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SERRE DUALITY AND HÖRMANDER’S SOLUTION OF THE ∂̄ -EQUATION.

ERIC AMAR

Abstract. We use duality in the manner of Serre to generalize a theorem of Hedenmalm on solution
of the ∂̄ equation with inverse of the weight in Hörmander L2 estimates.

1. Introduction

Let ϕ be a C2 strictly sub harmonic function in the complex plane C, i.e. with ∆ the Laplacian,
∆ϕ > 0 in C. Let A2(C, e−2ϕ) be the set of all holomorphic functions g in C such that

‖g‖L2(C,e−2ϕ) :=
∫

C
|g|2 e−2ϕdA <∞,

with dA the Lebesgue measure in C. Suppose that f ∈ L2(C, e2ϕ) verifies

(1.1) ∀g ∈ A2(C, e−2ϕ),

∫

C

fgdA = 0

then in a recent paper H. Hedenmalm [2] proved

Theorem 1.1. Suppose that f ∈ L2(C, e2ϕ) verifies condition (1.1) then there exists a solution to
the ∂̄ -equation ∂̄u = f with

∫

C
|u|2 e2ϕ∆ϕdA ≤ 1

2

∫

C
|f |2 e2ϕdA.

He adds in remark 1.3. that this theorem should generalize to the setting of several complex
variables. The aim of this note is to show that he was right and in fact we have to make slight
modifications in our paper [1], inspired by Serre’s duality theorem [4] to get it. The paper [1]
contains more material and here we extract just the part we need to make this work self contained.

Let ϕ be a strictly plurisubharmonic function of class C2 in the Stein manifold Ω. Let cϕ(z)
be the smallest eigenvalue of ∂∂̄ϕ(z), then ∀z ∈ Ω, cϕ(z) > 0. We denote by L2

p,q(Ω, e
ϕ) the set of

(p, q) currents ω whose coefficients are in the space L2(Ω, eϕ), i.e. there is a constant C > 0 such
that in a coordinates patch (U, ψ) , we have, with dm the Lebesgue measure in Cn,

ψ∗ω =
∑

I,J ωI,Jdz
Idz̄J ,

∫

ψ(U)
|ωI,J |

2
eϕ◦ψ

−1dm ≤ C.

We denote by L2,c
p,q(Ω, e

ϕ) the currents in L2
p,q(Ω, e

ϕ) with compact support in Ω and Hp(Ω) the set

of all (p, 0), ∂̄ closed forms in Ω. If p = 0, H0(Ω) = H(Ω) is the set of holomorphic functions in
Ω.

We shall prove

Theorem 1.2. Let Ω be a pseudo convex domain in C
n ; if ω ∈ L2,c

p,q(Ω, e
ϕ) with ∂̄ω = 0 if q < n

and ω ∈ L2
p,q(Ω, e

ϕ) with ω ⊥ Hp(Ω) if q = n, then there is u ∈ L2
p,q−1(Ω, cϕe

ϕ) such that ∂̄u = ω,

and
‖u‖L2(Ω,cϕeϕ)

≤ C‖ω‖L2(Ω,eϕ).
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In the case Ω is a Stein manifold, the result is more restrictive :

Theorem 1.3. Let Ω be a Stein manifold ; there is a convex increasing function χ such that, with
ψ := χ(ϕ), if ω ∈ L2,c

p,q(Ω, e
ψ) with ∂̄ω = 0 if q < n and ω ∈ L2

p,q(Ω, e
ψ) with ω ⊥ Hp(Ω) if q = n,

then there is u ∈ L2
p,q−1(Ω, cψe

ψ) such that ∂̄u = ω, and
‖u‖L2(Ω,cψeψ)

≤ C‖ω‖L2(Ω,eψ).

Clearly theorem 1.2 generalizes Hedenmalm’s theorem, because in one variable, we have q =
n = 1 and no compactness assumption is required.

2. The proof.

Set a weight η := e−ϕ and µ := c−1
ϕ η such that if α ∈ L2

(p,q)(Ω, µ) is such that ∂̄α = 0 in Ω then

there is (p, q−1) current ϕ ∈ L2(Ω, η) with ∂̄ϕ = α.Moreover we want that if β ∈ L2
(p,q)(Ω, η), ∂̄β =

0, there is a γ ∈ L2
(p,q−1)(Ω, loc) such that ∂̄γ = β.

