
HAL Id: hal-00915069
https://hal.science/hal-00915069v1

Submitted on 6 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

(Nearly-)tight bounds on the contiguity and linearity of
cographs

Christophe Crespelle, Philippe Gambette

To cite this version:
Christophe Crespelle, Philippe Gambette. (Nearly-)tight bounds on the contiguity and linearity
of cographs. Theoretical Computer Science, 2014, 522, pp.1-12. �10.1016/j.tcs.2013.11.036�. �hal-
00915069�

https://hal.science/hal-00915069v1
https://hal.archives-ouvertes.fr

(Nearly-)Tight Bounds on the Contiguity and Linearity
of Cographs

Christophe Crespellea, Philippe Gambetteb

aUniversité Claude Bernard Lyon 1, DANTE/INRIA, LIP UMR CNRS 5668, ENS de
Lyon, Université de Lyon.

bUniversité Paris-Est, LIGM UMR CNRS 8049, Université Paris-Est Marne-la-Vallée,
5 boulevard Descartes, 77420 Champs-sur-Marne, France.

Abstract

In this paper we show that the contiguity and linearity of cographs on n vertices
are both O(log n). Moreover, we show that this bound is tight for contiguity
as there exists a family of cographs on n vertices whose contiguity is Ω(log n).
We also provide an Ω(log n/ log log n) lower bound on the maximum linearity
of cographs on n vertices. As a by-product of our proofs, we obtain a min-max
theorem, which is worth of interest in itself, stating equality between the rank
of a tree and the minimum height of one of its path partitions.

Keywords: Contiguity, Linearity, Cographs, Graph encoding

Introduction

One of the most widely used operation in graph algorithms is the neigh-
borhood query : given a vertex x of a graph G, one wants to obtain the list of
neighbors of x in G. The classical data structure that allows to do so is the
adjacency lists. It stores a graph G in O(n+m) space, where n is the number
of vertices of G and m its number of edges, and answers an adjacency query on
any vertex x in O(d) time, where d is the degree of vertex x.

This time complexity is optimal, as soon as one wants to produce the list of
neighbors of x. On the other hand, in the last decades, huge amounts of data
organized in the form of graphs or networks have appeared in many contexts
such as genomics, biology, physics, linguistics, computer science, transportation
and industry. In the same time, the need, for industrials and academics, to
algorithmically treat this data in order to extract relevant information has grown
in the same proportions. For these applications dealing with very large graphs,
a space complexity of O(n + m) is often very limiting. Therefore, as pointed
out by [1], finding compact representations of a graph providing optimal time

Email addresses: christophe.crespelle@inria.fr (Christophe Crespelle),
philippe.gambette@univ-mlv.fr (Philippe Gambette)

Preprint submitted to Elsevier December 6, 2013

neighborhood queries is a crucial issue in practice. Such representations allow to
store the graph entirely in memory while preserving the complexity of algorithms
using neighborhood queries. The conjunction of these two advantages has great
impact on the running time of algorithms managing large amount of data.

One possible way to store a graph G in a very compact way and preserve
the complexity of neighborhood queries is to find an order σ on the vertices of
G such that the neighborhood of each vertex x of G is an interval in σ. In this
way, one can store the list of vertices of the graph in the order defined by σ
and assign two pointers to each vertex: one toward its first neighbor in σ and
one toward its last neighbor in σ. Therefore, one can answer adjacency queries
on vertex x simply by listing the vertices appearing in σ between its first and
last pointer. It must be clear that such an order on the vertices of G does not
exist for all graphs G. Nevertheless, this idea turns out to be quite efficient
in practice and some compression techniques are precisely based on it [2, 3]:
they try to find orders of the vertices that group the neighborhoods together,
as much as possible.

Then, a natural way to relax the constraints of the problem so that it admits
a solution for a larger class of graphs is to allow the neighborhood of each vertex
to be split in at most k intervals in order σ. The minimum value of k which
makes possible to encode the graph in this way is a parameter called contiguity
[4].

Another possible way of generalization is to use at most k orders σ1, . . . , σk
on the vertices of G such that the neighborhood of each vertex is the union of
exactly one interval taken in each of the k orders. This defines a parameter
called the linearity of G [5] which is always less than or equal to the contiguity
of G.

Only little is known about these two graph parameters. For example, the
classes of graphs having contiguity (resp. linearity) at most k, where k is an
integer greater than 1, have not been characterized, even for k = 2. Actually,
the nature of these parameters seems to be quite different from those of the
other classical graph parameters (e.g. based on decompositions), and it turns
out that the classes of graphs known to have a nice behavior with regard to
classical parameters, such as e.g. cographs (see Section 1), interval graphs and
permutation graphs (see [6] for definitions of these classes), do not necessarily
have a nice behavior with regard to contiguity and linearity. Thus, studying
these two parameters is of key interest both for their practical implications and
for their theoretical properties. In this paper, we aim at determining what is, in
the worst case, the contiguity and linearity of cographs, that is, in other words,
the maximum contiguity (resp. linearity) of cographs on n vertices.

Let us mention that in the following, all graphs are undirected, simple and
loopless. For each of the two parameters we consider here, namely contiguity
and linearity, there are actually two slightly different notions depending on
whether one considers open neighborhoods (i.e. the set of neighbors of the
vertex x, excluding the vertex x itself) or closed neighborhoods (i.e. the set
of neighbors of the vertex x plus the vertex x). The corresponding notions
are called open contiguity (resp. open linearity) and closed contiguity (resp.

2

closed linearity). For contiguity, it does not make a big difference, as the open
and closed parameters differ by at most one. For linearity, the situation is
slightly different as it is not known whether the open linearity may exceed the
closed linearity by more than one. But anyway, these two parameters are still
equivalent in the sense that they differ at most by a multiplicative constant (at
most two in this case). This is enough for us, as we consider the asymptotic
behavior and we do not take into account multiplicative constants. Regarding
the comparison between contiguity and linearity, it is straightforward to see that
linearity is always less than contiguity (since one may duplicate the same order
k times), but it is an open question to determine whether it can be significantly
less for some graphs or not.

Related works

As we mentioned earlier, only little is known about contiguity and linearity
of graphs. In the context of 0− 1 matrices, [4, 7] studied closed contiguity and
showed that deciding whether an arbitrary graph has closed contiguity at most k
is NP-complete for any fixed k ≥ 2. For arbitrary graphs, [8] (Corollary 3.4) gave
an upper bound on the value of closed contiguity which is n/4 +O(

√
n log n).

