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A RELATIVE BASIS FOR MIXED TATE MOTIVES OVER THE

PROJECTIVE LINE MINUS THREE POINTS

ISMAEL SOUDÈRES

Abstract. In a previous work, the author built two families of distinguished
algebraic cycles in Bloch-Kriz cubical cycle complex over the projective line
minus three points.

The goal of this paper is to show how these cycles induce well-defined ele-
ments in the H0 of the bar construction of the cycle complex and thus generate
comodules over this H0, that is a mixed Tate motives over the projective line
minus three points.

In addition, it is shown that out of the two families only one is needed at
the bar construction level. As a consequence, the author obtains that one of
the family gives a basis of the tannakian Lie coalgebra of mixed Tate motives
over P1 \ {0, 1,∞} relatively to the tannakian Lie coalgebra of mixed Tate
motives over Spec(Q). This in turns provides a new formula for Goncharov
motivic coproduct, which really should be thought as a coaction. This new
presentation is explicitly controlled by the structure coefficients of Ihara action
by special derivation on the free Lie algebra on two generators.
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1. Introduction

1.1. Multiple polylogarithms and mixed Tate motives. For a tuple (k1, . . . , km)
of integers, the multiple polylogarithm is defined by:

Lik1,...,km(z) =
∑

n1>···>nm

zn1

nk11 · · ·nkmm
(z ∈ C, |z| < 1).

This is one of the one variable version of multiple polylogarithms in many variables
defined by Goncharov in [Gon05].

When k1 > 2, the series converges as z goes to 1 and one recovers the multiple
zeta values

ζ(k1, . . . km) = Lik1,...,km(1) =
∑

n1>···>nm

1

nk11 · · ·nkmm
.

The case m = 1 recovers the classical polylogarithm and the value of Riemann zeta
function at k1: ζ(k1).

The values of multiple polylogarithms are important in geometric as they natu-
rally appear as periods, in the Hodge or motivic sense, of moduli spaces of curves
in genus 0 ([Bro09]); as periods of the fundamental groups of P1 minus a finite
set of points ([DG05]). In number theory, Zagier’s conjecture [Zag91] predicts that
regulators of number fields are linear combinations of polylogarithms at special
points.

Bloch and Kriz in [BK94] constructed algebraic avatars of classical polyloga-
rithms. However this was part of a larger work proposing in 1994 a tannakian
category MTM(F ) of mixed Tate motives over a number field F . Their construc-
tion begins with the cubical complex computing higher Chow groups which in the
case of Spec(F ) is commutative differential graded algebra NF . The H0 of the bar
construction B(NF ) is a Hopf algebra and they defined MTM(F ) as

MTM(F ) = category of comodule over H0(NF ).

Spitzweck in [Spi] (as presented in [Lev05]) proved that this construction agrees
with Voevodsky definition of motives [Voe00] and Levine’s approach to mixed Tate
motive [Lev93]. More recently, M. Levine generalized this approach in [Lev11] to
any quasi projective variety X over the spectrum of a field K such that

• the motive of X is mixed Tate in Cisinski and Déglise category DM(K),
• the motive of X satisfies Beilinson-Soulé vanishing property.

In order to do so, Levine used the complex N qf, •
X of quasi-finite cycles over

X (Definition 3.11) instead of the original Bloch-Kriz complex. This modification
has better functoriality property and allows a simpler definition of the product
structure. Working over Spec(Q), Levine’s work shows that for X = P1 \ {0, 1,∞}:

Theorem 1.1 ([Lev11][Section 6.6 and Corollary 6.6.2]). Let x be a Q-point of

P1 \ {0, 1,∞}. Let GP1\{0,1,∞} and GQ denote the Spectrum of H0(B(N qf, •
P1\{0,1,∞}))

and H0(B(N qf, •
Q )) respectively. Then there is a tannakian category of mixed Tate

motives over P1 \ {0, 1,∞}:

MTM(P1 \ {0, 1,∞}) = category of comodule over H0(N qf, •
P1\{0,1,∞}).

Moreover there is a split exact sequence:

(1) 1 πmot1 (P1 \ {0, 1,∞}, x) GP1\{0,1,∞} GQ 1
p∗

x∗
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where p is the structural morphism p : P1 \ {0, 1,∞} −→ Spec(Q). In the above
exact sequence πmot1 (P1 \ {0, 1,∞}, x) denotes Deligne-Goncharov motivic funda-
mental group [DG05].

The exact sequence (1) is the motivic avatar of the short exact sequence for etale
fundamental groups. M. Levine however did not produce any specific motives. In

particular, he did not produce any specific element in H0(B(N qf, •
P1\{0,1,∞})) ; a natural

motive being then the comodule cogenerated by such an element.

1.2. Distinguished algebraic cycles over P1 \ {0, 1,∞}. In order to describe

explicitly some elements in H0(B(N qf, •
P1\{0,1,∞})), a first possible step is to produce

a family of degree 1 elements in N qf, •
P1\{0,1,∞} which have a decomposable boundary

inside the family. More explicitly, the differential of such an element is a linear
combination of products of other elements inside the family.

In [Sou12] the author produces such a family. Together with two explicit degree

1 weight 1 algebraic cycles generating the H1(N qf, •
P1\{0,1,∞}), the author obtains:

Theorem. For any Lyndon word W in the letters {0, 1} of length p > 2, there

exists a cycle L0
W in N qf, 1

P1\{0,1,∞}(p); i.e. a cycle of codimension p in P1 \ {0, 1,∞}×

A2p−1 ×Ap dominant and quasi-finite over P1 \ {0, 1,∞}× A2p−1.
L0
W satisfies :

• L0
W has a decomposable boundary,

• L0
W admits an equidimensional extension to A1 with empty fiber at 0.

A similar statement holds for 1 in place of 0.

The above result relies on

• The dual of the action of the free Lie algebra on two generators on itself by
Ihara special derivations in order to “guess” the differential of cycles L0

W .
• The pull-back by the multiplication A1 × A1 −→ A1 in order to build the

cycles L0
W from their boundaries.

