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An algebraic-closure-based moment method for unsteady
Eulerian modeling of non-isothermal particle-laden tur-
bulent flows in very dilute regime and high Stokes num-
ber
E. Masi and O. Simonin
Institut de Ḿecanique des Fluides de Toulouse, UMR CNRS/INPT/UPS 5502,
Allée Camille Soula, 31400 Toulouse, France, masi@imft.fr, simonin@imft.fr

Abstract — An algebraic-closure-based moment method (ACBMM) is developed for unsteady Eulerian particle
simulations coupled with direct numerical simulations (DNS) of non-isothermal fluid turbulent flows, in very dilute
regime and for large Stokes numbers. It is based on a conditional statistical approach [1] which provides a local
instantaneous characterization of the dynamic of the dispersed phase accounting for the effect of crossing between
particle trajectories which occurs for large Stokes numbers.

1. Introduction
Particle-laden turbulent flows are encountered in several industrial applications and need to
be modeled. In order to model the turbulence at industrial scales, Reynolds-averaged Navier-
Stokes (RANS) methods or large-eddy simulations (LES) are usually used depending on the
nature of the flow. The LES are particularly adequate for modeling unsteady turbulences of
internal flows confined in complex geometries as, for instance, in combustion chambers of
aero engines. For these two-phase flow applications, the entire mixture needs to be modeled
and a question about the choice of the most appropriate method for modeling the particulate
phase arises. In the literature, a method which has been extensively used over the years is
the Eulerian-Lagrangian LES approach [2, 3]. According to this approach, the turbulence is
resolved by means of the LES and the particle properties are obtained by using a Lagrangian
method. So far, the Eulerian-Lagrangian LES approach has presented two major limits: the
prohibitive computational cost of the numerical simulation when this method is used for real in-
dustrial applications; the difficulty to model the coupling between particles and turbulent fluid
flow because of the small non-resolved scales of the turbulence [4, 5]. An alternative to the
Eulerian-Lagrangian LES approach is the Eulerian-Eulerian LES approach. The latter implies
that the particulate phase is described as a continuum medium at the same level as the turbulence
so that a straightforward coupling between phases is possible in an Eulerian framework. This
approach is considerably less expensive than a Lagrangian technique and thus suitable provided
that a satisfactory level of accuracy is ensured. In the literature, several successfully models
are available in the framework of the Eulerian-Eulerian RANS modeling [6, 7, 8, 9, 10]. In
contrast, the Eulerian-Eulerian LES (or DNS, as direct numerical simulations) of dilute or very
dilute highly inertial particle-laden turbulent flows are still a timely topic of research. Indeed,
the existing DNS/LES Eulerian models [11, 12, 13, 14, 15, 16] have proven to be able to cor-
rectly predict the dispersed phase behaviour only for Stokes numbers smaller than the critical
one (StK << 1 based on the Kolmogorov timescale). In this work an appropriate model for
predicting unsteady Eulerian particle simulations coupled with DNS of non-isothermal fluid
turbulent flows in very dilute regime and for large Stokes numbers is proposed. It should be



considered as the starting point for developing the Eulerian-Eulerian LES approach [17].

2. Unsteady Eulerian Modeling
The algebraic-closure-based moment method (ACBMM) is based on a conditional statistical
approach [1] which provides a local instantaneous characterization of the dynamic of the dis-
persed phase accounting for the effect of crossing between particle trajectories which occurs for
large Stokes numbers. This phenomenon has a great impact on the thermal characterization of
the dispersed phase as well. Indeed, the occurrence of crossing trajectories entails that particles
convey information of their interactions with very distant, and independent, turbulent eddies,
that is with different dynamic and thermal turbulent scales. This effect involves many differ-
ent velocities and temperatures in the same volume of control, violating the assumption of the
uniqueness of the particle velocity and temperature distributions. An extension of the statistical
approach accounting for non-isothermal conditions may be found in Ref. [18]. Particle velocity
and temperature are partitioned in two contributions: i) an Eulerian particle (velocity and tem-
perature) field, referred to as mesoscopic field, which is spatially correlated and shared by all
the particles and which accounts for correlations between particles and between particles and
fluid; ii) a spatially-uncorrelated particle (velocity and temperature) contribution, referred to as
random uncorrelated motion (RUM) contribution, associated with each particle and resulting
from the chaotic behaviour of the particles. The RUM contribution is characterized in terms of
Eulerian fields of particle velocity and temperature moments; the larger is the particle inertia
the more important is the RUM. The proposed ACBMM computes low-order moments of the
conditional probability density function (PDF) using a set of governing equations which are de-
rived from the PDF kinetic equation in the general frame of the kinetic theory of dilute gases. It
consists of a set of three equations describing the evolution of the mesoscopic particle number
densityñp, the mesoscopic velocitỹup,i and the mesoscopic temperatureT̃p, which needs to be
closed by providing constitutive relations as algebraic closures. Neglecting gravity and radiant
sources and assuming non-interacting and non-colliding spherical particles in translation, with
a same diameter equal or smaller than the Kolmogorov lengthscale, a density much larger than
that of the fluid, stationaries inter-phase heat transfers and constant heat capacity, the set of
Eulerian equations is [19, 18]

