied 

 

 

 

 

 

Figure. 3 Elliptic blades : zoom of the mesh of the VAWT studied, definitions of different 

zones and of initial blade stagger angle 
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The present paper deals with unsteady results like temporal pressure and temporal Z vorticity 

on specific points in the domain; and the spectral analysis of some results which give the best 

power coefficient for specific cases with elliptic (EB) and straight (SB) blades (table 1). 

Table 1 Cases 

cases   Turbulence model Blade sketch 

eb 15_0,4 k- 0,4 15 k- Elliptic 

eb 15_0,4 k- 0,4 15 k- Elliptic 

sb 8_0,4 k- 0,4 8 k- Straight 

sb_8,0.4k- 0,4 8 k- Straight 

eb 15_0,6 k- 0,6 15 k- Elliptic 

eb 15_0,6 k- 0,6 15 k- Elliptic 

sb 8_0.6 k- 0,6 8 k- Straight 

sb 8_0.6 k- 0,6 8 k- Straight 
  

 

The sketch of the industrial product is shown in figure 2. Blades have elliptic or straight sketches, 

relatively height, so a 2D model was chosen. More details concerning meshing model are given in [1]. 

A time step corresponding to a rotation of 1/512 revolution was chosen in view of spectral analysis. 

So a new mesh was calculated at each time step. 

Boundary conditions are velocity inlet to simulate a wind velocity in the upstream line of the model 

(Re=560 000), symmetry planes on the right and left lines of the domain and pressure for the outlet of 

the domain. The model contains five zones: outside zone of turbine, three blades zones and zone 

between outside zone and blades zones named turbine zone. Turbine zone has a diameter named D 

which includes all blade zones and takes account of a little gap allowing grid mesh to slide. Except 

outside zone, all other zones have relatively movements. Four interfaces between zones were created: 

an interface zone between outside and turbine zone and an interface between each blade and turbine 

zone. Details of zones are given in figure 3. 

Two turbulence models were tested. 

The realizable k- Model was developed by Shih et al. [11]. It satisfies some mathematical 

constraints on the normal stresses consistent with the physics of turbulence (realizability). The concept 

of empirical parameters is also consistent with experimental observations in boundary layers. 

The SST k- Model in which the problem of sensitivity to free-stream/inlet conditions was 

addressed by Menter [9] who suggested using a blending function (which includes functions of wall 

distance) that would include the cross-diffusion term far from walls, but not near the wall. This 

approach effectively blends a k- model in the far-field with a k- model near the wall. Menter also 

introduced a modification to the linear constitutive equation and dubbed the model containing the SST 

(shear-stress transport) k- model. 

3.  Results 

3.1.  Temporal results 

Instantaneous results such as torques, Fpx, Fpy are given in Cartesian coordinates system Oxy 

(figure 3). Probes are also placed downstream of the turbine in order to have information about local 

pressure, velocity and vorticity. The position of each probe is shown in figure. 4 and given in table 2. 

In this paper, only Z-vorticity and pressure fields were particularly analysed.  

Table 2 Pressure probes position 

Probes _8 _7 _6 _5 _4 _3 _2 1 2 3 4 5 6 7 8 

x (m) -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

y (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 
 



 

 

 

 

 

 

 
 

Figure 4 Pressure probes position 

 

 

 

Figure 5.  Z-vorticity (s
-1

)with  k-0.4  Figure.6. Z-vorticity (s
-1

)with  k- 0.4 

 

 

 

Figure 7. Z-vorticity (s
-1

) with  k- 0.4  Figure 8. Z-vorticity (s
-1

) with   k- 0.4 

 

 

 

Figure 9. Z-vorticity (s
-1

) with  k- 0.6  Figure 10. Z-vorticity (s
-1

) with  k- 0.6 

 

 

 

Figure 11. Z-vorticity (s
-1

) with  k- 0.6 
 

Figure 12. Z-vorticity (s
-1

) with  k- 0.6 
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 = 0 degree   = 30 degrees   = 60 degrees 

Figure 13. Z-vorticity (s
-1

) with  k- 0.6 for different azimuth angle of blade 1 

 

The turbulence model has low influence on global results (figure 1). The greater influence was 

detected for elliptic blades for non-dimensional velocity  comprised between 0.5 and 0.8 and this 

difference is less than 4.4%. The k- turbulence model gives fewer performances.  