The free Lie algebra on two generators Lie(X0, X1) is the Lie algebra associated
to πmot1 (P1 \ {0, 1,∞}, x) from the exact sequence (1) and hence appears naturally
in the construction. However its graded dual Qgeom, which is more closely related

to H0(B(N qf, •
P1\{0,1,∞})), is more natural in our context. It appears in the sequence

dual to (1) :
0 −→ QQ −→ QP1\{0,1,∞} −→ Qgeom −→ 0

where QP1\{0,1,∞} and QQ denote respectively the set of indecomposable elements

of H0(B(N qf, •
P1\{0,1,∞})) and H0(B(N qf, •

Spec(Q))).

1.3. Main results. In this paper, using the unit of the adjunction between bar and
cobar construction in the commutative/coLie case, we lift the above algebraic cycle

to elements in QP1\{0,1,∞} viewed as a subspace of H0(B(N qf, •
P1\{0,1,∞})) by the mean

of Hain’s projector px (see [Hai86] or Section 2.3.2). Let π1 : B(N qf, •
P1\{0,1,∞}) −→

N qf, •
X the projection onto the tensor degree 1 part of the bar construction. We

obtain

Theorem (Theorem 3.16). For any Lyndon word W of length p > 2 there exist

elements LBW , in the bar construction B(N qf, •
P1\{0,1,∞} satisfying:

• One has π1(LBW ) = L0
W .

• It is in the image of px ; that is in QP1\{0,1,∞};
• It is of degree 0 and map to 0 under the bar differential; it induces a class

in H0(BP1\{0,1,∞}) and in H0(QP1\{0,1,∞}).



4 ISMAEL SOUDÈRES

• Its cobracket in QP1\{0,1,∞} is given by the differential of L0
W .

A similar statement holds for cycles L1
W and constant cycles L0

W (1) induced by the
fiber at 1 of L0

W (after extension to A1).

Then we show that the elements LBW and L1,B
W are related:

Theorem (Theorem 4.4). For any Lyndon word W of length p > 2 the following
relation holds in H0(QX) = QH0(BX)

(2) LBW − L1,B
W = LBW (1).

The proof relies on the relation between the situation on P1 \ {0, 1,∞} and on A1

where the cohomology of N qf, •
A1 is given by constant cycle because of A1 homotopy

invariance of higher Chow groups. As a corollary one obtains a description of the
cobracket of LBW in terms of the structure coefficients of Ihara action by special
derivation. This makes explicit the relation between the dual of Ihara action (or
bracket) and Goncharov motivic coproduct which here, as in Brown [Bro12], is in
fact a coaction. In a group setting, Goncharov coproduct is really the action of GQ

on πmot1 (P1 \ {0, 1,∞}, x) induced by the short exact sequence (1).
We conclude the paper by showing at Theorem 4.8 that the family of elements

LBW induces a basis of Qgeom; that is a basis of QP1\{0,1,∞} relatively to QQ.
Our methods are structural and geometric by opposition to Gangl Goncharov

and Levin approach [GGL09] toward lifting cycles to bar elements using the com-
binatorics of “rooted polygons”.

The paper is organized as follow

• In the next section, Section 2, we begin by a short review of differential
graded (dg) vector spaces and formalism. Then we present the bar cobar
adjunction in the case of associative algebras and coalgebras and in the case
of commutative algebras and Lie coalgebras.

• In Section 3, we present the action of Lie(X0, X1) on itself by Ihara’s special
derivations and the corresponding Lie coalgebra. From there we recall the
result from [Sou12] constructing the cycles LεW . We conclude this section
by lifting the cycle to elements in the bar construction.

• In section 4.1, we prove that bar elements LBW and L1,B
W are equal up to

the constant (over P1 \ {0, 1,∞}) bar element LBW (1). From there we make
explicit the relation with Ihara’s coaction and prove that the elements LBW
provides a basis for Qgeom graded dual of the Lie algebra associated to
πmot1 (P1 \ {0, 1,∞}, x).

2. Bar and cobar adjunctions

In this section we recall how the bar/cobar constructions gives a pair of adjoint
functors in the two following cases:

B :

{
diff. gr. ass.

algebras

}

⇋

{
diff. gr. coass.

coalgebras

}

: Ω

and

Bcom :

{
diff. gr. com.
ass. algebras

}

⇋

{
diff. gr. coLie.

coalgebras

}

: ΩcoL.

As a differential graded commutative algebras A is also an associative algebra,
we will recall how the two constructions are related in this case.

The material developed here is well known and can be found in Ginzburg-
Kapranov [GK94] work even if their use of graded duals replaces coalgebra struc-
tures by algebra structures. The presentation used here is closer to the Kozul duality
as developed by Jones and Getzler in [GJ94]. We follow here the signs conventions
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and the formalism presented by Loday and Vallette in [LV12]. The associative case
is directly taken from [LV12, Chap. 2] in a cohomological version. More about the
commutative/coLie adjunction can be found in [GJ94, GK94, Mil12, SW11a].

2.1. Notation and convention.

2.1.1. Koszul sign rule. The objects are all object of the category of (sign) graded
Q-vector spaces. The degree of an homogeneous element v in V is denoted by |v|
or |v|V if we want to emphasis where v is. The symmetric structure is given by the
switching map

τ : V ⊗W −→W ⊗ V , τ(v ⊗ w) = (−1)|v||w|w ⊗ v.

For any maps f : V → V ′ and g :W →W ′ of graded spaces, the tensor product

f ⊗ g : V ⊗W −→ V ′ ⊗W ′

is defined by

(f ⊗ g)(v ⊗ w) = (−1)|g||v|f(v)⊗ g(w).

A differential graded (dg) vector space is a graded vector space equipped with a
differential dV (or simply d) ; that is a degree 1 linear map satisfying d2V = 0. For
V and W two dg vector spaces the differential on V ⊗W is defined by

dV⊗W = id V ⊗dW + dV ⊗ idW .

Definition 2.1. Let V = ⊕nV n and W = ⊕nWn be two graded vector spaces. A
morphism of degree r, say f : V −→ W , is a collection of morphisms fn : V n −→
Wn+r. Let Hom(V,W )r be the vector space of morphisms of degree r.

When V and W are dg vector spaces, the graded vector space Hom(V,W ) =
⊕Hom(V,W )r turns into a a dg vector space with differential given by :

dHom(f) = dW ◦ f − (−1)rf ◦ dV

for any homogeneous element f of degree r. A dg morphism f : V −→ W is a
morphism satisfying dHom(f) = 0.

