Christophe Crespelle
email: christophe.crespelle@inria.fr

Philippe Gambette
email: philippe.gambette@univ-mlv.fr

(Nearly-)Tight Bounds on the Contiguity and Linearity of Cographs

Keywords: Contiguity, Linearity, Cographs, Graph encoding

(Nearly-)tight bounds on the contiguity and linearity of cographs

Christophe Crespelle, Philippe

Introduction

One of the most widely used operation in graph algorithms is the neighborhood query: given a vertex x of a graph G, one wants to obtain the list of neighbors of x in G. The classical data structure that allows to do so is the adjacency lists. It stores a graph G in O(n + m) space, where n is the number of vertices of G and m its number of edges, and answers an adjacency query on any vertex x in O(d) time, where d is the degree of vertex x.

This time complexity is optimal, as soon as one wants to produce the list of neighbors of x. On the other hand, in the last decades, huge amounts of data organized in the form of graphs or networks have appeared in many contexts such as genomics, biology, physics, linguistics, computer science, transportation and industry. In the same time, the need, for industrials and academics, to algorithmically treat this data in order to extract relevant information has grown in the same proportions. For these applications dealing with very large graphs, a space complexity of O(n + m) is often very limiting. Therefore, as pointed out by [START_REF] Turan | On the succinct representation of graphs[END_REF], finding compact representations of a graph providing optimal time neighborhood queries is a crucial issue in practice. Such representations allow to store the graph entirely in memory while preserving the complexity of algorithms using neighborhood queries. The conjunction of these two advantages has great impact on the running time of algorithms managing large amount of data.

One possible way to store a graph G in a very compact way and preserve the complexity of neighborhood queries is to find an order σ on the vertices of G such that the neighborhood of each vertex x of G is an interval in σ. In this way, one can store the list of vertices of the graph in the order defined by σ and assign two pointers to each vertex: one toward its first neighbor in σ and one toward its last neighbor in σ. Therefore, one can answer adjacency queries on vertex x simply by listing the vertices appearing in σ between its first and last pointer. It must be clear that such an order on the vertices of G does not exist for all graphs G. Nevertheless, this idea turns out to be quite efficient in practice and some compression techniques are precisely based on it [START_REF] Boldi | The webgraph framework I: compression techniques[END_REF][START_REF] Boldi | Codes for the world wide web[END_REF]: they try to find orders of the vertices that group the neighborhoods together, as much as possible.

Then, a natural way to relax the constraints of the problem so that it admits a solution for a larger class of graphs is to allow the neighborhood of each vertex to be split in at most k intervals in order σ. The minimum value of k which makes possible to encode the graph in this way is a parameter called contiguity [START_REF] Goldberg | Four strikes against physical mapping of DNA[END_REF].

Another possible way of generalization is to use at most k orders σ 1 , . . . , σ k on the vertices of G such that the neighborhood of each vertex is the union of exactly one interval taken in each of the k orders. This defines a parameter called the linearity of G [START_REF] Crespelle | Efficient neighbourhood encoding for interval graphs and permutation graphs and O(n) breadth-first search[END_REF] which is always less than or equal to the contiguity of G.

Only little is known about these two graph parameters. For example, the classes of graphs having contiguity (resp. linearity) at most k, where k is an integer greater than 1, have not been characterized, even for k = 2. Actually, the nature of these parameters seems to be quite different from those of the other classical graph parameters (e.g. based on decompositions), and it turns out that the classes of graphs known to have a nice behavior with regard to classical parameters, such as e.g. cographs (see Section 1), interval graphs and permutation graphs (see [START_REF] Brandstädt | Graph Classes: a Survey[END_REF] for definitions of these classes), do not necessarily have a nice behavior with regard to contiguity and linearity. Thus, studying these two parameters is of key interest both for their practical implications and for their theoretical properties. In this paper, we aim at determining what is, in the worst case, the contiguity and linearity of cographs, that is, in other words, the maximum contiguity (resp. linearity) of cographs on n vertices.

Let us mention that in the following, all graphs are undirected, simple and loopless. For each of the two parameters we consider here, namely contiguity and linearity, there are actually two slightly different notions depending on whether one considers open neighborhoods (i.e. the set of neighbors of the vertex x, excluding the vertex x itself) or closed neighborhoods (i.e. the set of neighbors of the vertex x plus the vertex x). The corresponding notions are called open contiguity (resp. open linearity) and closed contiguity (resp. closed linearity). For contiguity, it does not make a big difference, as the open and closed parameters differ by at most one. For linearity, the situation is slightly different as it is not known whether the open linearity may exceed the closed linearity by more than one. But anyway, these two parameters are still equivalent in the sense that they differ at most by a multiplicative constant (at most two in this case). This is enough for us, as we consider the asymptotic behavior and we do not take into account multiplicative constants. Regarding the comparison between contiguity and linearity, it is straightforward to see that linearity is always less than contiguity (since one may duplicate the same order k times), but it is an open question to determine whether it can be significantly less for some graphs or not.

Related works

As we mentioned earlier, only little is known about contiguity and linearity of graphs. In the context of 0 -1 matrices, [START_REF] Goldberg | Four strikes against physical mapping of DNA[END_REF][START_REF] Wang | Hamiltonicity of regular graphs and blocks of consecutive ones in symmetric matrices[END_REF] studied closed contiguity and showed that deciding whether an arbitrary graph has closed contiguity at most k is NP-complete for any fixed k ≥ 2. For arbitrary graphs, [START_REF] Gavoille | The compactness of interval routing[END_REF] (Corollary 3.4) gave an upper bound on the value of closed contiguity which is n/4 + O(√ n log n). Regarding graphs with bounded contiguity or linearity, only the class of graphs having closed contiguity 1 (or equivalently closed linearity 1) and the class of graphs having open contiguity 1 (or equivalently open linearity 1) have been characterized. The former is the class of proper (or unit) interval graphs [START_REF] Roberts | Representations of indifference relations[END_REF], which is the subclass of interval graphs that admit a model whose intervals all have the same length. The latter class, i.e. graphs having open contiguity 1, is referred to as the class of biconvex graphs [START_REF] Brandstädt | Graph Classes: a Survey[END_REF]. Biconvex graphs are a subclass of bipartite graphs properly containing bipartite permutation graphs, and which have, in terms of dimension theory for posets, dimension at most 3.