∂ñp

∂t
+

∂ñpũp,i

∂xi
= 0, (1)

∂ñpũp,i

∂t
+

∂ñpũp,iũp,j

∂xj
= − ñp

τ̃p
(ũp,i − uf,i)−

∂ñpδRp,ij

∂xj
, (2)

∂ñpT̃p

∂t
+

∂ñpũp,jT̃p

∂xj
= − ñp

τ̃θ

(
T̃p − Tf

)
− ∂ñpδΘp,j

∂xj
, (3)

whereuf,i andTf are the fluid velocity and temperature andτ̃p = 〈(1/τp)|xp(t) = x;Hf〉−1

and τ̃θ = 〈(1/τθ)|xp(t) = x;Hf〉−1 are the mesoscopic dynamic and thermal response times
obtained by conditional ensemble averaging the particle response times

τp =
4ρpdp

3ρfCD||up − uf@p||
, τθ =

Pr ρpd
2
pCpp

6Nuµf Cpf

; (4)

uf@p is the fluid velocity at the particle location,Pr is the Prandtl number,µf andνf are the
dynamic and kinematic fluid viscosity respectively,ρf is the density of the fluid,ρp anddp are



theparticle density and the particle diameter, andCpp/Cpf is the particle-to-fluid heat capacity
ratio.CD andNu are the corrected drag coefficient [20] and Nusselt number [21]

CD =
24

Rep
(1 + 0.15Re0.687p ), Nu = 2 + 0.552Re1/2p Pr1/3, (5)

formulated in terms of the particle Reynolds number,Rep = ||up − uf@p||dp/νf . The highest-
order moment appearing in Eq. (2) is the second-order velocity moment referred to as RUM
particle kinetic stress tensor (RUM-ST),δRp,ij(x, t) = 〈δup,i(t)δup,j(t)|xp(t) = x;Hf〉. The
highest-order unclosed moment in Eq. (3) is the velocity-temperature correlationδΘp,i(x, t) =
〈δup,i(t)δTp(t)|xp(t) = x;Hf〉 referred to as RUM particle heat flux (RUM-HF) for the sake of
simplicity (although this term has no longer units of a heat flux since the particle mass and heat
capacity were removed because constant quantities). The first term on the right hand side (r.h.s.)
of Eq. (2) accounts for the effects of the drag force and the second term is the transport due to
the RUM-ST. The first term on the r.h.s. of Eq. (3) represents the interphase heat exchanges and
the second contribution is the transport of the mesoscopic temperature due to the RUM-HF. At
the second order, the modeling leads to an equation for the RUM-ST [22]

∂ñpδRp,ij

∂t
+

∂ñpδRp,ijũp,k

∂xk

= −2
ñp

τ̃p
δRp,ij − ñpδRp,jk

∂ũp,i

∂xk

− ñpδRp,ik
∂ũp,j

∂xk

− ∂

∂xk

ñpδQp,ijk,

(6)
and an equation for the RUM-HF [23]

∂

∂t
ñpδΘp,i +

∂

∂xj
ñpũp,jδΘp,i = − ñp

(
1

τ̃p
+

1

τ̃θ

)
δΘp,i − ñpδΘp,j

∂ũp,i

∂xj
− ñpδRp,ij

∂T̃p

∂xj

− ∂

∂xj
ñpδ∆p,ij. (7)