The dual of a graded vector space V = ⊕nV n is defined by

V ∗ = ⊕nHomV ect(V
−n,Q) = Hom(V,N)

where the dg vector space N is defined by N = Q concentrated in degree 0 with 0
differential. One has an obvious notion of cohomology on dg vector space.

Definition 2.2 ((de)suspension). Let S = sQ be the 1 dimensional dg vector space
concentrated in degree 1 (that is dS = 0) generated by s.

The dual of S is a one dimensional dg vector space denoted by S−1 and generated
by a degree −1 element s−1 dual to s.

Let V, dV be a dg vector space. Its suspension (sV, dsV ), is the dg vector space
S ⊗ V . Its desuspension (s−1V, ds−1V ) is S−1 ⊗ V .

There is a canonical identification V n−1 ≃ (sV )n given by

is : V −→ sV v 7−→ (−1)|v|V s⊗ v;

under this identification dsV = −dV .
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2.1.2. Associative dg algebra. A differential graded associative algebra (A, dA) ab-
breviated into dga algebra is a dg vector space equipped with a unital associative
product µA of degree 0 commuting with the differential :

dA ◦ µA = µA ◦ dA⊗A

and satisfying the usual commutative diagrams for an associative algebra, all the
maps involved being maps of dg vector spaces.

This last equality is nothing but Leibniz rule. The unit 1A belongs to A0. On
elements, one writes a ·A b or simply a · b instead of µA(a⊗ b).

Definition 2.3. The dga A is connected if A0 = 1AQ.

Definition 2.4 (Tensor algebra). The tensor algebra over a dg vector space V is
defined by

T (V ) =
⊕

n>0

V ⊗n

and equipped with the differential induced on each V ⊗n by dV and with the con-
catenation product given by

[a1| · · · |an]⊗ [an+1| · · · an+m] 7−→ [a1| · · · |an|an+1| · · ·an+m]

where the “bar” notation [a1| · · · |an] stands for a1 ⊗ · · · ⊗ an in V ⊗n.

Note that the degree of [a1| · · · |an] is |a1|V + · · · |an|V and that T (V ) admits
a natural augmentation given by ε([a1| · · · |an]) = 0 for n > 0 and the convention
V ⊗0 = Q. The concatenation product is associative.

2.1.3. Commutative and anti commutative algebras. A commutative dga algebra
(A, dA, µA) or cdga algebra is a dga algebra such that the multiplication commutes
with the switching map:

A⊗A A⊗A

A

τ

µA µA

On homogeneous elements, this reads as

a · b = (−1)|a||b|b · a.

Let V be a dg vector space and n > 1 an integer. The symmetric group Sn
acts on V ⊗n in two natural ways : the symmetric action ρS and the antisymmetric
action ρΛ (both graded).

For i in {1, . . . n − 1}, let τi be the permutation exchanging i and i + 1. It is
enough to define both actions for the τi:

ρS(τi) = id ⊗ · · · id
︸ ︷︷ ︸

i−1 factors

⊗τ ⊗ id ⊗ · · · ⊗ id

and

ρΛ(τi) = id ⊗ · · · id
︸ ︷︷ ︸

i−1 factors

⊗(−τ)⊗ id ⊗ · · · ⊗ id .

where τ is the usual switching map. Both action involved signs. The graded
signature εgr(σ) ∈ {±1} of a permutation σ is defined by

ρS(σ)(v1 ⊗ · · · ⊗ vn) = εgr(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

Then, one has

ρΛ(σ)(v1 ⊗ · · · ⊗ vn) = ε(σ)εgr(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n)
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where ε(σ) is the usual signature. Let pS,n be the projector defined on V ⊗n by

pS,n =
1

n!

(
∑

σ∈Sn

ρS(σ)

)

.

Definition 2.5. The (graded) symmetric algebra Sgr(V ) over V is defined as the
quotient of T (V ) by the two side ideal generated by (id −τ)(a⊗ b).

One can write
Sgr(V ) =

⊕

n>0

Sgr,n(V )

where Sgr,n(V ) = V ⊙n is the quotient of V ⊗n by the symmetric action of Sn.

One also has the isomorphism Sgr,n(V ) = pS,n(V
⊗n). Sgr(V ) is the free com-

mutative algebra over V . We may write simply V ⊙ V for Sgr,2(V ).

Definition 2.6. The (graded) antisymmetric algebra Λgr(V ) V is defined as the
quotient of T (V ) by the two side ideal generated by (id +τ)(a⊗ b).

One can write
Λgr(V ) =

⊕

n>0

Λgr,n(V )

where Λgr,n(V ) = V ∧n is the quotient of V ⊗n by the antisymmetric action of Sn.
We may write V ∧ V for Λgr,2(V ).

As in the symmetric case, Λgr(V ) is also the image of V ⊗n by the projector
pΛ,n = 1/(n!)(

∑

σ ρΛ(σ)) and Λ(V ) is the free antisymmetric algebra over V .

2.1.4. Associative coalgebra. A differential graded associative coalgebra (C, dC) ab-
breviated into dga coalgebra is a dg vector space equipped with a counital associa-
tive coproduct ∆C of degree 0 commuting with the differential :

dC⊗C ◦∆C = ∆C ◦ dC

and satisfying the usual commutative diagrams for an associative coalgebra, all the
maps involved being maps of dg vector spaces.

The iterated coproduct ∆n : C −→ C⊗(n+1) is

∆n = (∆⊗ id ⊗ · · · ⊗ id )∆n−1 and ∆1 = ∆.

This definition is independent of the place of the ∆ factor (here in first position)
because of the associativity of the coproduct. We Will use Sweedler’s notation:

∆(x) =
∑

x(1) ⊗ x(2) , (∆⊗ id )∆(x) =
∑

x(1) ⊗ x(2) ⊗ x(3)

and
∆n(x) =

∑

x(1) ⊗ · · · ⊗ x(n+1).

A coaugmentation on C is a morphism of dga coalgebra u : Q → C. In this case,
C is canonically isomorphic to ker(ε)⊕Qu(1). Let C̄ = ker(ε) be the kernel of the
counit.