Finally, let us mention that [START_REF] Crespelle | Efficient neighbourhood encoding for interval graphs and permutation graphs and O(n) breadth-first search[END_REF] showed that both contiguity and linearity (closed and open) are unbounded for interval graphs as well as for permutation graphs, and that the four parameters can be up to Ω(log n/ log log n), where n is the number of vertices of the graph.

Our results

In this paper we show that, even for the class of cographs, the contiguity and the linearity are unbounded. Nevertheless, we show that they are both dominated by O(log n) for a cograph on n vertices. To this purpose, we show that the contiguity and linearity of a cograph G do not exceed the maximum height of a complete binary tree included (as a minor) in the cotree of G. As a by-product of our proof, we also establish a min-max theorem which is worth of interest in itself: the maximum height of a complete binary tree included (as a minor) in a tree T (known as the rank of tree T [START_REF] Ehrenfeucht | Learning decision trees from random examples[END_REF][START_REF] Gavaldà | Algebraic characterizations of small classes of boolean functions[END_REF]) is equal to the mimimun height of a path partition of T (see Definition 7).

Moreover, we exhibit a family of cographs (G n) n∈N on n vertices whose asymptotic contiguity is Ω(log n), which implies that our O(log n) bound is tight. For the case of linearity, we exhibit a family of cographs whose asymptotic linearity is Ω(log n/ log log n). This leaves open the question of determining whether the linearity of cographs may be up to Ω(log n) or not. In addition, it should be noted that we show that these lower bounds on the contiguity and linearity of cographs in the worst case are both reached on the families of cographs whose cotree is a complete binary tree. This emphasizes the question of knowing whether these two parameters are equivalent, for a cograph G, to some function of the maximum height of a complete binary tree included as a minor in the cotree of G.

Outline of the paper.

Section 1 gives the definitions and notations we use in the following. Section 2 gives a min-max theorem on the rank of the tree, which contains the main idea of our approach for proving the upper bounds. In Section 3, we show that the closed contiguity and closed linearity of a cograph are both O(log n). Finally, in Section 4, we show that complete binary cotrees have contiguity Ω(log n) and linearity Ω(log n/ log log n).

Preliminaries.

All graphs considered here are finite, undirected, simple and loopless. In the following, G denotes a graph, V (or V (G) to avoid ambiguity) denotes its vertex set and E (or E(G)) its edge set. And we use the notation G = (V, E). The set of subsets of V is denoted by 2 V . Throughout the paper, n stands for the cardinality |V | of the vertex set of G. An edge between vertices x and y will be arbitrarily denoted by xy or yx. The (open) neighborhood of x is denoted by N (x) (or N G (x) to avoid ambiguity) and its closed neighborhood by

N [x] = N (x) ∪ {x}. The subgraph of G induced by the set of vertices X ⊆ V is denoted by G[X] = (X, {xy ∈ E | x, y ∈ X}).
There are several characterizations of the class of cographs. They are often defined as the graphs that do not admit the P 4 (path on 4 vertices) as induced subgraph. Equivalently, they are the graphs obtained from a single vertex under the closure of the parallel composition and the series composition. The parallel composition of two graphs

G 1 = (V 1 , E 1) and G 2 = (V 2 , E 2) is the disjoint union of G 1 and G 2 , i.e. the graph G par = V 1 ∪V 2 , E 1 ∪E 2 .
The series composition of two graphs G 1 and G 2 is the disjoint union of G 1 and G 2 plus all possible edges from a vertex of G 1 to one of G 2 , i.e. the graph

G ser V 1 ∪ V 2 , E 1 ∪ E 2 ∪ {xy, x ∈ V 1 , y ∈ V 2 } .
This gives a very nice representation of the graphs in the class. One can represent a cograph G by a tree whose leaves are the vertices of the graph and whose internal nodes (non-leaf nodes) are labeled P , for parallel, or S, for series, corresponding to the operations used in the construction of G. It is straightforward to see that it is always possible to find such a labeled tree T representing G such that every internal node has at least two children, no two parallel nodes are adjacent in T and no two series nodes are adjacent. This tree T is unique and is called the cotree of G. It is well-known that the cotree of G defined in this way is nothing else but the modular decomposition tree of G (see [START_REF] Habib | A survey of the algorithmic aspects of modular decomposition[END_REF] for a survey on modular decomposition). And this is another characterization of the class of cographs: they are the graphs entirely decomposable by modular decomposition, i.e. the graphs having no prime node in their modular decomposition tree.

Note that the adjacencies between vertices of a cograph can easily be read on its cotree, in the following way.

Remark 1. Two vertices x and y of a cograph G having cotree T are adjacent iff the least common ancestor u of leaves x and y in T is a series node. Otherwise, if u is a parallel node, x and y are not adjacent.

Modular decomposition theory is based on an operation called substitution composition (see [START_REF] Möhring | Algorithmic aspect of the substitution decomposition in optimization over relations, set systems and boolean functions[END_REF][START_REF] Möhring | Substitution decomposition for discrete structures and connections with combinatorial optimization[END_REF]). It turns out that contiguity and linearity have a nice behavior with regard to substitution composition, and our proof of the O(log n) upper bound for the contiguity and linearity of cographs is based on this notion, for which a formal definition is given below. Intuitively, the substitution composition consists in replacing a vertex x of a graph G by another graph H, keeping the adjacency relationships between vertices of H unchanged and making all the vertices of H adjacent to the neighbors of x in G.

Definition 1. The result of the substitution composition of a vertex x of a graph G by a graph H is the graph denoted G x←H and defined by

V (G x←H) = (V (G) \ {x}) ∪ V (H) and E(G x←H) = (E(G) \ {xz | z ∈ N G (x)}) ∪ E(H) ∪ {yz | y ∈ V (H) and z ∈ N G (x)}.
The result of the substitution composition of a vertex of a cograph by another cograph is also a cograph and its cotree is obtained as explained below.