The highest-order moments appearing in Eqs. (6)-(7) are third-order RUM correlations defined
by the conditional ensemble average asδQp,ijk(x, t) = 〈δup,i(t)δup,j(t)δup,k(t)|xp(t) = x;Hf〉
andδ∆p,ij(x, t) = 〈δup,i(t)δup,j(t)δTp(t)|xp(t) = x;Hf〉. The first term on the r.h.s. of Eq.
(6) represents the dissipation of the RUM-ST while second and third terms are productions
by mesoscopic velocity gradients. The first term on the r.h.s. of Eq. (7) accounts for the
dissipation of the RUM-HF due to heat and momentum transfers and second and third terms
are productions by both mesoscopic velocity and temperature gradients. In the framework of
the ACBMM approach proposed in this study, Eqs. (6) and (7) are not resolved but rather
used for the development of the second-order moment closures. Preliminary two-dimensional
Eulerian-Eulerian DNS using modeled RUM-ST in conjunction with resolved RUM-HF may
be found in Ref. [24]. With the purpose of deriving algebraic closures, the equation of the
evolution of the RUM kinetic energy (δθp(x, t) = 0.5 〈δup,i(t)δup,i(t)|xp(t) = x;Hf〉) and the
RUM temperature variance (δθθ(x, t) = 0.5 〈δTp(t)δTp(t)|xp(t) = x;Hf〉) are also written [19,
23]:

∂ñpδθp
∂t

+
∂ñpδθpũp,m

∂xm
= −ñpδRp,nm

∂ũp,n

∂xm
− 2

ñp

τ̃p
δθp −

1

2

∂

∂xm
ñpδQp,nnm, (8)

∂ñpδθθ
∂t

+
∂ñpδθθũp,m

∂xm

= −ñpδΘp,m
∂T̃p

∂xm

− 2
ñp

τ̃θ
δθθ −

1

2

∂

∂xm

ñpδΩp,m. (9)

The last term in Eq. (9) is defined asδΩp,m(x, t) = 〈δup,m(t)δTp(t)δTp(t)|xp(t) = x;Hf〉. The
ACBMM bases its efficiency and accuracy on the algebraic closures provided for modeling the
RUM-ST and the RUM-HF; in this study, this concern is addressed.



3. Modeling The RUM Particle Kinetic Stress Tensor (RUM-ST)
The RUM stress tensor is composed of spherical and deviatoric contributions

δRp,ij =
1

3
δRp,kkδij + δR∗

p,ij =
2

3
δθpδij + δR∗

p,ij. (10)

The spherical part may be obtained by means of an additional transport equation [19, 25] while
the deviatoric contribution needs to an algebraic closure. In this work the deviatoric RUM-ST
is modeled by using a polynomial representation for tensor functions [23]. The polynomial
representation is used in the framework of an assumption of equilibrium of the local anisotropy.
Indeed, one of the most important finding of this study was to observe that the RUM-ST is a
self-similar tensor which means that its temporal and spatial evolutions are related to that of
its trace, involving equilibrium of anisotropy. Such an equilibrium leads to an algebraic stress
model (ASM) which is an implicit and nonlinear system of equations referred to as2ΦASM (by
analogy with turbulence models, see, e.g. [26] and references cited in). It is obtained defining a
local RUM anisotropy tensor as

b∗p,ij =
δRp,ij

2δθp
− 1

3
δij . (11)

Then the equilibrium involves

D

Dt
b∗p,ij = 0 with

D

Dt
=

∂

∂t
+ ũp,j

∂

∂xj
, (12)

which using the definition (11) gives the relation

D

Dt
δRp,ij =

δRp,ij

δθp

D

Dt
δθp. (13)

Injecting Eqs. (6) and (8) into Eq. (13), and assuming equality between left hand side (l.h.s.)
and r.h.s. third-order correlations, the equation takes the form

δRp,ij

(
−δRp,nm

2δθp

∂ũp,n

∂xm

)
= −1

2
δRp,jk

∂ũp,i

∂xk

− 1

2
δRp,ik

∂ũp,j

∂xk

. (14)

Defining the mesoscopic particle rate-of-strain and vorticity tensors as, respectively,