Regarding graphs with bounded contiguity or linearity, only the class of
graphs having closed contiguity 1 (or equivalently closed linearity 1) and the
class of graphs having open contiguity 1 (or equivalently open linearity 1) have
been characterized. The former is the class of proper (or unit) interval graphs [9],
which is the subclass of interval graphs that admit a model whose intervals all
have the same length. The latter class, i.e. graphs having open contiguity 1, is
referred to as the class of biconvex graphs [6]. Biconvex graphs are a subclass of
bipartite graphs properly containing bipartite permutation graphs, and which
have, in terms of dimension theory for posets, dimension at most 3.

Finally, let us mention that [5] showed that both contiguity and linearity
(closed and open) are unbounded for interval graphs as well as for permutation
graphs, and that the four parameters can be up to Ω(log n/ log log n), where n
is the number of vertices of the graph.

Our results

In this paper we show that, even for the class of cographs, the contiguity
and the linearity are unbounded. Nevertheless, we show that they are both
dominated by O(log n) for a cograph on n vertices. To this purpose, we show
that the contiguity and linearity of a cograph G do not exceed the maximum
height of a complete binary tree included (as a minor) in the cotree of G. As
a by-product of our proof, we also establish a min-max theorem which is worth
of interest in itself: the maximum height of a complete binary tree included
(as a minor) in a tree T (known as the rank of tree T [10, 11]) is equal to the
mimimun height of a path partition of T (see Definition 7).

Moreover, we exhibit a family of cographs (Gn)n∈N on n vertices whose
asymptotic contiguity is Ω(log n), which implies that our O(log n) bound is
tight. For the case of linearity, we exhibit a family of cographs whose asymptotic

3

linearity is Ω(log n/ log log n). This leaves open the question of determining
whether the linearity of cographs may be up to Ω(log n) or not. In addition,
it should be noted that we show that these lower bounds on the contiguity
and linearity of cographs in the worst case are both reached on the families of
cographs whose cotree is a complete binary tree. This emphasizes the question
of knowing whether these two parameters are equivalent, for a cograph G, to
some function of the maximum height of a complete binary tree included as a
minor in the cotree of G.

Outline of the paper.

Section 1 gives the definitions and notations we use in the following. Sec-
tion 2 gives a min-max theorem on the rank of the tree, which contains the
main idea of our approach for proving the upper bounds. In Section 3, we show
that the closed contiguity and closed linearity of a cograph are both O(log n).
Finally, in Section 4, we show that complete binary cotrees have contiguity
Ω(log n) and linearity Ω(log n/ log log n).

1. Preliminaries.

All graphs considered here are finite, undirected, simple and loopless. In
the following, G denotes a graph, V (or V (G) to avoid ambiguity) denotes its
vertex set and E (or E(G)) its edge set. And we use the notation G = (V,E).
The set of subsets of V is denoted by 2V . Throughout the paper, n stands
for the cardinality |V | of the vertex set of G. An edge between vertices x and
y will be arbitrarily denoted by xy or yx. The (open) neighborhood of x is
denoted by N(x) (or NG(x) to avoid ambiguity) and its closed neighborhood by
N [x] = N(x)∪{x}. The subgraph of G induced by the set of vertices X ⊆ V is
denoted by G[X] = (X, {xy ∈ E | x, y ∈ X}).

There are several characterizations of the class of cographs. They are often
defined as the graphs that do not admit the P4 (path on 4 vertices) as induced
subgraph. Equivalently, they are the graphs obtained from a single vertex under
the closure of the parallel composition and the series composition. The parallel
composition of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the disjoint union
of G1 and G2, i.e. the graph Gpar =

(
V1∪V2, E1∪E2

)
. The series composition of

two graphs G1 and G2 is the disjoint union of G1 and G2 plus all possible edges
from a vertex of G1 to one of G2, i.e. the graph Gser

(
V1∪V2, E1∪E2∪{xy, x ∈

V1, y ∈ V2}
)
.

This gives a very nice representation of the graphs in the class. One can
represent a cograph G by a tree whose leaves are the vertices of the graph and
whose internal nodes (non-leaf nodes) are labeled P , for parallel, or S, for series,
corresponding to the operations used in the construction of G. It is straightfor-
ward to see that it is always possible to find such a labeled tree T representing
G such that every internal node has at least two children, no two parallel nodes
are adjacent in T and no two series nodes are adjacent. This tree T is unique
and is called the cotree of G. It is well-known that the cotree of G defined in

4

this way is nothing else but the modular decomposition tree of G (see [12] for a
survey on modular decomposition). And this is another characterization of the
class of cographs: they are the graphs entirely decomposable by modular decom-
position, i.e. the graphs having no prime node in their modular decomposition
tree.

Note that the adjacencies between vertices of a cograph can easily be read
on its cotree, in the following way.

Remark 1. Two vertices x and y of a cograph G having cotree T are adjacent iff
the least common ancestor u of leaves x and y in T is a series node. Otherwise,
if u is a parallel node, x and y are not adjacent.

Modular decomposition theory is based on an operation called substitution
composition (see [13, 14]). It turns out that contiguity and linearity have a
nice behavior with regard to substitution composition, and our proof of the
O(log n) upper bound for the contiguity and linearity of cographs is based on this
notion, for which a formal definition is given below. Intuitively, the substitution
composition consists in replacing a vertex x of a graph G by another graph
H, keeping the adjacency relationships between vertices of H unchanged and
making all the vertices of H adjacent to the neighbors of x in G.

Definition 1. The result of the substitution composition of a vertex x of a
graph G by a graph H is the graph denoted Gx←H and defined by V (Gx←H) =
(V (G) \ {x}) ∪ V (H) and E(Gx←H) = (E(G) \ {xz | z ∈ NG(x)}) ∪ E(H) ∪
{yz | y ∈ V (H) and z ∈ NG(x)}.

The result of the substitution composition of a vertex of a cograph by another
cograph is also a cograph and its cotree is obtained as explained below.

Remark 2. For any cographs G and H, having cotrees TG and TH , and any
vertex x of G, Gx←H is a cograph and its cotree TGxH is obtained as follows:

1. Build TGxH by replacing the leaf x of TG by the root rH of TH .

2. If the parent u of leaf x in G has the same label as rH , then remove rH
from TGxH and assign u as parent to the children of rH .

For a rooted tree T and a node u ∈ T , the depth of u in T is the number
of edges in the path from the root to u (the root has depth 0). The height
of T , denoted by height(T) or simply h(T), is the greatest depth of its leaves.
We denote by C(v) the children of a node v in T . For a rooted tree T , the
subtree of T rooted at u, denoted by Tu, is the tree induced by node u and all
its descendants in T .