Remark 2. For any cographs G and H, having cotrees T G and T H , and any vertex x of G, G x←H is a cograph and its cotree T GxH is obtained as follows:

1. Build T GxH by replacing the leaf x of T G by the root r H of T H . 2. If the parent u of leaf x in G has the same label as r H , then remove r H from T GxH and assign u as parent to the children of r H .

For a rooted tree T and a node u ∈ T , the depth of u in T is the number of edges in the path from the root to u (the root has depth 0). The height of T , denoted by height(T) or simply h(T), is the greatest depth of its leaves. We denote by C(v) the children of a node v in T . For a rooted tree T , the subtree of T rooted at u, denoted by T u , is the tree induced by node u and all its descendants in T . Definition 2. A monotonic path P of a rooted tree T is a path such that there exists some node u ∈ T such that all nodes of P except u are ancestors of u. The unique node of P which has no ancestor in P is called the root of the monotonic path P . Definition 3. A rooted caterpillar is a rooted tree whose internal nodes form a monotonic path.

It is worth to note that in the rest of the article we consider only rooted trees and monotonic paths.

In the following, the notion of minors of rooted trees is central. This is a special case of minors of graphs (see e.g. [START_REF] Lovász | Graph minor theory[END_REF]), for which we give a simplified definition in the context of rooted trees. Definition 4. The contraction of edge uv in a rooted tree T , where u is the parent of v consists in removing v from T and assigning its children (if any) to node u. A rooted tree T is a minor of a rooted tree T if it can be obtained from T by a sequence of edge contractions.

Let us now formally define the contiguity and linearity of a graph. In all the paper, we abusively extend the notion of linearity and contiguity to cotrees referring to the linearity and contiguity of their associated cographs.

Definition 5. A closed p-interval-model (resp. open p-interval-model) of a graph G = (V, E) is a linear order σ on V such that ∀v ∈ V, ∃(I 1 , . . . , I p) ∈ (2 V) p such that ∀i ∈ 1, p , I i is an interval of σ and N [x] = 1≤i≤p I i (resp. N (x) = 1≤i≤p I i). The closed contiguity (resp. open contiguity) of G, denoted by cont(G) (resp. cont o (G)),
We have the following inequalities on open and closed linearity and contiguity.

Lemma 1. For an arbitrary graph, we have the following inequalities:

lin(G) ≤ lin o (G) + 1 ≤ cont o (G) + 1 ≤ cont(G) + 2
Proof. The first inequality comes from the fact that if we have an open k-linemodel for G, we can add an arbitrary order σ to it and take as the interval of each vertex x in σ a trivial interval reduced to x. In this way, we obtain a closed (k + 1)-line-model, showing that lin(G) ≤ lin o (G) + 1. For the second inequality, if we have an open k-interval-model for G based on an order σ, we can make an open k-line-model consisting of k copies of order σ: for each vertex x and for each i between 1 and k, the interval of x in copy number i is the interval number i of x in the k-interval model. This shows that lin o (G) ≤ cont o (G), and the second inequality follows from it. Finally, for the third and last equality, notice that from a closed k-intervalmodel σ, we can easily obtain an open (k + 1)-interval-model by simply removing each vertex x from N [x]: this may break at most one interval I i of x in σ into two pieces, while leaving the other intervals unchanged. Thus, cont o (G) ≤ cont(G) + 1 and the last inequality of Lemma 1 follows.

2

In the rest of the article, we consider only closed notions but, from the above inequalities, the bounds we obtain also hold for the open notions.

A min-max theorem on the rank of a tree

In this section we prove a min-max theorem (Theorem 1) linking the maximum height of a complete binary tree contained as a minor in a given tree T (see Definition 4 above) and the minimum height of partition of T into monotonic paths (see Definition 7 below). This theorem is the key of our approach, we use it in Section 3 to show that the contiguity of a cograph G is dominated by the maximum height of a complete binary tree T contained in the cotree T of G.

We now give the definitions needed to state the min-max theorem we aim at, starting with the definition of a path partition and related notions. Definition 7. A path partition P of a tree T is a partition {P 1 , . . . , P k } of V (T) such that for any i ∈ 1, k , the subgraph T [P i] of T induced by P i is a monotonic path (see Definition 2). The partition tree of a path partition P, denoted by T p (P), is the tree whose nodes are P i 's and where the node of T p (P) corresponding to P i is the parent of the node corresponding to P j iff some node of P i is the parent in T of the root of P j . The height of a path partition P of a tree T , denoted by h(P), is the height h(T p (P)) of its partition tree.

Note that in the preceding definition, it is anyway impossible that some node of P i is the parent in T of some node u of another P j that is not the root of P j , since in this case u would have at least two parents in T .

Remark 4. Note that the partition tree T p (P) is obtained from T by contracting all edges of the monotonic paths in P.

(a) (b)

Figure 1: A tree T and a path partition P = {P 1 , P 2 , P 3 , P 4 , P 5 , P 6 } of T (a), as well as the partition tree of P (b). Figure 1 gives an example of a path partition of some tree and the corresponding partition tree. Let us now formally define the rank and the path-height of a tree, which are the two notions involved in our min-max theorem. Definition 8. As [START_REF] Ehrenfeucht | Learning decision trees from random examples[END_REF][START_REF] Gavaldà | Algebraic characterizations of small classes of boolean functions[END_REF], we define the rank of a tree T as the maximum height of a complete binary tree being a minor of T , that is: rank(T) = max{h(T) | T is a complete binary tree and a minor of T }.

And we define the path-height of T as the minimum height of a path partition of T , that is:

ph(T) = min{h(P) | P is a path partition of T }.
For the rest of the paper, we extend the definition of the rank to any vertex v of a tree T by defining the rank of v as the rank of the subtree of T rooted at v.

The rest of the section is devoted to prove Theorem 1 which states that for any tree, its rank and its path-height are equal. Lemma 2 first proves it for the particular case of complete binary trees as this case will be a key step in the proof of the general result on arbitrary trees. Lemma 2. For a rooted complete binary tree T , rank(T) = ph(T) = h(T).