Now we suppose that, if q < n then ω has a compact support, ω ∈ L
2,c
(p,q)(Ω, η

−1) and ∂̄ω = 0

and if q = n, then ω ⊥ Hn−p(Ω) and ω ∈ L2
(p,q)(Ω, η

−1), but ω needs not have compact support.

We copy lemma 3.5 from [1].

Lemma 2.1. For Ω, ω, η as above, the function L = Lω, defined on (n − p, n − q + 1) form
α ∈ L2(Ω, β), ∂̄ closed in Ω, as follows :

L(α) := (−1)p+q−1〈ω, ϕ〉, where ϕ ∈ L2(Ω, η) is such that ∂̄ϕ = α in Ω
is well defined and linear.

Proof.
We have α ∈ L2(Ω, µ), ∂̄α = 0, then such a ϕ ∈ L2(Ω, η) exists by hypothesis and the pairing 〈ω, ϕ〉
is well defined because ω ∈ L2

(p,q)(Ω, η
−1).

Let us see that L is well defined.
Suppose first that q < n.

In order for L to be well defined we need
∀ϕ, ψ ∈ L2

(n−p,n−q)(Ω, η), ∂̄ϕ = ∂̄ψ ⇒ 〈ω, ϕ〉 = 〈ω, ψ〉.

Then we have ∂̄(ϕ− ψ) = 0 hence we can solve ∂̄ in L2(Ω, loc) :
∃γ ∈ L2

(n−p,n−q−1)(Ω, loc) :: ∂̄γ = (ϕ− ψ).

So 〈ω, ϕ− ψ〉 =
〈

ω, ∂̄γ
〉

= (−1)p+q−1
〈

∂̄ω, γ
〉

= 0 because ω is compactly supported in Ω.
Hence L is well defined in that case.

Suppose now that q = n.

Of course ∂̄ω = 0 and we have that ϕ, ψ are (n − p, 0) currents hence ∂̄(ϕ − ψ) = 0 means that
h := ϕ−ψ is a ∂̄ closed (n− p, 0) current hence h ∈ Hn−p(Ω). Hence the hypothesis, ω ⊥ Hn−p(Ω)
gives 〈ω, h〉 = 0, and L is also well defined in that case and no compactness on the support of ω is
required here.

It remains to see that L is linear, so let α = α1+α2, with αj ∈ L2(Ω, µ), ∂̄αj = 0, j = 1, 2 ; we
have α = ∂̄ϕ, α1 = ∂̄ϕ1 and α2 = ∂̄ϕ2, with ϕ, ϕ1, ϕ2 in L2(Ω, η) so, because ∂̄(ϕ− ϕ1 − ϕ2) = 0,
we have
• for q < n,

ϕ = ϕ1 + ϕ2 + ∂̄ψ, with ψ in L2(Ω, loc),
so

L(α) = (−1)p+q−1〈ω, ϕ〉 = (−1)p+q−1
〈

ω, ϕ1 + ϕ2 + ∂̄ψ
〉

= L(α1)+L(α2)+(−1)p+q−1
〈

ω, ∂̄ψ
〉

,
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but (−1)p+q−1
〈

ω, ∂̄ψ
〉

=
〈

∂̄ω, ψ
〉

= 0, because Suppω ⋐ Ω implies there is no boundary term so
L(α) = L(α1) + L(α2).
• for q = n,

ϕ = ϕ1 + ϕ2 + h, with h ∈ Hn−p(Ω) hence
L(α) = (−1)p+q−1〈ω, ϕ〉 = (−1)p+q−1〈ω, ϕ1 + ϕ2 + h〉 = L(α1)+L(α2)+(−1)p+q−1〈ω, h〉,

so, because 〈ω, h〉 = 0, we still have L(α) = L(α1) + L(α2) without compactness assumption on
the support of ω.
The same for α = λα1 and the linearity. �

Lemma 2.2. Still with the same hypotheses as above there is a (p, q − 1) current u such that
∀α ∈ L2

(n−p,n−q+1)(Ω, µ), 〈u, α〉 = L(α) = (−1)p+q−1〈ω, ϕ〉,
and

sup
α∈L2(Ω,µ), ‖α‖

L2(Ω,µ)≤1

|〈u, α〉| ≤ C‖ω‖L2(Ω,η).