Definition 2. A monotonic path P of a rooted tree T is a path such that there
exists some node u ∈ T such that all nodes of P except u are ancestors of u.
The unique node of P which has no ancestor in P is called the root of the
monotonic path P .

5

Definition 3. A rooted caterpillar is a rooted tree whose internal nodes form
a monotonic path.

It is worth to note that in the rest of the article we consider only rooted
trees and monotonic paths.

In the following, the notion of minors of rooted trees is central. This is a
special case of minors of graphs (see e.g. [15]), for which we give a simplified
definition in the context of rooted trees.

Definition 4. The contraction of edge uv in a rooted tree T , where u is the
parent of v consists in removing v from T and assigning its children (if any) to
node u.
A rooted tree T ′ is a minor of a rooted tree T if it can be obtained from T by a
sequence of edge contractions.

Let us now formally define the contiguity and linearity of a graph.

Definition 5. A closed p-interval-model (resp. open p-interval-model) of a
graph G = (V,E) is a linear order σ on V such that ∀v ∈ V,∃(I1, . . . , Ip) ∈
(2V)p such that ∀i ∈ J1, pK, Ii is an interval of σ and N [x] =

⋃
1≤i≤p Ii (resp.

N(x) =
⋃

1≤i≤p Ii).
The closed contiguity (resp. open contiguity) of G, denoted by cont(G) (resp.
conto(G)), is the minimum integer p such that there exists a closed p-interval-
model (resp. open p-interval-model) of G.

Definition 6. A closed p-line-model (resp. open p-line-model) of a graph G =
(V,E) is a tuple (σ1, . . . , σp) of linear orders on V such that ∀v ∈ V,∃(I1, . . . , Ip) ∈
(2V)p such that ∀i ∈ J1, pK, Ii is an interval of σi and N [x] =

⋃
1≤i≤p Ii (resp.

N(x) =
⋃

1≤i≤p Ii).
The closed linearity (resp. open linearity) of G, denoted by lin(G) (resp.
lino(G)), is the minimum integer p such that there exists a closed p-line-model
(resp. open p-line-model) of G.

Remark 3. Note that in a p-interval-model, the intervals Ii of Definition 5
necessarily form a partition of N [x] (or N(x)), while the intervals Ii assigned
to a vertex x are not necessarily disjoint in the definition of a p-line-model
(Definition 6).

In all the paper, we abusively extend the notion of linearity and contiguity
to cotrees referring to the linearity and contiguity of their associated cographs.

We have the following inequalities on open and closed linearity and contigu-
ity.

Lemma 1. For an arbitrary graph, we have the following inequalities:

lin(G) ≤ lino(G) + 1 ≤ conto(G) + 1 ≤ cont(G) + 2

6

Proof. The first inequality comes from the fact that if we have an open k-line-
model for G, we can add an arbitrary order σ to it and take as the interval of
each vertex x in σ a trivial interval reduced to x. In this way, we obtain a closed
(k + 1)-line-model, showing that lin(G) ≤ lino(G) + 1.
For the second inequality, if we have an open k-interval-model for G based on
an order σ, we can make an open k-line-model consisting of k copies of order
σ: for each vertex x and for each i between 1 and k, the interval of x in copy
number i is the interval number i of x in the k-interval model. This shows that
lino(G) ≤ conto(G), and the second inequality follows from it.
Finally, for the third and last equality, notice that from a closed k-interval-
model σ, we can easily obtain an open (k + 1)-interval-model by simply re-
moving each vertex x from N [x]: this may break at most one interval Ii of
x in σ into two pieces, while leaving the other intervals unchanged. Thus,
conto(G) ≤ cont(G) + 1 and the last inequality of Lemma 1 follows. 2

In the rest of the article, we consider only closed notions but, from the above
inequalities, the bounds we obtain also hold for the open notions.

2. A min-max theorem on the rank of a tree

In this section we prove a min-max theorem (Theorem 1) linking the maxi-
mum height of a complete binary tree contained as a minor in a given tree T (see
Definition 4 above) and the minimum height of partition of T into monotonic
paths (see Definition 7 below). This theorem is the key of our approach, we use
it in Section 3 to show that the contiguity of a cograph G is dominated by the
maximum height of a complete binary tree T ′ contained in the cotree T of G.

We now give the definitions needed to state the min-max theorem we aim
at, starting with the definition of a path partition and related notions.

Definition 7. A path partition P of a tree T is a partition {P1, . . . , Pk} of
V (T) such that for any i ∈ J1, kK, the subgraph T [Pi] of T induced by Pi is a
monotonic path (see Definition 2).
The partition tree of a path partition P, denoted by Tp(P), is the tree whose
nodes are Pi’s and where the node of Tp(P) corresponding to Pi is the parent of
the node corresponding to Pj iff some node of Pi is the parent in T of the root
of Pj.
The height of a path partition P of a tree T , denoted by h(P), is the height
h(Tp(P)) of its partition tree.

Note that in the preceding definition, it is anyway impossible that some node
of Pi is the parent in T of some node u of another Pj that is not the root of Pj ,
since in this case u would have at least two parents in T .

Remark 4. Note that the partition tree Tp(P) is obtained from T by contracting
all edges of the monotonic paths in P.

7

(a) (b)

Figure 1: A tree T and a path partition P = {P1, P2, P3, P4, P5, P6} of T (a), as well as the
partition tree of P (b).

Figure 1 gives an example of a path partition of some tree and the corre-
sponding partition tree. Let us now formally define the rank and the path-height
of a tree, which are the two notions involved in our min-max theorem.

Definition 8. As [10, 11], we define the rank of a tree T as the maximum
height of a complete binary tree being a minor of T , that is:

rank(T) = max{h(T ′) | T ′ is a complete binary tree and a minor of T}.

And we define the path-height of T as the minimum height of a path partition
of T , that is:

ph(T) = min{h(P) | P is a path partition of T}.

For the rest of the paper, we extend the definition of the rank to any vertex
v of a tree T by defining the rank of v as the rank of the subtree of T rooted at
v.

The rest of the section is devoted to prove Theorem 1 which states that for
any tree, its rank and its path-height are equal. Lemma 2 first proves it for the
particular case of complete binary trees as this case will be a key step in the
proof of the general result on arbitrary trees.

Lemma 2. For a rooted complete binary tree T , rank(T) = ph(T) = h(T).

Proof. The fact that h(T) = rank(T) is obvious from the definition of rank(T).
On the other hand, one can build a path partition P of height h(T) by taking
P = {{x}}x∈V (T). In other words, each path in P is reduced to one single vertex
of T . In this way, Tp(P) = T which gives ph(T) ≤ h(T).