Proof. The fact that h(T) = rank(T) is obvious from the definition of rank(T). On the other hand, one can build a path partition P of height h(T) by taking P = {{x}} x∈V (T) . In other words, each path in P is reduced to one single vertex of T . In this way, T p (P) = T which gives ph(T) ≤ h(T).

Conversely, we prove that ph(T) ≥ h(T) by induction on h(T). This property is true for the trivial tree T with only one vertex, for which we have ph(T) = 0 ≥ 0 = h(T). Now, assume that it is true for any rooted complete binary tree of height k ≥ 0, and consider a rooted complete binary tree T of height k + 1. Let P be a path partition of T such that h(P) = ph(T), and let P be the monotonic path of P containing the root r of T , as shown in Figure 2.

Since path P is monotonic, it does not contain at least one child u of r. Then, the subset P of P made of the paths containing some node of T u is a path partition of T u . And from the induction hypothesis, we get h(P) ≥ ph(T u) ≥ h(T u) ≥ k. Since h(P) ≥ h(P) + 1, we obtain h(P) ≥ k + 1, and so ph(T) ≥ k + 1. This ends the induction and the proof of Lemma 2. 2 Actually, in the proof of Theorem 1, we use only the part of Lemma 2 stating that ph(T) ≥ h(T) which is precisely the non-trivial part of the lemma. Let us now state Theorem 1, which is the min-max theorem we aim at.

Theorem 1. For any rooted tree T , we have rank(T) = ph(T).

Proof. ≤ : Let T be a complete binary tree which is a minor of T of maximum height among such complete binary trees. By definition, we have rank(T) = h(T) and from Lemma 2 we know that h(T) = ph(T). It follows that rank(T) = ph(T). Then, in order to prove rank(T) ≤ ph(T), we show that ph(T) ≤ ph(T).

Indeed, consider an arbitrary path partition P of T . We will build a path partition P of T whose height is at most the height of P. By definition, tree T can be obtained from T by a series of edge contractions. The partition P we build is induced from P in the sense that we obtain it by updating partition P step by step along the series of edge contractions of T resulting in T . Along this process, when an edge uv of the current tree T cur , where u is the parent of v, is contracted in order to obtain the next tree T next , we delete node v and assign its children to u, as in Definition 4. An example of edge contraction in T cur and its effect on the current path partition is shown in Figure 3. Note that there are cases where the modification of the path partition is different from the case depicted on Figure 3, in particular when v is the only node in some path P of the partition. This ensures that any set P of nodes inducing a monotonic path in T cur also induces a monotonic path in T next (except in the case where P = {v}: P becomes the empty set after the contraction and disappears from the path partition we maintain). Consequently, a path partition P next of T next can be obtained from the partition P cur of T cur in the following way: for all the nodes remaining in T next (i.e. all the nodes of T cur except node v), we keep them in the same path of the partition as they were previously belonging to in P cur .

It is not difficult to see that the partition tree T next p of P next defined this way has height at most that of T cur p . Indeed, from the definition of the partition tree (see Definition 7), during the contraction of edge uv, the only paths of P cur that are likely to change their parent in T next p are those paths whose root is in C(v), as the other nodes of T cur do not change their parent. For such a path P v rooted at a child v of v, the parent of P v in T next p will be the path P u containing u, which may be either its parent or its grandparent in T cur p , depending on whether nodes u and v are in the same path of P cur or not. Since the only nodes of T cur p that change their parents in T next p change it for their grandparent in T cur p , it follows that h(P next) ≤ h(P cur). Consequently, at the end of the series of edge contractions that results in T , we obtain a path partition P of T such that h(P) ≤ h(P). As this holds for any path partition P of T , we conclude that ph(T) ≤ ph(T).

≥ : We show that rank(T) ≥ ph(T) by induction on rank(T). We use the following induction hypothesis H(k): "for any tree T such that rank(T) = k, we have ph(T) ≤ rank(T)".

Clearly, if rank(T) = 0, then T is a monotonic path. Thus, there is a trivial partition of T into a single path and the path-height of this partition is 0 : ph(T) ≤ rank(T). Now, let k ≥ 0 such that ∀i ∈ 0, k , H(k) holds. We show that H(k + 1) is satisfied. Let T be a tree such that rank(T) = k + 1, and let S k+1 be the subset of nodes u of T such that rank(T u) = k + 1. We first show that S k+1 is a monotonic path of T containing the root.

Clearly, by definition of rank(T), S k+1 contains the root of T , so let us show that it induces a monotonic path of T . First, note that if u is such that rank(T u) = k + 1 then for all ancestors v of u, rank(T v) = k + 1. Indeed, it is clear that rank(T v) is not less than rank(T u), and since rank(T) = k + 1, we also have rank(T v) ≤ k + 1. Now, assume for contradiction that there exist two nodes u, v ∈ S k+1 such that none of them is the ancestor of the other. Let w be the least common ancestor of u and v in T . Let u and v be the two distinct children of w that are the ancestors of respectively u and v. From above, u and v are such that rank(T u) = rank(T v) = k + 1. It follows that rank(T w) ≥ k + 2: contradiction. Thus, all the nodes of S k+1 are comparable for the ancestor relationship, and since we already showed that all the ancestors of a node in S k+1 are in S k+1 , it follows that S k+1 induces a monotonic path of T containing the root. Now, let S = {u ∈ V (T) \ S k+1 | parent(u) ∈ S k+1 }, and let u ∈ S . Clearly, since u ∈ S k+1 , rank(T u) ≤ k and the induction hypothesis implies that ph(T u) ≤ k. For any u ∈ S , we denote by P u a path partition of T u of height at most k. Then, {S k+1 } ∪ u∈S P u is a path partition of T and has height at most k + 1. Thus, ph(T) ≤ k + 1 = rank(T) and H(k + 1) holds, which ends the induction, showing that for any tree T , rank(T) ≥ ph(T).

2

Note that Theorem 1 implies that the path-height of any tree T is at most logarithmic in its number of vertices. Indeed, ph(T) = h(T) where T is a complete binary tree being a minor of T . Then, h(T) = log 2 (|V (T)|) ≤ log 2 (|V (T)|), and thus ph(T) ≤ log 2 (|V (T)|). Combining this with Lemma 5 of Section 3 will provide the upper bound on the contiguity of cographs stated by Theorem 2, which is optimal from Theorem 3.