Proof.
By lemma 2.1 we have that L is a linear form on (n− p, n− q + 1) forms α ∈ L(Ω, µ), ∂̄ closed in
Ω.
We have

∃ϕ ∈ L2
(n−p,n−q)(Ω, η) :: ∂̄ϕ = α, ‖ϕ‖L2(Ω,η) ≤ C‖α‖L2(Ω,µ).

Hence L(α) = (−1)p+q−1〈ω, ϕ〉 and by Cauchy Schwarz inequality
|L(α)| ≤ ‖ω‖L2(Ω,η−1)‖ϕ‖L2(Ω,η) ≤ C‖ω‖L2(Ω,η−1)‖α‖L2(Ω,µ),

hence
|L(α)| ≤ C‖ω‖L2(Ω,η−1)‖α‖L2(Ω, µ).

So we have that the norm of L is bounded on the subspace of ∂̄ closed forms in L2(Ω, µ) by
C‖ω‖L2(Ω,η−1).

We apply the Hahn-Banach theorem to extend L with the same norm to all (n− p, n− q + 1)
forms in L2(Ω, µ). As in Serre’s duality theorem ( [4], p. 20) this is one of the main ingredient in
the proof.

This means, by the definition of currents, that there is a (p, q − 1) current u which represents
the extended form L, i.e.

∀α ∈ L2
(n−p,n−q+1)(Ω, µ), ∃ϕ ∈ L2(Ω, η) :: 〈u, α〉 = L(α) = (−1)p+q−1〈ω, ϕ〉,

and such that
sup

α∈L2(Ω,µ), ‖α‖
L2(Ω,µ)≤1

|〈u, α〉| ≤ C‖ω‖L2(Ω,η−1).

�

Proof of the theorem 1.2 and theorem 1.3.
Let ϕ be a strictly plurisubharmonic function in the Stein manifold Ω. Let cϕ(z) be the smallest
eigenvalue of ∂∂̄ϕ(z), then ∀z ∈ Ω, cϕ(z) > 0.

If Ω is a pseudo convex domain in Cn, by lemma 4.4.1. of Hörmander [3], p. 92, we have that,
with η = e−ϕ, µ = c−1

ϕ e−ϕ,

∀α ∈ L2
(n−p,n−q+1)(Ω, µ), ∂̄α = 0, ∃ϕ ∈ L2

(n−p,n−q)(Ω, η) :: ∂̄ϕ = α,

and by theorem 4.2.2. still from Hörmander [3], p. 84, because if β ∈ L2
(n−p,n−q)(Ω, η) then

β ∈ L2
(n−p,n−q)(Ω, loc), we have

∀β ∈ L2
(n−p,n−q)(Ω, η), ∂̄β = 0, ∃γ ∈ L2

(n−p,n−q)(Ω, loc) :: ∂̄γ = β.
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Hence it remains to apply lemma 2.3, proved in the next section, with r = 2 and η = c−1
ϕ e−ϕ to get

the theorem 1.2.
If Ω is a Stein manifold, we need cϕ big enough to verify inequality (5.2.13), p. 125 in [3]. To

have this we can replace ϕ by ψ := χ(ϕ) with χ a convex increasing function, as in [3], p. 125.
Then we still can apply what precedes to have the theorem 1.3. �

2.1. A duality lemma with weight.

This is still in [1] lemma 3.1., but I repeat it completely for the reader’s convenience.
Let Ip be the set of multi-indices of length p in (1, ..., n). We shall use the measure defined on

Γ := Ω×Ip×Iq the following way :

dµ(z, k, l) = dµη,p,q(z, k, l) := η(z)dm(z)⊗
∑

|I|=p, |J |=q

δI(k)⊗ δJ(l),

where δI(k) = 1 if the multi-index k is equal to I and δI(k) = 0 if not.
This means, if f(z, I, J) is a function defined on Γ, that

∫

f(z, k, l)dµη,p,q(z, k, l) :=
∑

|I|=p, |J |=q

∫

Ω

f(z, I, J)η(z)dm(z).