Conversely, we prove that ph(T) ≥ h(T) by induction on h(T). This property
is true for the trivial tree T with only one vertex, for which we have ph(T) =
0 ≥ 0 = h(T). Now, assume that it is true for any rooted complete binary
tree of height k ≥ 0, and consider a rooted complete binary tree T of height
k+ 1. Let P be a path partition of T such that h(P) = ph(T), and let P be the
monotonic path of P containing the root r of T , as shown in Figure 2.

Since path P is monotonic, it does not contain at least one child u of
r. Then, the subset P ′ of P made of the paths containing some node of

8

Figure 2: The induction step of the proof that the path-height of a complete binary tree is at
least as big as its height, in the proof of Lemma 2.

Tu is a path partition of Tu. And from the induction hypothesis, we get
h(P ′) ≥ ph(Tu) ≥ h(Tu) ≥ k. Since h(P) ≥ h(P ′) + 1, we obtain h(P) ≥ k + 1,
and so ph(T) ≥ k + 1. This ends the induction and the proof of Lemma 2. 2

Actually, in the proof of Theorem 1, we use only the part of Lemma 2 stating
that ph(T) ≥ h(T) which is precisely the non-trivial part of the lemma. Let us
now state Theorem 1, which is the min-max theorem we aim at.

Theorem 1. For any rooted tree T , we have rank(T) = ph(T).

Proof. ≤ : Let T ′ be a complete binary tree which is a minor of T of
maximum height among such complete binary trees. By definition, we have
rank(T) = h(T ′) and from Lemma 2 we know that h(T ′) = ph(T ′). It follows
that rank(T) = ph(T ′). Then, in order to prove rank(T) ≤ ph(T), we show
that ph(T ′) ≤ ph(T).

Indeed, consider an arbitrary path partition P of T . We will build a path
partition P ′ of T ′ whose height is at most the height of P. By definition, tree
T ′ can be obtained from T by a series of edge contractions. The partition P ′
we build is induced from P in the sense that we obtain it by updating partition
P step by step along the series of edge contractions of T resulting in T ′. Along
this process, when an edge uv of the current tree Tcur, where u is the parent
of v, is contracted in order to obtain the next tree Tnext, we delete node v and
assign its children to u, as in Definition 4. An example of edge contraction in
Tcur and its effect on the current path partition is shown in Figure 3. Note that
there are cases where the modification of the path partition is different from the
case depicted on Figure 3, in particular when v is the only node in some path
P of the partition.

This ensures that any set P of nodes inducing a monotonic path in Tcur
also induces a monotonic path in Tnext (except in the case where P = {v}:
P becomes the empty set after the contraction and disappears from the path
partition we maintain). Consequently, a path partition Pnext of Tnext can be
obtained from the partition Pcur of Tcur in the following way: for all the nodes
remaining in Tnext (i.e. all the nodes of Tcur except node v), we keep them in
the same path of the partition as they were previously belonging to in Pcur.

It is not difficult to see that the partition tree Tnext
p of Pnext defined this way

has height at most that of T cur
p . Indeed, from the definition of the partition

tree (see Definition 7), during the contraction of edge uv, the only paths of

9

Figure 3: Left: a tree Tcur with its path partition Pcur = {P1, P2, P3, P4, P5, P6} whose
partition tree T cur

p has height 2. Right: the tree Tnext resulting from the contraction of edge
uv in Tcur, together with its path partition Pnext = {P ′

1, P
′
2, P

′
3, P

′
4, P

′
5, P

′
6}. All the paths in

Pnext are the same as those in Pcur, except P ′
5 which has lost node v. The height of Tnext

p
decreased, it is now 1.

Pcur that are likely to change their parent in Tnext
p are those paths whose root

is in C(v), as the other nodes of Tcur do not change their parent. For such a
path Pv′ rooted at a child v′ of v, the parent of Pv′ in Tnext

p will be the path
Pu containing u, which may be either its parent or its grandparent in T cur

p ,
depending on whether nodes u and v are in the same path of Pcur or not. Since
the only nodes of T cur

p that change their parents in Tnext
p change it for their

grandparent in T cur
p , it follows that h(Pnext) ≤ h(Pcur).

Consequently, at the end of the series of edge contractions that results in T ′,
we obtain a path partition P ′ of T ′ such that h(P ′) ≤ h(P). As this holds for
any path partition P of T , we conclude that ph(T ′) ≤ ph(T).
≥ : We show that rank(T) ≥ ph(T) by induction on rank(T). We use the

following induction hypothesis H(k): ”for any tree T such that rank(T) = k,
we have ph(T) ≤ rank(T)”.

Clearly, if rank(T) = 0, then T is a monotonic path. Thus, there is a trivial
partition of T into a single path and the path-height of this partition is 0 :
ph(T) ≤ rank(T).

Now, let k ≥ 0 such that ∀i ∈ J0, kK, H(k) holds. We show that H(k + 1)
is satisfied. Let T be a tree such that rank(T) = k + 1, and let Sk+1 be the
subset of nodes u of T such that rank(Tu) = k + 1. We first show that Sk+1 is
a monotonic path of T containing the root.

Clearly, by definition of rank(T), Sk+1 contains the root of T , so let us
show that it induces a monotonic path of T . First, note that if u is such that
rank(Tu) = k + 1 then for all ancestors v of u, rank(Tv) = k + 1. Indeed, it
is clear that rank(Tv) is not less than rank(Tu), and since rank(T) = k + 1,
we also have rank(Tv) ≤ k + 1. Now, assume for contradiction that there exist
two nodes u, v ∈ Sk+1 such that none of them is the ancestor of the other.
Let w be the least common ancestor of u and v in T . Let u′ and v′ be the
two distinct children of w that are the ancestors of respectively u and v. From
above, u′ and v′ are such that rank(Tu′) = rank(Tv′) = k + 1. It follows that
rank(Tw) ≥ k + 2: contradiction. Thus, all the nodes of Sk+1 are comparable
for the ancestor relationship, and since we already showed that all the ancestors
of a node in Sk+1 are in Sk+1, it follows that Sk+1 induces a monotonic path of
T containing the root.