Upper bounds for contiguity and linearity of cographs

The aim of this section is to prove that the closed contiguity of any cograph is dominated by log n (Theorem 2). From Lemma 1, this implies that the same holds for open contiguity, open linearity and closed linearity. As we mentioned earlier, our proof relies on a decomposition approach, whose basic step is the root-path decomposition defined below. This basic step of decomposition decreases the contiguity of G by at most some constant. And we will show that using it only a logarithmic number of times (once per level of a minimum-height path partition of the cotree of G) is enough to entirely decompose the graph into single vertices. This will provide us with the logarithmic bound we aim at for the closed contiguity of cographs. Definition 9. A root-path decomposition (see Fig. 4) of a rooted tree T is a set {T 1 , . . . , T p } of disjoint subtrees of T , with p ≥ 2, such that every leaf of T belongs to some T i , with i ∈ 1, p , and the sets of parents in T of the roots of T i 's is a monotonic path containing the root of T . In Definition 9 above, the roots of T i 's and their parents induce a caterpillar in T . It turns out that the contiguity of a caterpillar cotree is bounded by a constant. This is what is used in Lemma 3 below to state that the contiguity of a cotree admitting a root-path decomposition {T 1 , . . . , T p } is not more than the greatest contiguity of the T i 's plus some constant.

Lemma 3 (Caterpillar Composition Lemma). Given a cograph G = (V, E) and a root-path decomposition {T i } 1≤i≤p of its cotree,

cont(G) ≤ 2 + max i∈ 1,p cont(G[X i]),
where X i is the set of leaves of T i .

Proof. For convenience of description of the closed contiguity model of G, we assume without loss of generality that the T i 's are numbered in such a way that for any i, j ∈ 1, p , if the parent of the root of T i is an ancestor of the parent of the root of T j then i > j. Moreover, we color the trees T i of the root-path decomposition in the following way: if the root of T i is a series node, T i is colored white, otherwise T i is colored black.

Let σ i be a closed contiguity model realizing the closed contiguity of G[X i], where X i is the set of leaves of T i . We now build an order σ on the vertices of G such that for each x ∈ V (G), N [x] is the union of at most l + 2 intervals of σ, where l = max i∈ 1,p cont(G[X i]), which proves the lemma.

For clarity in the description of σ, we denote by σ i + σ j the concatenation of the orders σ i and σ j , which allows us to use the sum notation i=1 to p σ i = σ 1 + σ 2 + . . . + σ p . Beware that in the case of the concatenation operation, the sum is not commutative: it must be done in the specified order, from 1 to p. Then the order σ we build is simply defined as (see Figure 5): σ = 1≤i≤p, Ti is black

σ i + 1≤j≤p, Tj is white σ j .
We now prove that, in σ, the closed neighborhood N [x] of any vertex x ∈ V (G) is split in at most l + 2 intervals. We separate the case where x is a leaf of some white T i from the case where x is a leaf of some black T i .

In the former case, the neighbors of x that are not in T i are exactly those vertices belonging to some black X j such that j > i (see Remark 1). Then, we have

N [x] = (N [x] ∩ X i) ∪ j>i and Xj is black X j . As σ i realizes the closed contiguity of G[X i],
which is by definition at most l, N [x] ∩ X i is split in at most l intervals in σ i . And since j>i and Xj is black X j is an interval of σ, it follows that N [x] is split in at most l + 1 intervals in σ. Now consider the case where x is a leaf of some black T i . The neighbors of x that are not in T i are exactly those vertices belonging to some black X j , j = i, or belonging to some white X j such that j < i. Then, we have

N [x] = (N [x]∩X i)∪(j<i, Xj black X j)∪(j>i, Xj black X j ∪ j <i, X j white X j).
Again, from the definition of σ i , N [x] ∩ X i is split in at most l intervals in σ i . Moreover, j<i, Xj black X j and j>i, Xj black X j ∪ j <i, X j white X j are two intervals of σ. Thus, N [x] is split in at most l + 2 intervals in σ. As this holds for any vertex x in G, it follows that cont(G) ≤ 2 + l, which ends the proof of the lemma.

2 Lemma 4 below is at the core of the recursive decomposition scheme we use to exhibit an encoding of an arbitrary cograph G realizing an O(log n) closed contiguity. It states that it is always possible to find a root-path decomposition of a cotree T such that the ranks of the T i 's are strictly less than the rank of T . Its proof relies on the min-max theorem of Section 2 (Theorem 1) which links the rank and the path-height of a tree. Lemma 4. Given a rooted tree T such that rank(T

) = k ≥ 1, there ex- ists a root-path decomposition {T 1 , . . . , T p } of T such that for each i ∈ 1, p , rank(T i) ≤ k -1.
Proof. Since T has rank k, from Theorem 1, T has path-height k. Consider a path partition P of T of height k where the monotonic path containing the root r of T is denoted by P r . If the lowest node of P r is a leaf, removing it from P r and letting it form its own path still gives a path partition of height k, since k ≥ 1. We thereby assume that P r contains only internal nodes of T . We denote by u 1 , . . . , u p the nodes of T whose parent is in P r . Clearly, for each i ∈ 1, p , the paths of P that contain some node of T ui form a path partition P i of T ui . And since P has height k, then for all i ∈ 1, p , P i has height at most k -1. It follows from Theorem 1 that rank(T ui) ≤ k -1. Thus, {T u1 , . . . , T up } is a suitable root-path decomposition of T , which achieves the proof of the lemma. 2 Now, putting everything together, we are ready to state Lemma 5, showing that the contiguity of a cograph is bounded by a constant times the rank of its cotree.

Lemma 5. Let G be a cograph and T its cotree. We have cont(G) ≤ 2 rank(T)+ 1.

Proof. We prove this property by induction on the rank k of T .