If I is a multi-index of length p, let Ic be the unique multi-index, ordered increasingly, such
that I ∪ Ic = (1, 2, ..., n) ; then Ic is of length n− p.

To t =
∑

|I|=p, |J |=q tI,J(z)dz
I ∧ dz̄J a (p, q) form, we associate the function on Γ :

T (z, I, J) := (−1)s(I,J)tI,J(z),
where

s(I, J) = 0 if dzI ∧ dz̄J ∧ dzI
c

∧ dz̄J
c

= dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n as a (n, n) form
and

s(I, J) = 1 if not.
If ϕ =

∑

|I|=p, |J |=q ϕIc,Jc(z)dz
I ∧ dz̄J is of complementary bi-degree, associate in the same

manner :
Φ∗(z, I, J) := ϕIc,Jc(z). This is still a function on Γ.

Now we have, for 1 < r < ∞, if T (z, I, J) is a function in Ω with Lr(Ω) coefficients and with
µ = µη,p,q,

‖T‖rLr(dµ) :=

∫

|T (z, I, J)|r dµη,p,q(x, I, J) =
∑

|I|=p, |J |=q

‖T (·, I, J)‖rLr(Ω,η).

For 1 ≤ r < ∞ the dual of Lr(µ) is Lr
′

(µ) where r′ is the conjugate of r,
1

r
+

1

r′
= 1, and the

norm is defined analogously with r′ replacing r.
We also know that, for p, q fixed,

(2.2) ‖T‖Lr(µ) = sup
Φ∈Lr′(µ)

∣

∣

∫

TΦdµ
∣

∣

‖Φ‖Lr′(µ)
.

For a (p, q) form t =
∑

|J |=p, |K|=q tJ,Kdz
J ∧ dz̄K , and a weight η > 0 we define its norm by :

(2.3) ‖t‖rLr(Ω,η) :=
∑

|J |=p, |K|=q

‖tJ,K‖
r

Lr(Ω,η) = ‖T‖rLr(µ).

Now we can state
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Lemma 2.3. Let η > 0 be a weight. If u is a (p, q) current defined on (n − p, n − q) forms in
Lr

′

(Ω, η) and such that
∀α ∈ Lr

′

(n−p,n−q)(Ω, η), |〈u, α〉| ≤ C‖α‖Lr′(Ω,η),

then ‖u‖Lr(Ω,η1−r) ≤ C.

Proof.
Let us take the measure µ = µη,p,q as above. Let Φ

∗ be the function on Γ associated to α and T the
one associated to u. We have, by definition of the measure µ applied to the function

f(z, I, J) := T (z, I, J)η−1Φ∗(z, I, J),
∫

Tη−1Φ∗dµ =

∫

f(z, k, l)dµ(z, k, l) :=
∑

|I|=p, |J |=q

∫

Ω

f(z, I, J)η(z)dm(z) =

=
∑

|I|=p, |J |=q

∫

Ω

T (z, I, J)η−1(z)Φ∗(z, I, J)η(z)dm(z) = 〈u, α〉,

by definition of T and Φ∗.

Hence we have, by (2.2)
∥

∥Tη−1
∥

∥

Lr(µ)
= sup

Ψ∈Lr′(µ)

|〈u, α〉|

‖Ψ‖Lr′(µ)
.

But ‖Tη−1‖Lr(µ) = ‖uη−1‖Lr(Ω, η) by (2.3), and
∥

∥fη−1
∥

∥

r

Lr(Ω,η)
=

∫

Ω

∣

∣fη−1
∣

∣

r
ηdm =

∫

Ω

|f |r η1−rdm = ‖f‖Lr(Ω,η1−r),

so we get

‖u‖Lr(Ω,η1−r) = sup
Ψ∈Lr′(µ)

|〈u, α〉|

‖Ψ‖Lr′(µ)
,

which implies the lemma because, still by (2.2), we can take Ψ = Φ∗ and ‖Ψ‖Lr′(µ) = ‖α‖Lr′ (Ω,η).
�

It may seem strange that we have such an estimate when the dual of Lr
′

(Ω, η) is Lr(Ω, η), but
the reason is, of course, that in the duality forms-currents there is no weights.
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