10

Now, let S′ = {u ∈ V (T) \ Sk+1 | parent(u) ∈ Sk+1}, and let u ∈ S′.
Clearly, since u 6∈ Sk+1, rank(Tu) ≤ k and the induction hypothesis implies
that ph(Tu) ≤ k. For any u ∈ S′, we denote by Pu a path partition of Tu of
height at most k. Then, {Sk+1} ∪

⋃
u∈S′ Pu is a path partition of T and has

height at most k + 1. Thus, ph(T) ≤ k + 1 = rank(T) and H(k + 1) holds,
which ends the induction, showing that for any tree T , rank(T) ≥ ph(T). 2

Note that Theorem 1 implies that the path-height of any tree T is at most log-
arithmic in its number of vertices. Indeed, ph(T) = h(T ′) where T ′ is a complete
binary tree being a minor of T . Then, h(T ′) = log2(|V (T ′)|) ≤ log2(|V (T)|),
and thus ph(T) ≤ log2(|V (T)|). Combining this with Lemma 5 of Section 3 will
provide the upper bound on the contiguity of cographs stated by Theorem 2,
which is optimal from Theorem 3.

3. Upper bounds for contiguity and linearity of cographs

The aim of this section is to prove that the closed contiguity of any cograph
is dominated by log n (Theorem 2). From Lemma 1, this implies that the same
holds for open contiguity, open linearity and closed linearity. As we mentioned
earlier, our proof relies on a decomposition approach, whose basic step is the
root-path decomposition defined below. This basic step of decomposition de-
creases the contiguity of G by at most some constant. And we will show that
using it only a logarithmic number of times (once per level of a minimum-height
path partition of the cotree of G) is enough to entirely decompose the graph
into single vertices. This will provide us with the logarithmic bound we aim at
for the closed contiguity of cographs.

Definition 9. A root-path decomposition (see Fig. 4) of a rooted tree T is a
set {T1, . . . , Tp} of disjoint subtrees of T , with p ≥ 2, such that every leaf of T
belongs to some Ti, with i ∈ J1, pK, and the sets of parents in T of the roots of
Ti’s is a monotonic path containing the root of T .

Figure 4: The root-path decomposition {T1, . . . , Tp} of a rooted tree T .

11

In Definition 9 above, the roots of Ti’s and their parents induce a caterpillar
in T . It turns out that the contiguity of a caterpillar cotree is bounded by a
constant. This is what is used in Lemma 3 below to state that the contiguity
of a cotree admitting a root-path decomposition {T1, . . . , Tp} is not more than
the greatest contiguity of the Ti’s plus some constant.

Lemma 3 (Caterpillar Composition Lemma). Given a cograph G = (V,E)
and a root-path decomposition {Ti}1≤i≤p of its cotree,

cont(G) ≤ 2 + max
i∈J1,pK

cont(G[Xi]),

where Xi is the set of leaves of Ti.

Proof. For convenience of description of the closed contiguity model of G, we
assume without loss of generality that the Ti’s are numbered in such a way that
for any i, j ∈ J1, pK, if the parent of the root of Ti is an ancestor of the parent
of the root of Tj then i > j. Moreover, we color the trees Ti of the root-path
decomposition in the following way: if the root of Ti is a series node, Ti is
colored white, otherwise Ti is colored black.

Let σi be a closed contiguity model realizing the closed contiguity of G[Xi],
where Xi is the set of leaves of Ti. We now build an order σ on the vertices of
G such that for each x ∈ V (G), N [x] is the union of at most l + 2 intervals of
σ, where l = maxi∈J1,pK cont(G[Xi]), which proves the lemma.

For clarity in the description of σ, we denote by σi + σj the concatenation
of the orders σi and σj , which allows us to use the sum notation

∑
i=1 to p σi =

σ1 + σ2 + . . .+ σp. Beware that in the case of the concatenation operation, the
sum is not commutative: it must be done in the specified order, from 1 to p.
Then the order σ we build is simply defined as (see Figure 5):

σ =
∑

1≤i≤p, Ti is black

σi +
∑

1≤j≤p, Tj is white

σj .

We now prove that, in σ, the closed neighborhood N [x] of any vertex x ∈
V (G) is split in at most l + 2 intervals. We separate the case where x is a leaf
of some white Ti from the case where x is a leaf of some black Ti.

In the former case, the neighbors of x that are not in Ti are exactly those
vertices belonging to some black Xj such that j > i (see Remark 1). Then,
we have N [x] = (N [x] ∩Xi) ∪

⋃
j>i and Xj is blackXj . As σi realizes the closed

contiguity of G[Xi], which is by definition at most l, N [x]∩Xi is split in at most
l intervals in σi. And since

⋃
j>i and Xj is blackXj is an interval of σ, it follows

that N [x] is split in at most l + 1 intervals in σ.
Now consider the case where x is a leaf of some black Ti. The neighbors of
x that are not in Ti are exactly those vertices belonging to some black Xj ,
j 6= i, or belonging to some white Xj′ such that j′ < i. Then, we have
N [x] = (N [x]∩Xi)∪(

⋃
j<i, Xj blackXj)∪(

⋃
j>i, Xj blackXj∪

⋃
j′<i, Xj′ whiteXj′).

Again, from the definition of σi, N [x] ∩Xi is split in at most l intervals in σi.
Moreover,

⋃
j<i, Xj blackXj and

⋃
j>i, Xj blackXj ∪

⋃
j′<i, Xj′ whiteXj′ are two

intervals of σ. Thus, N [x] is split in at most l + 2 intervals in σ. As this holds

12

for any vertex x in G, it follows that cont(G) ≤ 2 + l, which ends the proof of
the lemma. 2

Figure 5: The general structure of the order σ used in Lemma 3 for the caterpillar partition
of Fig 4.

Lemma 4 below is at the core of the recursive decomposition scheme we use
to exhibit an encoding of an arbitrary cograph G realizing an O(log n) closed
contiguity. It states that it is always possible to find a root-path decomposition
of a cotree T such that the ranks of the Ti’s are strictly less than the rank of T .
Its proof relies on the min-max theorem of Section 2 (Theorem 1) which links
the rank and the path-height of a tree.

Lemma 4. Given a rooted tree T such that rank(T) = k ≥ 1, there ex-
ists a root-path decomposition {T1, . . . , Tp} of T such that for each i ∈ J1, pK,
rank(Ti) ≤ k − 1.

Proof. Since T has rank k, from Theorem 1, T has path-height k. Consider
a path partition P of T of height k where the monotonic path containing the
root r of T is denoted by Pr. If the lowest node of Pr is a leaf, removing it from
Pr and letting it form its own path still gives a path partition of height k, since
k ≥ 1. We thereby assume that Pr contains only internal nodes of T . We denote
by u1, . . . , up the nodes of T whose parent is in Pr. Clearly, for each i ∈ J1, pK,
the paths of P that contain some node of Tui

form a path partition Pi of Tui
.