Sp,ij =
1

2

(
∂ũp,i

∂xj

+
∂ũp,j

∂xi

)
, Ωp,ij =

1

2

(
∂ũp,i

∂xj

− ∂ũp,j

∂xi

)
, (15)

and using the decomposition ofSp,ij in deviatoric and spherical contributionsSp,ij = S∗

p,ij +
1
3
Sp,kkδij and the RUM anisotropy definition, Eq. (14) may be rearranged as

b∗p,ij
(
−2b∗p,nmS

∗

p,nm

)
= − 2

3
S∗

p,ij −
(
b∗p,ikS

∗

p,kj + S∗

p,ikb
∗

p,kj −
2

3
b∗p,nmS

∗

p,nmδij

)

+
(
b∗p,ikΩp,kj − Ωp,ikb

∗

p,kj

)
, (16)

which represents the implicit nonlinear2ΦASM model proposed for closing the RUM-ST. Ex-
plicit solutions are then provided using techniques well known in turbulence [27, 28, 29]. Here-
inafter, bold notation denotes three-dimensional second-rank tensors, curly brackets{.} repre-
sent the tensor trace and the asterisk means traceless tensor. The matrix multiplication is then



defined in a matrix notation asC = AB = AikBkj = Cij andB
2 = BB. According to

Pope [30], the anisotropy tensor may be expressed using a polynomial representation for tensor
functionsb∗ =

∑
ς GςT

(ς) which represents the linear combination of a set of non-dimensional
independent, symmetric and deviatoric second-order tensorsT

(ς), using scalar coefficientsGς

which are functions of the invariants of the dimensionlessS
+ andΩ

+. Using the Cayley-
Hamilton theorem, Pope [30] showed that a set of ten (ς = 10) tensorsT(ς) is needed to form
an integrity basis [31] in order to express every symmetric deviatoric three-dimensional second-
order tensor formed byS+ andΩ+; the problem then reduces to model the ten coefficientsGς

(see, e.g., Refs. [27, 29]). However, the integrity basis and coefficients associated with may
be reduced if some approximations are introduced. Using a two-dimensional flow approxima-
tion (three tensor basis) Girimaji [28] developed a self-consistent solution technique in order to
model the Reynolds stresses in turbulent flows. In this work, we will use the same technique
applied to our2ΦASM model. The algebraic, implicit and nonlinear system for the dispersed
phase is rewritten using the Girimaji’s notation as

b
∗
(
L0
1 − L1

1{b∗
S
+}
)
= L2S

+ + L3

(
b
∗
S
+ + S

+
b
∗ − 2

3
{b∗

S
+}I
)
− L4

(
b
∗
Ω

+ −Ω
+
b
∗
)
,(17)

whereL0
1 = 0,L1

1 = 2,L2 = −2
3
,L3 = −1 andL4 = −1, S+ andΩ+ are dimensionless tensors

by the quantityII1/2S = {S∗2}1/2 andI is the identity matrix. According to Girimaji [28], the
general representation of the anisotropy tensor under the two-dimensional approximation is

b
∗ =

3∑

ς=1

GςT
(ς) = G1S

+ +G2

(
S
+
Ω

+ −Ω
+
S
+
)
+G3

(
S
+2 − 1

3
{S+2}I

)
, (18)

where the three coefficients are functions of the two invariantsη1 = {S+2} andη2 = {Ω+2}.
Using Eq. (18) and the two-dimensional hypothesis, the contracted productb∗p,ijS

+
p,ij may be

written as
b∗p,ijS

+
p,ij = G1S

+
p,ijS

+
p,ij = G1η1. (19)

Inserting equations (18) and (19) into the system (17) leads to

[G1S
+ +G2(S

+
Ω

+ −Ω
+
S
+) +G3(S

+2 − 1

3
{S+2}I)](L0

1 − η1L
1
1G1) = (20)

(L2 +
1

3
η1L3G3 − 2η2L4G2)S

+ + 2L3G1(S
+2 − 1

3
{S+2}I)− L4G1(S

+
Ω

+ −Ω
+
S
+).