When C is coaugmented, the reduced coproduct is ∆̄ = ∆ − 1 ⊗ id − id ⊗1. It
is associative and there is an iterated reduced coproduct ∆̄n for which we also use
Sweedler’s notation.

Definition 2.7. C is conilpotent when it is coaugmented and when, for any x in
C, one has ∆̄n(x) vanishes for n large enough.

A cofree associative dga coalgebra over the dg vector space is by definition
a conilpotent dga coalgebra F c(V ) equipped with a linear map of degree 0 p :
F c(V ) −→ V commuting with the differential such that p(1) = 0. It factors any
morphism of dg vector space φ : C −→ V where C is a conilpotent dga coalgebra
with φ(1) = 0.
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Definition 2.8 (Tensor coalgebra). The tensor coalgebra over V is defined by

T c(V ) =
⊕

n>0

V ⊗n

and equipped with the differential induced on each V ⊗n by dV and with the decon-
catenation coproduct given by

[a1| · · · |an] 7−→
n+1∑

i=0

[a1| · · · |ai]⊗ [ai+1| · · ·an].

The deconcatenation coproduct is associative. The natural projection πV :
T c(V ) −→ Q = V ⊗0 onto the tensor degree 0 part is a counit for T c(V ) while
the inclusion Q = V ⊗0 −→ T c(V ) gives the coaugmentation. The tensor coalgebra
T c(V ) is the cofree counital dga coalgebra over V .

2.1.5. dg Lie algebra. We review here the definition of Lie algebra and Lie coalgebra
in the dg formalism. For any dg vector space V , let ξ be the cyclic permutation of
V ⊗ V ⊗ V defined by

ξ = (id ⊗τ)(τ ⊗ id ).

It corresponds to the cycle sending 1 to 3, 3 to 2 and 2 to 1.

Definition 2.9. A dg Lie algebra L is a dg vector space equipped with a degree 0
map of dg vector spaces c : L⊗ L −→ L (c stands for “crochet”) satisfying

c ◦ τ = −c and c ◦ (c⊗ id ) ◦ (id +ξ + ξ2) = 0.

On elements, we will use a bracket notation [x, y] instead of c(x⊗ y).

In the above definition, the first relation is the usual antisymmetry of the bracket
which gives in the dg context:

[x, y] = (−1)|x||y|[y, x].

The second relation is the Jacobi relation:

[[x, y], z] + (−1)|x|(|y|+|z|)[[y, z], x] + (−1)|z|(|y|+|x|)[[z, x], y] = 0.

One remarks that (c ⊗ id ) ◦ ξ = τ ◦ (id ⊗c) and that (c ⊗ id ) ◦ ξ2 = ((c ◦ τ) ⊗
id )◦ (id ⊗τ). Using this and the antisymmetry relation, one can rewrite the Jacobi
relation as a Leibniz relation:

c ◦ (c⊗ id ) = c ◦ (id ⊗c) + c ◦ (c⊗ id ) ◦ (id ⊗τ).

The definition of a dg Lie coalgebra is dual to the definition of a Lie algebra.

Definition 2.10. A dg Lie coalgebra Lc is a dg vector space equipped with a
degree 0 map of dg vector spaces δ : Lc −→ Lc ⊗ Lc satisfying

τ ◦ δ = −δ and (id +ξ + ξ2) ◦ (δ ⊗ id ) ◦ δ = 0

The first condition shows that δ induces a map (again denoted by δ)

δ : Lc −→ Lc ∧ Lc.

Let τ12 : Lc⊗3 −→ Lc⊗3 be the permutation exchanging the two first factors. The
second condition show that the following diagram is commutative

Lc ⊗ Lc Lc ⊗ Lc ⊗ Lc

Lc

Λgr,2(Lc) Λgr,3(Lc)

δ

δ

δ ⊗ id − id ⊗δ

δ ∧ id − id ∧δ

1/6(id −τ12)(id +ξ + ξ2)
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and that the composition going through the bottom line is 0.

2.2. Bar/cobar adjunction: associative case.

2.2.1. Bar construction. In this subsection, we recall briefly the bar/cobar con-
struction and how they give a pair of adjoint functor in the associative case.

B :

{
diff. gr. ass.

algebras

}

⇋

{
diff. gr. coass.

coalgebras

}

: Ω.

Let (A, dA, µA, εA) be an augmented dga algebra and Ā = ker(εA) its augmen-
tation ideal. The bar construction of A is obtained by twisting the differential of
the dga free coalgebra T c(s−1Ā).

The differential dA makes Ā and thus s−1Ā into a dg vector vector space. Let
D1 denote the induced differential on T c(s−1Ā) which in tensor degree n is:

n∑

i=1

id i−1 ⊗ds−1Ā ⊗ id n−i .

S−1 = s−1Q admits an associative product-like map of degree +1 defined by:

Πs : s
−1Q⊗ s−1Q −→ s−1Q Πs(s

−1 ⊗ s−1) = s−1.

The map Πs and the restriction µĀ of the multiplication µA to Ā induce the fol-
lowing map:

f : s−1Q⊗ Ā⊗ s−1Q⊗ Ā
id ⊗τ⊗id
−−−−−−→ s−1Q⊗ s−1Q⊗ Ā⊗ Ā

Πs⊗µĀ−−−−−→ s−1Q ⊗ Ā.

This map induces a degree 1 map D2 : T c(s−1Ā) −→ T c(s−1Ā) which satisfies
D2

2 = 0 because of the associativity of µA
One check that the degree 1 morphisms D1 and D2 commute (in the graded

sense):

D1 ◦D2 +D2 ◦D1 = 0

The coproduct on T c(s−1Ā) is given by the deconcatenation coproduct. From
these definitions, one obtains (see [LV12][Section 2.2.1]) the following.

Lemma 2.11. The complex B(A) = (T c(s−1Ā), dB) with dB = D1 + D2 and
endowed with the deconcatenation coproduct ∆ is a conilpotent dga coalgebra.

We recall below the explicit formulas related to the bar construction B(A):

• An homogeneous element a of tensor degree n is denoted by

[s−1a1| · · · |s
−1an]

or when the context is clear enough not to forget the shifting simply by
[a1| · · · |an]. Its degree is given by:

degB(a) =

n∑

i=1

degs−1Ā(s
−1ai) =

n∑

i=1

(degA(ai)− 1)

• the coproduct is given by:

∆(a) =

n∑

i=1

[s−1a1| · · · |s
−1ai]⊗ [s−1ai+1| · · · |s

−1an].