For k = 1, we have to show that cont(G) ≤ 3. Since T is a cotree, all its internal nodes have at least two children. It follows, since T has rank 1, that all its internal nodes are ancestors of each other, otherwise T would have rank at least 2. Thus, T is a rooted caterpillar (see Definition 3). Let us denote V (G) = {x i } 1≤i≤n . Since T is a caterpillar, the family {T i } 1≤i≤n , where T i is the trivial tree formed with the single leaf x i , is a root-path decomposition of T . With the notations of Lemma 3, the set of leaves of T i is X i = {x i }. And since for any i ∈ 1, n , cont(G[X i]) ≤ 1, Lemma 3 concludes that cont(G) ≤ 2+1 = 3. Now, let k ≥ 1 such that the property holds for all k ∈ 1, k , that is any cograph G whose cotree T has rank k satisfies cont(G) ≤ 2 rank(T) + 1. We prove this also holds for k + 1. Let T be the cotree of a cograph G such that rank(T) = k + 1. From Lemma 4, there exists a root-path decomposition {T 1 , . . . , T p } of T such that for all i ∈ 1, p , rank(T i) ≤ k. Thus, by applying the induction hypothesis on each T i , we know that ∀i ∈ 1, p , cont(G[X i]) ≤ 2 rank(T i)+1 ≤ 2k+1, where X i is the set of leaves of T i . By applying Lemma 3, we deduce that cont(G)

≤ 2 + max i∈ 1,p cont(G[X i]) ≤ 2k + 3 = 2(k + 1) + 1.
This ends the induction and the proof of the Lemma.

2

As noted previously, the rank of a cotree T is at most logarithmic in the number of vertices of G, which gives the upper bound we aim at.

Theorem 2. The closed contiguity of a cograph is at most logarithmic in its number of vertices, or more formally, if

G = (V, E) is a cograph, then cont(G) ≤ 2 log 2 |V | + 1.
Proof. Let us denote by k the rank of the cotree T of G. From the definition of the rank, we deduce that T has at least 2 k leaves, which gives

|V | ≥ 2 k . It follows that k ≤ log 2 |V |. And since from Lemma 5, cont(G) ≤ 2k + 1, we conclude that cont(G) ≤ 2 log 2 |V | + 1. 2
From the inequalities of Lemma 1, we immediately get the following corollary.

Lower bounds for contiguity and linearity of cographs

In this section, we prove that the O(log n) bound we obtained for the contiguity of cographs is tight. In other words, there exist families of cographs such that the contiguity of a cograph of the family on n vertices is Ω(log n).

Here we show that the cographs whose cotree is a complete binary tree, which already played a key role in the proof of the upper bound, are such a family (Theorem 3).

For linearity, we could not find a family of cographs for which we can prove that the linearity is Ω(log n). But again, we prove that the cographs whose cotree is a complete binary tree are close to the upper bound. More precisely, their linearity is Ω(log n/ log log n) (Theorem 4).

Finally, note that even though our theorems are stated for closed contiguity and closed linearity, we derive the same bounds for the open notions, from the inequalities linking them to the closed notions.

Theorem 3. Let G be a cograph whose cotree is a complete binary tree. Then, cont(G) = Ω(log n).

Proof. In order to prove this theorem, we first show that a cograph whose cotree T is a complete binary tree of height 4k with a series root has closed contiguity at least k. The proof is by induction on k.

For k = 1, the statement is self-evident as any graph has closed contiguity at least 1. Consider a cotree T which is a complete binary tree of height 4(k + 1) with a series root denoted by r, as shown in Figure 6. Root r has two parallel children denoted by u and v. Consider a grandchild u 1 of u and its two series children v 1 and v 2 . Consider now a great-grandchild v 3 of u such that the least common ancestor of nodes v 3 and v 1 in T is node u. Let us denote by X 1 , X 2 , X 3 the set of leaves of respectively T v1 , T v2 , T v3 . Let x be a leaf of T v . Vertex x is adjacent in G to all the vertices of X 1 ∪ X 2 ∪ X 3 , and for any distinct i, j in 1, 3 , all the vertices of X i are non-adjacent to all the vertices of X j . Moreover, T v1 , T v2 , T v3 are complete binary cotrees of height 4k whose root is a series node. Then, by the induction hypothesis, cont(G[X i]) ≥ k for any i ∈ 1, 3 . Consider a linear order σ on the vertices of G. We denote by a (resp. b) the vertex of X 1 ∪ X 2 ∪ X 3 which is closer to x on the left (resp. on the right) in σ, if it exists (i.e. if there is some node of X 1 ∪ X 2 ∪ X 3 on the left (resp. right) of x in σ). Clearly, there exists i ∈ 1, 3 such that none of a, b is in X i . Then, for all the vertices y ∈ X i , there exists some vertex z ∈ {a, b} such that z is between x and y in σ, and z is not adjacent to y. Since X i has contiguity at least k, there exists some vertex y 1 ∈ X i such that its neighborhood in G[X i] is split in at least k intervals in σ. And it turns out that x, which is adjacent to y 1 , necessarily belongs to a new interval of neighbors of y 1 in σ, which is different from these k intervals, since all the vertices of X i are separated from x in σ by some z ∈ {a, b}, which is not adjacent to y 1 . It follows that the neighborhood of y 1 is split in at least k + 1 intervals in σ. Thus, cont(G) ≥ k + 1, which ends the induction showing that a cograph whose cotree is a complete binary tree of height 4k with a series root has contiguity at least k.

And consequently, for any cograph G on n vertices whose cotree T is a complete binary tree, we have cont(G) = Ω(log n). For linearity, we could not prove an Ω(log n) bound by the same arguments as for contiguity. Roughly speaking, the reason why the proof for contiguity works is that in order σ not all the three sets X 1 , X 2 and X 3 can be next to x. But in the case of linearity there is not only one order σ but k orders σ 1 , . . . , σ k . Then, up to 2k sets of vertices X i can be next to x in some order. This is the reason why, in [START_REF] Crespelle | Efficient neighbourhood encoding for interval graphs and permutation graphs and O(n) breadth-first search[END_REF], a proof is made by using 2k + 1 sets instead of 3 like in the proof above. But as this number 2k + 1 is not constant, it does not give an Ω(log n) bound but only an Ω(log n/ log log n) bound instead. Actually, the proof of [START_REF] Crespelle | Efficient neighbourhood encoding for interval graphs and permutation graphs and O(n) breadth-first search[END_REF] is written for permutation graphs and interval graphs, but it turns out that the graphs used to do so are also cographs.