Then, comparison between homogeneous l.h.s. and r.h.s. terms in Eq. (20) leads to explicit
solutions for the unknown coefficients. In our particular case in whichL0

1 = 0, the coefficients
G2 andG3 are directly obtained as follows

G2 =
L4

η1L1
1

, G3 = − 2L3

η1L1
1

, (21)

andG1 reduces to the solution of a pure quadratic

G2
1 = − 1

η1L
1
1

[L2 +
1

3
η1L3G3 − 2η2L4G2]. (22)

Eq. (22) with the “L” coefficients leads toG1 = ±√
2η1 + 2η2/2η1, which admits real solutions

only for η1 + η2 ≥ 0. Unfortunately, asη1 andη2 have positive and negative sign respectively,
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Figure 1:Profiles of actual (solid line) and modeled (line with symbols) mean deviatoric RUM
stresses, at the timet = 6.2Tf@p.

real solutions are not ensured. In order to use this model, local negative values of the discrim-
inant are set to zero. The legitimacy of such an approximation was investigated in Ref. [23];
it was observed that negative values correspond to small magnitudes of both the particle rate-
of-strain and vorticity tensors justifying the approximationG1 = 0. Concerning the sign of
the coefficientG1, according to Eq. (19) and the definition of the normalized production of the
RUM particle kinetic energy by shear (−{b∗

S
∗}, from Eq. (8)), in the simplest case it should be

taken as negative. Negative sign forG1 is obtained in turbulence, in the domain of applicability
of an equilibrium assumption of anisotropy [28]. However, for the dispersed phase interacting
with turbulent flows, it is usual to have reverse energy exchanges from the RUM to the meso-
scopic contribution [17, 18] corresponding to a reverse sign of the first-order coefficientG1. In
the special case in which the deviatoric RUM-ST and the deviatoric particle rate-of-strain are
axisymmetric tensors (as reported in Refs. [23, 32]), assuming that the principal direction of
the RUM-ST is aligned with the most extensive or compressive direction of the particle rate-
of-strain, then the sign of the contracted productb∗p,ijS

+
p,ij, which is the same ofG1, is given

by the sign of the third invariant of the particle rate-of-strain tensor defined asη3 = {S+3}. In
this case the solution becomesG1 = sign(η3)

√
2η1 + 2η2/2η1. Injecting the coefficientsG1,

G2, G3 into Eq. (18) leads to an explicit solution for the RUM anisotropy tensor and thus for
the RUM-ST. Hereinafter, this model will be referred to as2ΦEASM. Results from preliminary
isothermal Eulerian-Eulerian DNS using2ΦEASM may be found in Ref. [33].

4. Modeling The RUM Particle Heat Flux (RUM-HF)
In a similar way, the RUM-HF is modeled assuming similarity between the evolution of the
RUM heat flux and that of the square root correlation between the RUM kinetic energy (δθp)
and the RUM temperature variance (δθθ), which involves the equilibrium of the normalized heat
flux. This assumption may be written as

D

Dt

δΘp,i√
δθpδθθ

= 0 (23)
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Figure 2:Profiles of actual (solid line) and modeled (line with symbols) mean streamwise and
normalwise RUM-HF components, at the timet = 6.2Tf@p.

which developed leads to

1√
δθpδθθ

D

Dt
δΘp,i =

1

2

δΘp,i√
δθpδθθ

1

δθp

D

Dt
δθp +

1

2

δΘp,i√
δθpδθθ

1

δθθ

D

Dt
δθθ. (24)

Then injecting Eqs. (7), (8) and (9) into Eq. (24) and assuming equality between l.h.s. and r.h.s.
diffusion terms, the equation takes the form

δΘp,i√
δθpδθθ

(
−1

2

δΘp,l

δθθ

∂T̃p

∂xl
− 1

2

δRp,kl

δθp

∂ũp,k

∂xl

)
= − δRp,il√

δθpδθθ

∂T̃p

∂xl
− δΘp,l√

δθpδθθ

∂ũp,i

∂xl
, (25)

which may be rearranged as follows

δHp,i

(
−1

2
δHp,lK̃p,l − b∗p,klS

∗

p,kl

)
= −2

(
b∗p,il +

1

3
δil

)
K̃p,l − (S∗

p,il + Ωp,il)δHp,l, (26)

by defining the quantities

δHp,i =
δΘp,i√
δθpδθθ

, K̃p,i =

√
δθp
δθθ

∂T̃p

∂xi

. (27)