• Let ηa(i) or simply η(i) denote the “partial degree” of a:

ηa(i) =

i∑

k=1

degs−1Ā(s
−1ak) =

i∑

k=1

(degA(ak)− 1).
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• The differential D1 and D2 are explicitly given by the formulas:

D1(a) = −
n∑

i=1

(−1)η(i−1)[s−1a1| · · · |s
−1dA(ai)| · · · |s

−1an]

and

D2(a) = −
n∑

i=1

(−1)η(i)[s−1a1| · · · |s
−1µA(ai, ai+1)| · · · |s

−1an].

The global minus sign in D1 appears because the differential of the dg
vector space s−1Ā is given by ds−1Ā(s

−1a) = −s−1dA(a). The other signs
are due to the Kozul sign rules taking care of the shifting.

Remark 2.12. This construction can be seen as a simplicial total complex associated
to the complex A (as in [BK94]). Here, the augmentation makes it possible to use
directly Ā without referring to the tensor coalgebra over A and without the need
of killing the degeneracies. However the simplicial presentation usually masks the
need of working with the shifted complex; in particular for sign issues.

The bar construction B(A) also admits a product x which shuffles the tensor
factors. However, this extra structure becomes more interesting when A is graded
commutative and we will present it in the next section.

The bar construction is a quasi-isomorphism invariant as shown in [LV12] (Propo-
sition 2.2.4) and the construction provides a functor:

B : {aug. dga algebra} −→ {coaug. dga coalgebra} .

2.2.2. Cobar construction. Analogously, one constructs the cobar functor. Let
(C, dC ,∆C , εC) be a coaugmented dga coalgebra decomposed as C = C̄ ⊕Q. Con-
sider T (sC̄) the free algebra over sC̄ (with concatenation product). The differential
on C induces a differential d1 on T (sC̄). S = sQ comes with a coproduct-like degree
1 map dual to Πs:

∆s : sQ −→ sQ⊗ sQ , ∆s(s) = −s⊗ s.

The map ∆s and the restriction of the reduced coproduct ∆̄c to C̄ induce the
following map:

g : sC̄
∆s⊗∆̄C−−−−−→ sQ⊗ sQ⊗ C̄ ⊗ C̄

id ⊗τ⊗id
−−−−−−→ sQ⊗ C̄ ⊗ sQ⊗ C̄.

It induces a degree 1 map d2 on T (sC̄) satisfying d22 = 0 because of the coassocia-
tivity of ∆c. The two degree 1 maps d1 and d2 commute (in the graded sense):

d1 ◦ d2 + d2 ◦ d1 = 0.

Lemma 2.13. The complex Ω(C) = (T (sC̄), dΩ) with dω = d1 + d2 and endowed
with the concatenation product is an augmented dga algebra called the cobar con-
struction of C.

Note that the cobar construction is not in general a quasi-isomorphisms invariant.
The reader may look at [LV12, Section 2.4] for more details.

2.2.3. Adjunction. The two functors bar and cobar induces an adjunction described
as follows:

Theorem 2.14 ([LV12, Theorem 2.2.9 and Corollary 2.3.4]). For every augmented
dga algebra A and every conilpotent dga coalgebra C there exist natural bijections

Homdga alg(Ω(C), A) ≃ Tw(C,A) ≃ Homdga coalg(C,B(A)).

The unit υ : C −→ B ◦ Ω(C) and the counit ǫ : Ω ◦ B(A) −→ A are quasi-
isomorphisms of dga coalgebras and algebras respectively.
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2.3. Bar/cobar adjunction: commutative algebras/Lie Coalgebras. In this
section we recall the bar/cobar adjunction in the commutative/coLie case giving a
pair of functors:

Bcom :

{
diff. gr. com.
ass. algebras

}

⇋

{
diff. gr. coLie.

coalgebras

}

: ΩcoL.

The cobar construction in the coLie case is a little more delicate. We will concen-
trate on this construction. The bar construction in the commutative case, will be
presented as the set of indecomposable elements of the associative bar construction.
A direct construction can be found in [SW11a]. Other descriptions were given in
[GJ94, GK94].

2.3.1. Cobar construction for Lie coalgebras. The construction follows follows the
lines of the commutative dga coalgebra case. However the lack of associativity and
the use of the symmetric algebra need to be taken into account.

First we need a notion of conilpotency for a Lie coalgebra (Lc, δ, d). As δ is
not associative, one can not directly use an iterated coproduct. One introduces
trivalent trees controlling this lack of associativity.

A rooted trivalent tree, or simply a tree, is a planar tree (at each internal vertex a
cyclic ordering of the incident edges is given) where vertices have valency 1 (external
vertices) or 3 (internal vertices) together with a distinguished external vertex (the
root); other external vertices are called leaves. The leaves are numbered from left
to right begin at 1. The trees are drawn with the root (with number 0) at the top.

Let (Lc, δ, d) be a dg Lie coalgebra. Recall that δ is a dg morphism δ : Lc −→
Lc ⊗ Lc.

Definition 2.15. Let T be a tree with n as above and let {e1, . . . , en} be the set
of its leaves (ei is the i-th leaf). T induces a morphism

δT : Lc −→ Lc⊗n

as follows:

• if T has n = 1 leaf, δT = id Lc ;

• if T has n = 2 leaves, then T =

e1 e2

and δT = δ;

• if T has n > 3 leaves, then there exists at least one leaf ei in a strict subtree
of the form

T0 =

v

ei ei+1

where v is an internal vertex of T . Let T ′ be the tree T \ T0, where the
internal vertex v of T is the i-th leaf (in T ′). The morphism δT is defined
by

δT = (id⊗(i−1) ⊗δ ⊗ id⊗(n−i)) ◦ δT ′ .

This definition does not depend on the choice of the subtree T0. By analogy with
the associative case, we define.

Definition 2.16. A Lie coalgebra (Lc, δ, d) is conilpotent if for any x ∈ Lc there
exist n big enough such that for any tree T with k leaves, k > n, δT (x) = 0.