And since P has height k, then for all i ∈ J1, pK, Pi has height at most k − 1.
It follows from Theorem 1 that rank(Tui) ≤ k − 1. Thus, {Tu1 , . . . , Tup} is a
suitable root-path decomposition of T , which achieves the proof of the lemma. 2

Now, putting everything together, we are ready to state Lemma 5, showing
that the contiguity of a cograph is bounded by a constant times the rank of its
cotree.

Lemma 5. Let G be a cograph and T its cotree. We have cont(G) ≤ 2 rank(T)+
1.

Proof. We prove this property by induction on the rank k of T .
For k = 1, we have to show that cont(G) ≤ 3. Since T is a cotree, all its

internal nodes have at least two children. It follows, since T has rank 1, that
all its internal nodes are ancestors of each other, otherwise T would have rank
at least 2. Thus, T is a rooted caterpillar (see Definition 3). Let us denote
V (G) = {xi}1≤i≤n. Since T is a caterpillar, the family {Ti}1≤i≤n, where Ti is
the trivial tree formed with the single leaf xi, is a root-path decomposition of T .
With the notations of Lemma 3, the set of leaves of Ti is Xi = {xi}. And since
for any i ∈ J1, nK, cont(G[Xi]) ≤ 1, Lemma 3 concludes that cont(G) ≤ 2+1 = 3.

13

Now, let k ≥ 1 such that the property holds for all k′ ∈ J1, kK, that is
any cograph G whose cotree T has rank k′ satisfies cont(G) ≤ 2 rank(T) + 1.
We prove this also holds for k + 1. Let T be the cotree of a cograph G such
that rank(T) = k + 1. From Lemma 4, there exists a root-path decomposition
{T1, . . . , Tp} of T such that for all i ∈ J1, pK, rank(Ti) ≤ k. Thus, by applying
the induction hypothesis on each Ti, we know that ∀i ∈ J1, pK, cont(G[Xi]) ≤
2 rank(Ti)+1 ≤ 2k+1, where Xi is the set of leaves of Ti. By applying Lemma 3,
we deduce that cont(G) ≤ 2 + maxi∈J1,pK cont(G[Xi]) ≤ 2k + 3 = 2(k + 1) + 1.
This ends the induction and the proof of the Lemma. 2

As noted previously, the rank of a cotree T is at most logarithmic in the
number of vertices of G, which gives the upper bound we aim at.

Theorem 2. The closed contiguity of a cograph is at most logarithmic in its
number of vertices, or more formally, if G = (V,E) is a cograph, then cont(G) ≤
2 log2 |V |+ 1.

Proof. Let us denote by k the rank of the cotree T of G. From the definition
of the rank, we deduce that T has at least 2k leaves, which gives |V | ≥ 2k.
It follows that k ≤ log2 |V |. And since from Lemma 5, cont(G) ≤ 2k + 1, we
conclude that cont(G) ≤ 2 log2 |V |+ 1. 2

From the inequalities of Lemma 1, we immediately get the following corol-
lary.

Corollary 1. For any cograph G on n vertices, the open contiguity, the open
linearity and the closed linearity of G are all O(log n).

4. Lower bounds for contiguity and linearity of cographs

In this section, we prove that the O(log n) bound we obtained for the con-
tiguity of cographs is tight. In other words, there exist families of cographs
such that the contiguity of a cograph of the family on n vertices is Ω(log n).
Here we show that the cographs whose cotree is a complete binary tree, which
already played a key role in the proof of the upper bound, are such a family
(Theorem 3).

For linearity, we could not find a family of cographs for which we can prove
that the linearity is Ω(log n). But again, we prove that the cographs whose
cotree is a complete binary tree are close to the upper bound. More precisely,
their linearity is Ω(log n/ log log n) (Theorem 4).

Finally, note that even though our theorems are stated for closed contiguity
and closed linearity, we derive the same bounds for the open notions, from the
inequalities linking them to the closed notions.

Theorem 3. Let G be a cograph whose cotree is a complete binary tree. Then,
cont(G) = Ω(log n).

14

Proof. In order to prove this theorem, we first show that a cograph whose
cotree T is a complete binary tree of height 4k with a series root has closed
contiguity at least k. The proof is by induction on k.

For k = 1, the statement is self-evident as any graph has closed contiguity at
least 1. Consider a cotree T which is a complete binary tree of height 4(k + 1)
with a series root denoted by r, as shown in Figure 6. Root r has two parallel
children denoted by u and v. Consider a grandchild u1 of u and its two series
children v1 and v2. Consider now a great-grandchild v3 of u such that the least
common ancestor of nodes v3 and v1 in T is node u. Let us denote by X1, X2, X3

the set of leaves of respectively Tv1 , Tv2 , Tv3 . Let x be a leaf of Tv. Vertex x is
adjacent in G to all the vertices of X1 ∪ X2 ∪ X3, and for any distinct i, j in
J1, 3K, all the vertices of Xi are non-adjacent to all the vertices of Xj . Moreover,
Tv1 , Tv2 , Tv3 are complete binary cotrees of height 4k whose root is a series node.
Then, by the induction hypothesis, cont(G[Xi]) ≥ k for any i ∈ J1, 3K.

Figure 6: The complete binary cotree T of height 4(k + 1) used in the proof of Theorem 3.

Consider a linear order σ on the vertices of G. We denote by a (resp. b) the
vertex of X1 ∪X2 ∪X3 which is closer to x on the left (resp. on the right) in σ,
if it exists (i.e. if there is some node of X1 ∪X2 ∪X3 on the left (resp. right)
of x in σ). Clearly, there exists i ∈ J1, 3K such that none of a, b is in Xi. Then,
for all the vertices y ∈ Xi, there exists some vertex z ∈ {a, b} such that z is
between x and y in σ, and z is not adjacent to y. Since Xi has contiguity at
least k, there exists some vertex y1 ∈ Xi such that its neighborhood in G[Xi] is
split in at least k intervals in σ. And it turns out that x, which is adjacent to y1,
necessarily belongs to a new interval of neighbors of y1 in σ, which is different
from these k intervals, since all the vertices of Xi are separated from x in σ by
some z ∈ {a, b}, which is not adjacent to y1. It follows that the neighborhood
of y1 is split in at least k+ 1 intervals in σ. Thus, cont(G) ≥ k+ 1, which ends
the induction showing that a cograph whose cotree is a complete binary tree of
height 4k with a series root has contiguity at least k.

And consequently, for any cograph G on n vertices whose cotree T is a
complete binary tree, we have cont(G) = Ω(logn).

2

As mentioned in the introduction, the open and closed contiguity differ by

15

at most one. Then from the lower bound on the closed contiguity, we deduce
the same for open contiguity.