A fully dimensionless system may be obtained using non-dimensionalized quantitiesK̃p,i, S∗

p,ij

andΩp,ij by the same inverse timescale, then referred to asK̃+
p,i, S

+
p,ij andΩ+

p,ij. Eq. (26) is
an implicit and nonlinear particle algebraic heat flux model (AHFM), referred to as2ΦAHFM
(by analogy with turbulence models). Explicit self-consistent solutions,2ΦEAHFM, are then
provided using a technique suggested for turbulent heat flux by Wikströmet al. [34] and by
introducing a regularization procedure for ensuring non-singular solutions during the process
of matrix inversion. Eq. (26) was indeed rearranged in a similar way that the analogous equation
of Wikström et al. [34] in order to straightforwardly apply their technique to our2ΦAHFM.
Using the same notation as in Ref. [34], we define the scalar quantity into the parentheses on
the l.h.s. of Eq. (26) as

Nθ = −1

2
δHp,lK̃

+
p,l − b∗p,klS

+
p,kl. (28)



Thesystem (26) may then be solved by inverting the matrix

Ap,ij = Nθδij + S+
p,ij + Ω+

p,ij, (29)

obtaining the explicit solutions

δHp,i = −2A−1
p,ij

(
b∗p,jl +

1

3
δjl

)
K̃+

p,l. (30)

According to the Cayley-Hamilton theorem, an analytic expression forA
−1 may be written

(see, e.g., Ref. [35] ) and the operation of matrix inversion is ensured provided thatA ad-
mits real non-zero eigenvalues so to avoid the occurrence of singularities when its determinant
(denominator of the analytical solution) vanishes. The technique of Wikströmet al. [34] in-
volves injecting the relation of the flux (Eq. 30 in our case) into the definition ofNθ (Eq. 28
in our case), replacingA−1 by its analytical expression. For fully three-dimensional flows, this
leads to a fourth-order polynomial inNθ difficult to handle. An alternative is to resolve a third-
order polynomial corresponding to a two-dimensional flow approximation and then using the
solution for three-dimensional flows as well [34]. Assuming two-dimensional flows (but using
three-dimensional tensors) the analytic expression for the inverse of the matrix is

A
−1 =

NθI− (S+ +Ω
+)

N2
θ − 1

2
(η1 + η2)

. (31)

Injecting Eq. (31) into Eq. (30) and the latter into the definition (28) the following third-order
polynomial is obtained

2N3
θ + 2{b∗

S
+}N2

θ − (Q1 +R1)Nθ − {b∗
S
+}Q1 +R2 = 0, (32)

whereQ1 = η1 + η2 and the termsR1 andR2 are, respectively,

R1 = 2

{(
b∗p,il +

1

3
δil

)
K̃+

p,lK̃
+
p,i

}

R2 = 2

{(
S+
p,ij + Ω+

p,ij

)(
b∗p,jl +

1

3
δjl

)
K̃+

p,lK̃
+
p,i

}
. (33)

A unique real solution is then ensured using transcendental functions as in Ref. [34]. At this
point, we need to address the concern of stable solutions by ensuring the determinant of the
matrix does not vanish and singularities do not occur. From thea priori analysis, we observed
that the determinant is mainly positive and that negative values correspond to small magnitudes
of it. In order to avoid singular solutions the determinant should not change its sign and the
following condition should be satisfied

det(A) = N2
θ − 1

2
(η1 + η2) > 0 (34)

while, in general, it is not. Solutions proposed in Ref. [34] for turbulent flows do not apply to
the dispersed phase and a regularization procedure is therefore necessary. The reciprocal of the
determinant is re-written as follows

det(A)−1 =
1

N2
θ − 1

2
(η1 + η2)

=
2/(2N2

θ )

1− η2/(2N2
θ ) + ξ2/(2N2

θ )
=

2/(2N2
θ )

1 + ξ2/(2N2
θ )− x2

(35)
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Figure 3:Mean profiles of actual (solid line) and modeled (line with symbols) RUM temperature
variance production (left) and RUM kinetic energy production (right), at the timet = 6.2Tf@p.

whereη =
√
η1, ξ =

√−η2 andx2 = η2/(2N2
θ ). Then, using the first order MacLaurin series

of the function1/(1 + x2) we writex2 ≈ 1− 1/(1 + x2) which inserted into Eq. (35) leads to

det(A)−1 =
2(2N2

θ + η2)

(2N2
θ )

2 + ξ2(2N2
θ + η2)

. (36)

The stability is thus ensured as the denominator of Eq. (36) never vanishes forNθ andξ2 or
η2 6= 0. The same regularization procedure was used by Gatski and Speziale [27] for model-
ing the Reynolds stress tensor in the framework of the EASM approach. Hereinafter, explicit
regularized solutions for the RUM-HF will be referred to as2ΦEAHFM.