We now fix a conilpotent dg Lie coalgebra (Lc, δ, dLc). Its cobar construction is
given by twisting the differential of the free commutative dga Sgr(sLc).



12 ISMAEL SOUDÈRES

The differential dLc induces a differential dsLc on sLc and thus on (sLc)⊗n given
by

n∑

i=1

id⊗(i−1) ⊗ dsLc ⊗ id⊗(n−i) : (sLc)⊗n −→ (sLc)⊗n.

This differential goes down to a differential on n-th symmetric power of sLc:

D1 : Sgr,n(sLc) −→ Sgr,n(sLc).

Using the map ∆s and the cobracket δLc , one has a morphism:

gL : sLc
∆s⊗Lc

−−−−−→ sQ⊗ sQ⊗ Lc ⊗ Lc
id ⊗τ⊗id
−−−−−−→ sQ⊗ Lc ⊗ sQ⊗ Lc.

which induces a degree 1 map δs : sLc −→ S2,gr(sLc) because of the relation
τ ◦ δ = −δ and the sift in the degree.

The relation (id +ξ+ ξ2)◦ (δ⊗ id )◦ δ = 0, combined with the shift in the degree
and ∆s, shows that gL induce a differential D2 on Sgr(sLc) given by the formula:

D2|Sgr,n(sLc) =

n∑

i=1

id⊗(i−1) ⊗gL ⊗ id⊗(n−i) .

This is the classical duality between Jacobi identity and D2 = 0 for a classical Lie
coalgebra (that is with a dg structure concentrated in degree 0).

The differential D1 and D2 commute (in the graded sens), that is

D1 ◦D2 +D2 ◦D1 = 0

and one obtains the following.

Lemma 2.17. The complex ΩcoL(L
c) = (Sgr(sLc), dΩ,coL) with the symmetric

concatenation product is an augmented commutative dga algebra called the cobar-
coLie construction of Lc.

2.3.2. Bar construction for commutative dga algebras. Let (A, dA, µA, εA) be an
augmented commutative dga algebra and Ā = ker(εA). One can consider its bar
construction B(A) as associative algebra. One defines on the coalgebra B(A) an
associative product x by the formula

[x1| · · · |xn]x [xn+1| · · · |xn+m] =
∑

σ∈sh(n,m)

ρS(σ)([x1| · · · |xn|xn+1| · · · |xn+m])

=
∑

σ∈sh(n,m)

εgr(σ)([xσ−1(1)| · · · |xσ−1(n+m)])

where sh(n,m) denotes the subset Sn+m preserving the order of the ordered sets
{1, . . . , n} and {n+ 1, . . . , n+m}. For grading reasons, and thus for signs issues,
it is important to note that, in the above formula, the xi’s are elements of s−1A.

A direct computation shows that x turns B(A) into an augmented commutative
dga Hopf algebra; that is it respects the expected diagrams for a Hopf algebra, all
the morphisms involved being dg-morphisms.

The augmentation of B(A) is the projection onto the tensor degree 0 part. Let

B(A) be the kernel of the augmentation of B(A) and

QB(A) = B(A)/((B(A))
2

be the set of its indecomposable elements. Ree’s theorem [LV12, Theorem 1.3.9]
(originally in [Ree58]) shows the following

Lemma 2.18. The differential dB induces a differential dQ on QB(A). The reduced
coproduct ∆′ induces a cobracket δQ = 1/2(∆̄ − τ∆̄) on QB(A) making it into a
conilpotent Lie dg coalgebra.
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The complex (QB(A), dQ) endowed with the cobracket δQ is the commutative bar
construction of A and denoted Bcom(A).

Working with the indecomposable elements as a quotient may be complicated.
In particular, some structure, say for example extra filtrations, may not behave
well by taking a quotient. For this purpose, R. Hain, dealing with Hodge structure
problems, gave in [Hai86] a splitting

iQ : QB(A) −→ B(A)

of the projection pQ : B(A) −→ QB(A) commuting with the differential. The

projector of B(A) given by the composition px = iQ ◦ pQ can be express using the
following explicit formula given in [Hai86]:

px([a1| · · · |an]) =
n∑

i=1

(−1)i−1

i
x ◦(∆̄)i−1([a1| · · · |an])

where the associative product x has been extend to B(A)⊗n for all n > 2 and
where ∆̄(0) = id .

2.3.3. Adjunction. As in the case of associative algebras and coalgebras, the func-
tors ΩcoL and Bcom are adjoint.

Theorem 2.19. For any augmented commutative dga algebra A and any conilpo-
tent dg Lie coalgebra Lc there exist natural bijections

Homcom dga alg(ΩcoL(L
c), A) ≃ Homconil dg coLie(L

c, Bcom(A)).

The unit υ : Lc −→ Bcom ◦ΩcoL(Lc) and the counit ǫ : ΩcoL ◦Bcom(A) −→ A are
quasi-isomorphisms of conilpotent dg co Lie algebras and commutative dga algebras
respectively.

Note that the following diagram of dg vector spaces is commutative:

Lc ΩcoL(Lc) = (Sgr(sLc), dΩ,coL)

Bcom(ΩcoL(Lc)) = QB (Sgr(sLc), dΩ,coL)

υ π1

where π1 is the projection onto the tensor degree 1 part restricted to the set of
indecomposable elements; that is restricted to the image of px .

2.4. An explicit map. We present here an explicit description for the unit υ :
Lc −→ Bcom ◦ ΩcoL(L

c) with image in T c(Sgr(sLc)) using the projector px onto
the indecomposable elements.

Definition 2.20. Let n be a positive integer.

• The Catalan number C(n − 1) gives the number of rooted trivalent trees
with n leaves.

• Let T be such a rooted trivalent tree with n leaves. Define δ̃T by

δ̃T =
1

2n
δT

where the map δT : Lc −→ Lc⊗n was introduced at Definition 2.15.
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• The morphism δ̃n is up to a normalizing coefficient the sums for all trees T
with n leaves of the morphism ∆̃T :

∆̃n =
∑

T

1

nC(n− 1)
∆̃T .

where the sums runs through all trivalent tree with |T | = n leaves.