Corollary 2. The open contiguity of cographs whose cotree is a complete binary
tree is Ω(log n).

Proof. To prove the corollary we need to state the inequality between open
and closed contiguity in the opposite direction than the one stated in Lemma 1.
Namely, we show that for any graph G, we have cont(G) ≤ conto(G) + 1. This
is straightforward, as in an open model, one can always add one interval for
each vertex x made of the vertex x itself and no other vertices. In this way,
one obtains a closed contiguity model with at most one additional interval per
vertex, which shows that cont(G) ≤ conto(G)+1. Corollary 2 directly follows. 2

For linearity, we could not prove an Ω(log n) bound by the same arguments
as for contiguity. Roughly speaking, the reason why the proof for contiguity
works is that in order σ not all the three sets X1, X2 and X3 can be next to x.
But in the case of linearity there is not only one order σ but k orders σ1, . . . , σk.
Then, up to 2k sets of vertices Xi can be next to x in some order. This is the
reason why, in [5], a proof is made by using 2k + 1 sets instead of 3 like in
the proof above. But as this number 2k + 1 is not constant, it does not give
an Ω(log n) bound but only an Ω(log n/ log log n) bound instead. Actually, the
proof of [5] is written for permutation graphs and interval graphs, but it turns
out that the graphs used to do so are also cographs.

Consequently, we do not need to prove that the Ω(log n/ log logn) bound
holds for cographs. What we show here, using the result of [5], is that this
bound is also reached on the cographs whose cotree is a complete binary tree.
As these particular cographs play a key role in the upper bound proof, this
emphasizes on the question whether the linearity of a cograph G is equal, in
order of magnitude, to some function of the rank of its cotree, i.e. the maximum
height of a complete binary tree included in it as a minor. This is one of the
main questions raised by our work.

Theorem 4. Let G be a cograph whose cotree is a complete binary tree. Then,
lin(G) = Ω(log n/ log log n).

Proof. The result of [5] we use to prove Theorem 4 is as follows: consider the
transitive closure1 of the rooted and directed (2k + 1)-ary tree2 Tk of height
k, for k ≥ 1, and let Gk be its underlying undirected graph. It is shown
in [5] that lin(Gk) ≥ k. Here, we show that a cograph whose cotree is a
complete binary tree of height 2kdlog2(2k + 1)e+ 1 contains Gk as an induced

1The transitive closure of a directed graph G is the graph G′ formed by putting an arc
from x to y in G′ iff there is a directed path from x to y in G (see [16] for a more formal
definition).

2That is the tree Tk of height k where every internal node of Tk has exactly 2k+1 children
and the arcs of the tree are directed from children to their parent node.

16

subgraph, and therefore has linearity at least k. From this, we obtain the
property stated by the theorem: for G a cograph whose cotree is a complete
binary tree, lin(G) = Ω(log n/ log log n).

In the first part of the proof, we show that a cograph G whose cotree T is a
complete binary tree of height 2kdlog2(2k + 1)e+ 1 contains Gk as an induced
subgraph. First, note that G contains as an induced subgraph the cograph
whose cotree T ′ is a complete binary tree of height 2kdlog2(2k + 1)e having a
series node as the root. Indeed, if the root r of T is a parallel node, just take the
tree Tu rooted at an arbitrary child of r. Otherwise, if r is already a series node,
simply replace the lower level of internal nodes of T (which are series nodes) by
leaves: the cotree T ′ obtained satisfies the required property.

Now, we prove that the cograph whose cotree is T ′ contains Gk as an induced
subgraph. We make it by induction on d for a complete binary cotree of height
2ddlog2(2k + 1)e. Formally, we denote by Gd

k the underlying undirected graph
of the transitive closure of the rooted directed (2k + 1)-ary tree of height d, as
shown in Figure 7(a) for k = 1 and d = 2. We also denote by T d

k the complete
binary cotree of height 2ddlog2(2k + 1)e whose root is a series node, and we
denote by F d

k its corresponding cograph.

(a) (b) (c)

Figure 7: The graph G2
1 (a), its cotree (b) and its representation as the result of a substitution

composition of 3 copies of G1
1 in the leaves of the star K1,3 (c). Be aware that, for sake of

clarity, we give the example of the construction of graph G2
1 though in the proof of Theorem 4

we need only to consider graphs Gd
k such that d ≤ k.

We use the following induction hypothesis H(d) : F d
k contains Gd

k as an
induced subgraph. Assume that H(d) holds for some d ≥ 1, we show that
H(d+1) is true. To that purpose, we first note that (*) Gd+1

k is obtained as the
substitution composition (see Definition 1) of 2k+1 copies of Gd

k into the leaves
of K1,2k+1 (the star with 2k+1 leaves), as shown in Figure 7(c). In other words,
take the star K1,2k+1, replace each of the 2k + 1 leaves by a copy of Gd

k and
link all the vertices of each copy to the center of the star K1,2k+1: you obtain
Gd+1

k . Now consider any node u at depth 2dlog2(2k + 1)e in T d+1
k , the tree Tu

is exactly T d
k . Now replace in T d+1

k each node u at depth 2dlog2(2k + 1)e by

a leaf: you obtain T 1
k . This shows, from Remark 2, that F d+1

k is obtained by
substitution composition of one copy of F d

k into each vertex of F 1
k . Moreover, by

the induction hypothesis, F d
k contains Gd

k as an induced subgraph. Then, from
property (*) above, in order to show that F d+1

k contains Gd+1
k as an induced

subgraph, it suffices to show that F 1
k contains K1,2k+1 as an induced subgraph

17

(which also stands for the initialization step of our induction, with d = 1).

(a) (b) (c)

Figure 8: The star K1,3 (a), its cotree (b) and the complete binary cotree T 1
1 of height

2dlog2(3)e (c), whose corresponding cograph contains the star K1,3 as an induced subgraph,
as highlighted by the bold edges.