As the SST k- Model is better in free stream and mix blends a k- model in the far-field with a 

k- model near the wall, it can be supposed that it is the fitter turbulence model for this kind of 

problem.  

Now, let us examine the local results registered by the probes. Let us start with Z-vorticity which 

allows detecting swirl with more accuracy because it is a derivative. Only some probe results has been 

presented here for more clarity. Some results which allow detecting swirl have been drawn. It can be 

seen in figures 5 to 12 that the Z-vorticity on the right side field is more disturbed than on the left side 

whatever the turbulence model is and whatever the non-dimensional velocity is (0.4 or 0.6). 

Nevertheless the disturbance on the left side is non-negligible especially for  = 0.4 for which the 

maximum magnitude is equal to the half value of the maximum magnitude on the left side. Even if the 

magnitude of swirl has lower magnitude on the left side, the examination of figures 5, 7, 9 and 11 

shows a more complicated flow stream whatever the turbulence model is. On the contrary for  = 0.6, 

the left side is less perturbed.  

From figures 5-12, it can be seen that the magnitude of the Z-vorticity has increased with the 

downstream development of the flow. As it can be seen in figure 13, the increased vorticity comes 

from the rotation of blades around their own axes. For each kind of blades, a swirl arises at the leading 

edge of the lower blade. This swirl grows up when the blade rotates and breaks off blade for some 

azimuth angle, and then it reduces until vanished. This can be observed more accurately for an initial 

blade stagger angle of 15 degrees. 

 

3.2.  Spectral analysis 

It can be seen in figures 14 to 17 that the pressure field is much more disturbed on the right side than 

on the left side.  

Furthermore, the pressure field, for non-dimensional velocity =0.6, is more regular and with lower 

level than the one for =0.4 although the power coefficients are quite the same. It will be interesting in 

the future to perform aero-acoustic calculations in order to analyze the influence of the non-

dimensional velocity. The final goal will be to determine the best configuration leading to the best 

aero-acoustic and aerodynamic performances. 

The examination of the FFT treatment of the pressure measured by the probes shows that the 

magnitude of the fluctuation is much more important for the points 5 to 8 whatever the turbulence 

model, the non-dimensional velocity and the design of the blades are. But, for the straight blades 

(continuous lines), the magnitude of the fluctuations is lower than for the elliptic blades(dotted lines) 

as it can be seen in figures 18 to 21. 



 

 

 

 

 

 

 

 

 

Figure 14. FFT(p*) with f* probes  _2 to _8 

k- 

 
Figure 15. FFT(p*) with f* probes 1 to 8 

k- 

 

 

 

Figure 16. FFT(p*) with f* probes _2 to _8 

k- 

 
Figure 17. FFT(p*) with f* probes 1 to 8 

k- 

 

 

 

 
 

 

 

Figure 18. FFT(p*) with f* probes 5 to 8 

ork- 

 Figure 19. FFT(p*) with f* probes 5 to 8 

ork- 

 

 

 

Figure 20. FFT(p*) with f* probes 5 to 8 

ork- 

 Figure 21. FFT(p*) with f* probes 5 to 8 

ork- 



 

 

 

 

 

 

As it has previously said, the influence of the turbulence model is not obvious on the global 

performances. It is not the same concerning the pressure field as can be observed by comparison of 

figures 17 or 19 with figures 18 or 20. 

About the influence of the non-dimensional velocity, the FFT analysis point up that the size of the 

perturbed field is upper for =0.4 for straight blades. Effectively, for probe 8, it can be noticed in 

figure 18 that there are fluctuations which is not the case in figure 20.  

4.  Conclusion 

In the present study, the influence of the turbulence model has been analyzed by the examination of 

the global performances and of the pressure and Z-vorticity field. The results show that it is really 

notable only on local fields. 

The best design considering the global and local performances is also examined and is obtained for 

straight blades, which was not expected. 

To complete this analysis, it will be necessary to perform aero-acoustic calculations for one VAWT. 

At the same time, it will be interesting to study the influence of one turbine on another one. 
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