Note that using the identification Lc ≃ s−1 ⊗ s⊗ Lc given by x 7→ s−1 ⊗ s⊗ x,
the morphism ∆̃n induces a morphism

Lc −→
(
s−1 ⊗ s⊗ Lc

)⊗n

again denoted by ∆̃n.

Claim. The composition

φLc = px ◦




∑

n>1

∆̃n





gives a morphism

φLc : Lc −→ Bcom ◦ ΩcoL(L
c) = QB (Sgr(sLc))

which is equal to the unit of the adjunction:

φLc = υ.

In the above identification ΩcoL(Lc) = QB (Sgr(sLc)), the differential on (Sgr(sLc))
is the bar differential dΩ,coL).

The idea for this formula comes from mimicking the associative case where the
unit morphism being a coalgebra morphisms has to be compatible with the iterated
reduced coproduct.This formula can be derived as a consequence of the work of
Getzler and Jones [GJ94] or of the work of Sinha and Walter [SW11b].

3. Families of bar elements

In [Sou12], the author defined a family of algebraic cycles LεW indexed by couple
(W, ε) where W is a Lyndon word and ε is in {0, 1}. Note that, all words considered
in this work are words in the two letters 0 and 1.

One of the idea underling the construction of the cycles was to follow explicitly
a 1-minimal model construction described in [DGMS75] with the hope to use the
relation between 1-minimal model and bar construction in order to obtain motives
over P1 \ {0, 1,∞} in the sense of Bloch and Kriz [BK94].

The construction of the family of cycles provides in fact a differential system for
these cycles related to the action of the free Lie algebra Lie(X0, X1) on itself by
Ihara’s special derivations. In this subsection we will associated bar elements to
the previously defined algebraic cycles using the unit of the bar/cobar adjunction
in the commutative algebra/Lie coalgebra case.

Before dealing with the algebraic cycles situations, we need to recall the combi-
natorial situation from [Sou12] and its relation with Ihara action. This is need to
the related the Lie coalgebra situation (dual to Ihara action) with the differential
system for algebraic cycles.
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3.1. Lie algebra, special derivations and Lyndon words. We present here
the Lyndon brackets basis for the free Lie algebra Lie(X0, X1) and its action on
itself by special derivations. The Lie bracket of Lie(X0, X1) is denoted by [ , ] as
usual.

A Lyndon word in 0 and 1 is a word in 0 and 1 strictly smaller than any of
its nonempty proper right factors for the lexicographic order with 0 < 1 (for more
details, see [Reu93]).

The standard factorization [W ] of a Lyndon word W is defined inductively by
[0] = X0, [1] = X1 and otherwise by [W ] = [[U ], [V ]] with W = UV , U and V
nontrivial and such that V is minimal.

Example 3.1. Lyndon words in letters 0 < 1 in lexicographic order are up to
weight 4:

0 < 0001 < 001 < 0011 < 01 < 011 < 0111 < 1

Their standard factorization is given in weight 1 2 and 3 by

[0] = X0, [1] = X1, [01] = [X0, X1], [001] = [X0, [X0, X1]]and[[X0, X1], X1].

In weight 4, one has

[0001] = [X0, [X0, [X0, X1]]], and [0111] = [[[X0, X1], X1], X1]

and
[0011] = [X0, [[X0, X1], X1]]

The sets of Lyndon brackets {[W ]}, that is Lyndon words in standard factoriza-
tion, form a basis of Lie(X0, X1) ([Reu93, Theorem 5.1]). This basis can then be
used to write the Lie bracket:

Definition 3.2. For any Lyndon word W , the coefficients αWU,V (with U < V

Lyndon words) are defined by:

[[U ], [V ]] =
∑

W Lyndon
words

αWU,V [W ].

with U < V Lyndon words. The α’s are the structure coefficients of Lie(X0, X1).

A derivation of Lie(X0, X1) is a linear endomorphism satisfying

D([f, g]) = [D(f), g] + [f,D(g)] ∀f, g ∈ Lie(X0, X1).

Definition 3.3 (Special derivation, [Iha90, Iha92]). For any f in Lie(X0, X1) we
define a derivation Df by:

Df (X0) = 0, Df(X1) = [X1, f ].

Ihara bracket on Lie(X0, X1) is given by

{f, g} = [f, g] +Df (g)−Dg(f).

Ihara bracket is simply the bracket of derivation

[D1, D2]Der = D1 ◦D2 −D2 ◦D1

restricted to special derivations :

[Df , Dg]Der = Dh, with h = {f, g}.

Let L1 and Lx be two copies of the vector space Lie(X0, X1). The subscript x
denotes a formal variable but it can be think as a point x in A1. Lx is endowed
with the free bracket [ , ] of Lie[X0, X1] while L1 is endowed with Ihara bracket
{ , }. The Lie algebra L1 acts on Lx by special derivations ; which act on X1 hence
the subscript. If f is an element of Lie(X0, X1), we write f(1) its image in L1 and
f(x) its image in Lx.
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Definition 3.4 ([GOV97]). The semi-direct sum L1;x of Lx by L1 is as a vector
spaces the direct sum

L1;x = Lx ⊕ L1

with bracket { , }1;x given by [ , ] on Lx, by { , } on L1 and by

{g(1), f(x)}1;x = −{f(x), g(1)}1;x = Dg(f)(x) ∀f, g ∈ Lie(X0, X1)

on cross-terms.

The union of {[W ](x), [W ](1)} for all Lyndon words gives a basis of L1;x while
a basis of L1;x ∧ L1;x is given by the union of the following families

[U ](x) ∧ [V ](x) for any Lyndon word U < V

[U ](x) ∧ [V ](1) for any Lyndon word U 6= V

[U ](1) ∧ [V ](1) for any Lyndon word U < V.

Definition 3.5. The structure coefficients αWU,V , βWU,V and γWU,V of L1;x are given
for any Lyndon words W by the family of relations

(3)

{[U ](x), [V ](x)}1;x =
∑

W∈Lyn

αWU,V [W ](x). for any Lyndon word U < V

{[U ](x), [V ](1)}1;x =
∑

W∈Lyn

βWU,V [W ](x) for any Lyndon word U 6= V

{[U ](1), [V ](1)}1;x =
∑

W∈Lyn

γWU,V [W ](1) for any Lyndon word U < V.

All coefficients above are integers.