5. A Priori Analysis
An evaluation of the ACBMM by assessing the proposed algebraic closures is given by an
a priori analysis using particle Eulerian fields which are extracted from a Eulerian-Lagrangian
DNS of a temporal particle-laden non-isothermal turbulent planar jet. The numerical simulation
corresponds to the dispersion of a cold particle-laden jet into a hot homogeneous isotropic
decaying turbulence [36]. The simulation domain is a cube of length sizeLbox = 2πLref and
mesh1283 cells. The initial gas velocity has hyperbolic-tangent profile supplemented with
statistically homogeneous and isotropic velocity fluctuations [37]. The initial gas temperature
has hyperbolic-tangent mean profile and zero fluctuations. As we assume very dilute regime,
collisions and turbulence modulation are not accounted for. Within the slab, of widthd =
0.25Lbox, 13 millions of solid particles are randomly embedded at the same mean velocity
and temperature as the carrier flow and zero fluctuations. The simulation corresponds to a
Stokes numberSt ∼ 1 computed over a characteristic timescale of the turbulence seen by
the particles representing an estimate of the integral Lagrangian timescaleTL in mean-sheared
flows [38]. The Reynolds number based on the energetic lengthscale isReLe ∼ 73. The
initial set of dimensionless parameters is: kinematics viscosityνf = 1.82e-4urefLref , turbulent
kinetic energyq2f = 3.37e-4u2

ref , dissipationǫf = 3.78e-5u3
ref/Lref , jet mean velocityUf =

0.15uref , jet rms velocityu′

f = 0.015uref , particle diameterdp/∆x = 0.01. The particle
Eulerian database is obtained from the Eulerian-Lagrangian DNS using the projection procedure
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Figure 4:PDF of actual (solid line) and modeled (symbols) productions of RUM temperature
variance (left) and RUM kinetic energy (right), at the periphery of the jet, att = 6.2Tf@p.

detailed in Ref. [25]. The evaluation of the accuracy of the models is performed at tensor/vector
level by assessed each component of the RUM-ST and the RUM-HF against the actual quantity
provided by the particle Eulerian database. Moreover, an assessment at scalar level is also
given. Figure 1 shows the mean profiles of the RUM-ST components as predicted by2ΦEASM
compared with the actual stresses. Modeled, by2ΦEAHFM, and actual mean profiles of the
RUM-HF components are depicted in Figure 2. For both the second-order moments, results at
tensor/vector level are very satisfactory. At scalar level, the scalar quantities investigated are the
productions of the RUM kinetic energy and the RUM temperature variance (first terms on the
r.h.s. of Eqs. (8) and (9), respectively). Figure 3 shows the mean profiles of the two productions.
In Figure 4, their PDFs evaluated at the periphery of the jet are depicted. They are computed
by multiplying the local value of each modeled production by the actual-to-modeled magnitude
ratio; in this way, only the shape of the PDFs is investigated [22]. Figure 3 shows that the two
productions are successfully predicted, even if the RUM kinetic energy production is somewhat
overestimated. Figure 4 shows that both the models are able to match the shape of the actual
PDF and to reproduce reverse energy exchanges. Globally, results show that models compare
very well with the Eulerian-Lagrangian DNS and properly reproduce all crucial trends of the
computation. The proposed algebraic closures enable the ACBMM to correctly predict unsteady
non-isothermal particle-laden turbulent flows, in dilute regime, for large Stokes number as well.
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37. O. VERMOREL, B. BÉDAT, O. SIMONIN AND T. POINSOT. Numerical study and mod-
elling of turbulence modulation in a particle laden slab flow.Journal of Turbulence,4, N25,
2003.

38. E. DEUTSCH AND O. SIMONIN . Large eddy simulation applied to the motion of parti-
cles in stationary homogeneous fluid turbulence. InTurbulence modification in Multiphase
flow, ASME FED, vol. 110, pp. 35–42, 1991.