The root of T 1
k is a series node with two children v1 and v2, as illustrated

in Figure 8(c) for the case k = 1. Choose an arbitrary leaf of Tv2 as being the
center z of K1,2k+1. We show that the cograph whose cotree is Tv1

contains
a stable (a subset of vertices having no edges between them) of size 2k + 1.
Tv1 is of height 2dlog2(2k + 1)e − 1 and its root is a parallel node. Then, Tv1
contains dlog2(2k + 1)e levels of parallel nodes. For each of the series nodes in
Tv1 arbitrarily choose one of its two children and remove the subtree below (the
removed subtrees appear in light gray in T 1

1 in the example in Figure 8): one
obtains a tree having 2dlog2(2k+1)e ≥ 2k + 1 leaves, and for any two of these
leaves x, y, their least common ancestor in Tv1 is a parallel node. This implies,
from Remark 1, that x and y are not adjacent. And it follows that Tv1 contains
a stable of size 2k + 1. Thus, F 1

k contains K1,2k+1 as an induced subgraph.
Moreover, by induction hypothesis, F d

k contains Gd
k as an induced subgraph. It

follows that the graph resulting from the substitution composition of vertices of
F 1
k by copies of F d

k , which is precisely F d+1
k , contains as an induced subgraph

the graph resulting from the substitution composition of the leaves of K1,2k+1

by copies of Gd
k, which is precisely Gd+1

k . As a conclusion, F d+1
k contains Gd+1

k

as an induced subgraph, which ends the induction and the proof of the fact that
G contains Gk as an induced subgraph. It follows, as lin(Gk) ≥ k from the
result of [5], that G has closed linearity at least k.

The rest of the proof of Theorem 4 is simply analytic considerations. Let now
G be a cograph whose cotree is a complete binary tree of arbitrary height and
denote by n the number of vertices of G. Consider the greatest integer k such
that 2kdlog2(2k + 1)e + 1 ≤ height(G). Then we have 2kdlog2(2k + 1)e + 1 ≤
log2 n ≤ 2(k + 1)dlog2(2k + 3)e + 1. It follows that log(n) = Θ(k log k). Ap-
plying the log to this relation we obtain log log n = log k + o(log k). This im-
mediately gives log log n = Θ(log k) and so log k = Θ(log log n). Since log(n) =
Θ(k log k), we also have k log k = Θ(log(n)). Then, k = Θ(log(n))/ log k =
Θ(log(n))/Θ(log log n) = Θ(log(n)/ log log n). Finally, since from the defini-
tion of k we have 2kdlog2(2k + 1)e + 1 ≤ height(G), then G contains as in-
duced subgraph a cograph whose cotree is a complete binary tree of height
2kdlog2(2k + 1)e+ 1, for which we proved above that the linearity is at least k.

18

Consequently, lin(G) ≥ k = Θ(log(n)/ log log n), which completes the proof of
Theorem 4.

2

From Theorem 4 and from the first inequality of Lemma 1, we directly deduce
the following corollary.

Corollary 3. For any cograph G whose cotree is a complete binary tree, we
have lino(G) = Ω(logn/ log log n).

5. Conclusion

We showed that the contiguity and linearity of cographs are both bounded
by O(log n). Moreover, we showed that, in the worst case, the contiguity of
cographs on n vertices may be up to Ω(log n) and that their linearity may be up
to Ω(log n/ log log n). This means that our bounds for contiguity are tight, while
the asymptotic behavior of the maximum linearity of cographs on n vertices is
still to be determined. Then, the first open problem suggested by our work is to
fill the gap between O(log n) and Ω(log n/ log log n) for the linearity of cographs.

In this perspective, we note that our proofs for both the upper and lower
bound rely on the cographs whose cotree is a complete binary tree. Therefore, it
brings the question to know whether the linearity of a cograph is equal, in order
of magnitude, to some function f(h) of the height h of the maximum complete
binary tree being a minor of its cotree, the first two possibilities being f(h) = h
and f(h) = h/ log h. Finding such an f would give the asymptotic behavior of
the linearity of cographs.

The same question holds for the contiguity, the only possible function in this
case being f(h) = h. If the answer to this question turned out to be positive,
then it would guarantee that the contiguity model of graph G proposed by our
constructive proof of Lemma 3 realizes a value of the contiguity that is in a
constant approximation ratio of the actual contiguity of G. This would thereby
provide an approximation algorithm for the contiguity of cographs.

Another key perspective of our work is to extend the O(log n) bound on
these two parameters to larger classes of graphs. For example, do these results
hold for permutation graphs (which are a proper generalization of cographs)
and for interval graphs?

Acknowledgments. The authors thank Pierre Charbit and Stéphan Thomassé
for useful discussions on the subject, as well as George Oreste Manoussakis for
proofreading a draft of this article.

[1] G. Turan, On the succinct representation of graphs, Discr. Appl. Math. 8
(1984) 289–294.

[2] P. Boldi, S. Vigna, The webgraph framework I: compression techniques, in:
WWW’04, ACM, 2004, pp. 595–602.

19

[3] P. Boldi, S. Vigna, Codes for the world wide web, Internet Mathematics
2 (4) (2005) 407–429.

[4] P. Goldberg, M. Golumbic, H. Kaplan, R. Shamir, Four strikes against
physical mapping of DNA, Journal of Computational Biology 2 (1) (1995)
139–152.

[5] C. Crespelle, P. Gambette, Efficient neighbourhood encoding for interval
graphs and permutation graphs and O(n) breadth-first search, in: 20th

International Workshop on Combinatorial Algorithms (IWOCA’09), no.
5874 in LNCS, 2009, pp. 146–157.

[6] A. Brandstädt, V. Le, J. Spinrad, Graph Classes: a Survey, SIAM Mono-
graphs on Discrete Mathematics and Applications, 1999.

[7] R. Wang, F. Lau, Y. Zhao, Hamiltonicity of regular graphs and blocks of
consecutive ones in symmetric matrices, Discr. Appl. Math. 155 (17) (2007)
2312–2320.

[8] C. Gavoille, D. Peleg, The compactness of interval routing, SIAM Journal
on Discrete Mathematics 12 (4) (1999) 459–473.

[9] F. Roberts, Representations of indifference relations, Ph.D. thesis, Stanford
University (1968).

[10] A. Ehrenfeucht, D. Haussler, Learning decision trees from random exam-
ples, Information and Computation 82 (3) (1989) 231–246.

[11] R. Gavaldà, D. Thérien, Algebraic characterizations of small classes of
boolean functions, in: Proceedings of the 20th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS’03), Vol. 2607 of LNCS, 2003,
pp. 331–342.

[12] M. Habib, C. Paul, A survey of the algorithmic aspects of modular decom-
position, Computer Science Review 4 (1) (2010) 41–59.

[13] R. Möhring, Algorithmic aspect of the substitution decomposition in op-
timization over relations, set systems and boolean functions, Annals of
Operations Research 4 (1985) 195–225.

[14] R. Möhring, F. Radermacher, Substitution decomposition for discrete
structures and connections with combinatorial optimization, Annals of Dis-
crete Mathematics 19 (1984) 257–356.

[15] L. Lovász, Graph minor theory, Bulletin of the American Mathematical
Society 43 (1) (2006) 75–86.

[16] D. B. West, Introduction to Graph Theory (2nd edition), Prentice Hall,
2000.

20