Consequently, we do not need to prove that the Ω(log n/ log log n) bound holds for cographs. What we show here, using the result of [START_REF] Crespelle | Efficient neighbourhood encoding for interval graphs and permutation graphs and O(n) breadth-first search[END_REF], is that this bound is also reached on the cographs whose cotree is a complete binary tree. As these particular cographs play a key role in the upper bound proof, this emphasizes on the question whether the linearity of a cograph G is equal, in order of magnitude, to some function of the rank of its cotree, i.e. the maximum height of a complete binary tree included in it as a minor. This is one of the main questions raised by our work. Theorem 4. Let G be a cograph whose cotree is a complete binary tree. Then, lin(G) = Ω(log n/ log log n).

Proof. The result of [START_REF] Crespelle | Efficient neighbourhood encoding for interval graphs and permutation graphs and O(n) breadth-first search[END_REF] we use to prove Theorem 4 is as follows: consider the transitive closure1 of the rooted and directed (2k + 1)-ary tree2 T k of height k, for k ≥ 1, and let G k be its underlying undirected graph. It is shown in [START_REF] Crespelle | Efficient neighbourhood encoding for interval graphs and permutation graphs and O(n) breadth-first search[END_REF] that lin(G k) ≥ k. Here, we show that a cograph whose cotree is a complete binary tree of height 2k log 2 (2k + 1) + 1 contains G k as an induced subgraph, and therefore has linearity at least k. From this, we obtain the property stated by the theorem: for G a cograph whose cotree is a complete binary tree, lin(G) = Ω(log n/ log log n).

In the first part of the proof, we show that a cograph G whose cotree T is a complete binary tree of height 2k log 2 (2k + 1) + 1 contains G k as an induced subgraph. First, note that G contains as an induced subgraph the cograph whose cotree T is a complete binary tree of height 2k log 2 (2k + 1) having a series node as the root. Indeed, if the root r of T is a parallel node, just take the tree T u rooted at an arbitrary child of r. Otherwise, if r is already a series node, simply replace the lower level of internal nodes of T (which are series nodes) by leaves: the cotree T obtained satisfies the required property. Now, we prove that the cograph whose cotree is T contains G k as an induced subgraph. We make it by induction on d for a complete binary cotree of height 2d log 2 (2k + 1) . Formally, we denote by G d k the underlying undirected graph of the transitive closure of the rooted directed (2k + 1)-ary tree of height d, as shown in Figure 7(a) for k = 1 and d = 2. We also denote by T d k the complete binary cotree of height 2d log 2 (2k + 1) whose root is a series node, and we denote by F d k its corresponding cograph.

(a) (b) (c) The root of T 1 k is a series node with two children v 1 and v 2 , as illustrated in Figure 8(c) for the case k = 1. Choose an arbitrary leaf of v2 as being the center z of K 1,2k+1 . We show that the cograph whose cotree is T v1 contains a stable (a subset of vertices having no edges between them) of size 2k + 1. T v1 is of height 2 log 2 (2k + 1) -1 and its root is a parallel node. Then, T v1 contains log 2 (2k + 1) levels of parallel nodes. For each of the series nodes in T v1 arbitrarily choose one of its two children and remove the subtree below (the removed subtrees appear in light gray in T 1 1 in the example in Figure 8): one obtains a tree having 2 log 2 (2k+1) ≥ 2k + 1 leaves, and for any two of these leaves x, y, their least common ancestor in T v1 is a parallel node. This implies, from Remark 1, that x and y are not adjacent. And it follows that T v1 contains a stable of size 2k + 1. Thus, as an induced subgraph, which ends the induction and the proof of the fact that G contains G k as an induced subgraph. It follows, as lin(G k) ≥ k from the result of [START_REF] Crespelle | Efficient neighbourhood encoding for interval graphs and permutation graphs and O(n) breadth-first search[END_REF], that G has closed linearity at least k.

The rest of the proof of Theorem 4 is simply analytic considerations. Let now G be a cograph whose cotree is a complete binary tree of arbitrary height and denote by n the number of vertices of G. Consider the greatest integer k such that 2k log 2 (2k + 1) + 1 ≤ height(G). Then we have 2k log 2 (2k + 1) + 1 ≤ log 2 n ≤ 2(k + 1) log 2 (2k + 3) + 1. It follows that log(n) = Θ(k log k). Applying the log to this relation we obtain log log n = log k + o(log k). This immediately gives log log n = Θ(log k) and so log k = Θ(log log n). Since log(n) = Θ(k log k), we also have k log k = Θ(log(n)). Then, k = Θ(log(n))/ log k = Θ(log(n))/Θ(log log n) = Θ(log(n)/ log log n). Finally, since from the definition of k we have 2k log 2 (2k + 1) + 1 ≤ height(G), then G contains as induced subgraph a cograph whose cotree is a complete binary tree of height 2k log 2 (2k + 1) + 1, for which we proved above that the linearity is at least k.

 is the minimum integer p such that there exists a closed p-intervalmodel (resp. open p-interval-model) of G. Definition 6. A closed p-line-model (resp. open p-line-model) of a graph G = (V, E) is a tuple (σ 1 , . . . , σ p) of linear orders on V such that ∀v ∈ V, ∃(I 1 , . . . , I p) ∈ (2 V) p such that ∀i ∈ 1, p , I i is an interval of σ i and N [x] = 1≤i≤p I i (resp. N (x) = 1≤i≤p I i). The closed linearity (resp. open linearity) of G, denoted by lin(G) (resp. lin o (G)), is the minimum integer p such that there exists a closed p-line-model (resp. open p-line-model) of G. Remark 3. Note that in a p-interval-model, the intervals I i of Definition 5 necessarily form a partition of N [x] (or N (x)), while the intervals I i assigned to a vertex x are not necessarily disjoint in the definition of a p-line-model (Definition 6).

Figure 2 :

 2 Figure2: The induction step of the proof that the path-height of a complete binary tree is at least as big as its height, in the proof of Lemma 2.

Figure 3 :

 3 Figure 3: Left: a tree Tcur with its path partition Pcur = {P 1 , P 2 , P 3 , P 4 , P 5 , P 6 } whose partition tree T cur p has height 2. Right: the tree Tnext resulting from the contraction of edge uv in Tcur, together with its path partition Pnext = {P 1 , P 2 , P 3 , P 4 , P 5 , P 6 }. All the paths in Pnext are the same as those in Pcur, except P 5 which has lost node v. The height of T next p

Figure 4 :

 4 Figure 4: The root-path decomposition {T 1 , . . . , Tp} of a rooted tree T .

Figure 5 :

 5 Figure 5: The general structure of the order σ used in Lemma 3 for the caterpillar partition of Fig 4.

Corollary 1 .

 1 For any cograph G on n vertices, the open contiguity, the open linearity and the closed linearity of G are all O(log n).

Figure 6 :

 6 Figure 6: The complete binary cotree T of height 4(k + 1) used in the proof of Theorem 3.

Figure 7 :

 7 Figure 7: The graph G 2 1 (a), its cotree (b) and its representation as the result of a substitution composition of 3 copies of G 1 1 in the leaves of the star K 1,3 (c). Be aware that, for sake of clarity, we give the example of the construction of graph G 2 1 though in the proof of Theorem 4 we need only to consider graphs G d k such that d ≤ k. We use the following induction hypothesis H(d) : F d k contains G d k as an induced subgraph. Assume that H(d) holds for some d ≥ 1, we show that H(d + 1) is true. To that purpose, we first note that (*) G d+1 k is obtained as the substitution composition (see Definition 1) of 2k + 1 copies of G d k into the leaves of K 1,2k+1 (the star with 2k +1 leaves), as shown in Figure 7(c). In other words, take the star K 1,2k+1 , replace each of the 2k + 1 leaves by a copy of G d k and link all the vertices of each copy to the center of the star K 1,2k+1 : you obtain G d+1 k . Now consider any node u at depth 2 log 2 (2k + 1) in T d+1 k , the tree T u is exactly T d k . Now replace in T d+1 k each node u at depth 2 log 2 (2k + 1) by a leaf: you obtain T 1 k . This shows, from Remark 2, that F d+1 k is obtained by substitution composition of one copy of F d k into each vertex of F 1 k . Moreover, by the induction hypothesis, F d k contains G d k as an induced subgraph. Then, from property (*) above, in order to show that F d+1 k

Figure 8 :

 8 Figure 8: The star K 1,3 (a), its cotree (b) and the complete binary cotree T 1 1 of height 2 log 2 (3) (c), whose corresponding cograph contains the star K 1,3 as an induced subgraph, as highlighted by the bold edges.

F 1 k

 1 contains K 1,2k+1 as an induced subgraph. Moreover, by induction hypothesis, F d k contains G d k as an induced subgraph. It follows that the graph resulting from the substitution composition of vertices of F 1 k by copies of F d k , which is precisely F d+1 k , contains as an induced subgraph the graph resulting from the substitution composition of the leaves of K 1,2k+1 by copies of G d k , which is precisely G d+1 k . As a conclusion, F d+1 k contains G d+1 k

2

 As mentioned in the introduction, the open and closed contiguity differ by at most one. Then from the lower bound on the closed contiguity, we deduce the same for open contiguity. To prove the corollary we need to state the inequality between open and closed contiguity in the opposite direction than the one stated in Lemma 1. Namely, we show that for any graph G, we have cont(G) ≤ cont o (G) + 1. This is straightforward, as in an open model, one can always add one interval for each vertex x made of the vertex x itself and no other vertices. In this way, one obtains a closed contiguity model with at most one additional interval per vertex, which shows that cont(G) ≤ cont o (G)+1. Corollary 2 directly follows. 2

	Corollary 2. The open contiguity of cographs whose cotree is a complete binary
	tree is Ω(log n).
	Proof.

The transitive closure of a directed graph G is the graph G formed by putting an arc from x to y in G iff there is a directed path from x to y in G (see[START_REF] West | Introduction to Graph Theory[END_REF] for a more formal definition).

That is the tree T k of height k where every internal node of T k has exactly 2k + 1 children and the arcs of the tree are directed from children to their parent node.

Acknowledgments. The authors thank Pierre Charbit and Stéphan Thomassé for useful discussions on the subject, as well as George Oreste Manoussakis for proofreading a draft of this article.

Consequently, lin(G) ≥ k = Θ(log(n)/ log log n), which completes the proof of Theorem 4.

2

From Theorem 4 and from the first inequality of Lemma 1, we directly deduce the following corollary.

Corollary 3. For any cograph G whose cotree is a complete binary tree, we have lin o (G) = Ω(log n/ log log n).

Conclusion

We showed that the contiguity and linearity of cographs are both bounded by O(log n). Moreover, we showed that, in the worst case, the contiguity of cographs on n vertices may be up to Ω(log n) and that their linearity may be up to Ω(log n/ log log n). This means that our bounds for contiguity are tight, while the asymptotic behavior of the maximum linearity of cographs on n vertices is still to be determined. Then, the first open problem suggested by our work is to fill the gap between O(log n) and Ω(log n/ log log n) for the linearity of cographs.

In this perspective, we note that our proofs for both the upper and lower bound rely on the cographs whose cotree is a complete binary tree. Therefore, it brings the question to know whether the linearity of a cograph is equal, in order of magnitude, to some function f (h) of the height h of the maximum complete binary tree being a minor of its cotree, the first two possibilities being f (h) = h and f (h) = h/ log h. Finding such an f would give the asymptotic behavior of the linearity of cographs.

The same question holds for the contiguity, the only possible function in this case being f (h) = h. If the answer to this question turned out to be positive, then it would guarantee that the contiguity model of graph G proposed by our constructive proof of Lemma 3 realizes a value of the contiguity that is in a constant approximation ratio of the actual contiguity of G. This would thereby provide an approximation algorithm for the contiguity of cographs.

Another key perspective of our work is to extend the O(log n) bound on these two parameters to larger classes of graphs. For example, do these results hold for permutation graphs (which are a proper generalization of cographs) and for interval graphs?