Because { , }1;x restricted to Lx is the usual cobracket on Lie(X0, X1), the αWU,V
are the α’s of Definition 3.2 ; Similarly the γ’s are the structure coefficients of Ihara
bracket.

Special derivations acts on X1 and DX0
is simply bracketing with X0. This and

the above remark show:

Lemma 3.6 ([Sou12, Lemma 4.18]). Let W be a Lyndon word of length greater
than or equal to 2. Then the following holds for any Lyndon words U, V :

• βW0,V = 0,

• βWV,0 = αW0,V
• βU,1 = 0,
• βW1,U = αWU,1.

• γWU,V = αWU,V + βWU,V − βWV,U .

In particular, βW0,0 = βW1,1 = 0. We also have

αεU,V = βεU,V = γεU,V = 0

for ε ∈ {0, 1}.

3.2. The dual setting : a coaction and a Lie coalgebra. The Lie algebra
Lie(X0, X1) is graded by the number of letters appearing inside a bracket. Hence
there is an induced grading on L1;x. Taking the graded dual of the L1;x, we obtain
a Lie coalgebra T coL

1;x .

Definition 3.7. The elements of the dual basis of the Lyndon bracket basis [W ](x)
of Lx are denoted by TW∗(x). Similarly, TW∗(1) denotes, for a Lyndon Word W
the corresponding element in the basis dual to the basis of L1 given by the [W ](1)’s.
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For a in {1, x}, the elements TW∗(a) can be represented by a linear combination
of rooted trivalent tree with leaves decorated by 0 and 1 and root decorated by a
(cf. [Sou12, Section 4.3]). This remark explains the notation which is the same as
in [Sou12].

A basis of T coL
1;x ∧ T coL

1;x is given by the union of the following families:

TU∗(x) ∧ TV ∗(x) for any Lyndon word U < V

TU∗(x) ∧ TV ∗(1) for any Lyndon word U 6= V

TU∗(1) ∧ TV ∗(1) for any Lyndon word U < V.

By duality between L1;x and T coL
1;x one has the following:

Proposition 3.8. The bracket {, }1;x on L1,x induces a cobracket on T coL
1;x

dcy : T coL
1;x −→ T coL

1;x ∧ T coL
1;x .

In terms of the above basis one gets

(ED-T) dcy(TW∗(x)) =
∑

U<V

αWU,V TU∗(x) ∧ TV ∗(x) +
∑

U,V

βWU,V TU∗(x) ∧ TV ∗(1)

and

(4) dcy(TW∗(1)) =
∑

U<V

γWU,V TU∗(1) ∧ TV ∗(1)

where U and V are Lyndon words. The coefficients αWU,V , βWU,V and γWU,V are those

defined in Equation (3).

Note that one has

dcy(T0∗(x)) = dcy(T0∗(1)) = 0 and dcy(T1∗(x)) = dcy(T1∗(1)) = 0.

In weight 2 one has

dcy(T01(x)) = T0∗(x) ∧ T1∗(x) + T1∗(x) ∧ T0∗(1).

Because of geometric constraints, one can not use directly the combinatorics of
the cobracket dcy in this basis to defined a family of algebraic cycle over P1 \ {0, 1,∞}.
One defines for any Lyndon word W

T 0
W∗ = TW∗(x) and T 1

W∗ = TW∗(x)− TW∗(1).

The definition of T 0
W∗ can be thought as the difference T 0

W∗ = TW∗(x) − TW∗(0)
where the element TW∗(0) is equal to 0. The elements T 0

W∗ and T 1
W∗ form a basis

of T coL
1;x when W runs through the set of Lyndon words.

Lemma 3.9 ([Sou12, Lemma 4.32]). In this basis the cobracket dcy is given by

(ED-T 0) dcy(T
0
W∗) =

∑

U<V

aWU,V T
0
U∗ ∧ T 0

V ∗ +
∑

U,V

bWU,V T
1
U∗ ∧ T 0

V ∗ ,

and

(ED-T 1) dcy(T
1
W∗) =

∑

U<V

a′
W
U,V T

1
U∗ ∧ T 1

V ∗ +
∑

U,V

b′
W
U,V T

1
U∗ ∧ T 0

V ∗

where the coefficients a’s, b’s a′’s and b′’s are given by

(5)
aWU,V = αWU,V + βWU,V − βWV,U for U < V

bWU,V = βWV,U for any U, V
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and

(6)

a′WU,V = −aWU,V for U < V,

b′
W
U,V = aWU,V + bWU,V for U < V,

b′
W
V,U = −aWU,V + bWV,U for U < V,

b′
W
U,U = bWU,U for any U.

From the explicit description of the coaction, Lemma 3.6 gives explicitly some
of the coefficients α’s and β’s. This translates as

Lemma 3.10 ([Sou12, Lemma 4.33]).
• If W is the Lyndon word 0 or 1, then :

a0U,V = b0U,V = a′
0
U,V = b′

0
U,V = 0, a1U,V = b1U,V = a′

1
U,V = b′

1
U,V = 0

for any Lyndon words U and V .
• For any Lyndon word W , U and V of length at least 2, one has

aW0,V = a′
W
0,V = 0, b′

W
U,0 = b′

W
U,0 = 0

and

aWU,1 = a′
W
U,1 = 0, bW1,V = b′

W
1,V = 0.

Moreover for W a Lyndon word,

aWU,V = bWU,V = a′
W
U,V = b′

W
U,V = 0

as soon as the length of U plus the length of V is not equal to the length of W .
From the definition of aWU,V and Lemma 3.6 one sees that aWU,V = γWU,V . This and

Equations (ED-T 0) and (ED-T 1) shows that

dcy(TW∗(1)) = dcy(T
0
W∗ − T 1

W∗) =
∑

U<V

aWU,V (T
0
U∗ − T 1

U∗) ∧ (T 0
V ∗ − T 1

V ∗)(7)

=
∑

U<V

aWU,V (T
0
U∗(1)) ∧ (T 0

V ∗(1))(8)

3.3. A differential system for cycles. In this subsection we review the cubical
complex of quasi-finite cycles over X computing higher Chow groups of X . This
complex has a natural cdga structure. M. Levine, in [Lev11], proved that the H0 of
its bar construction is the tannakian Hopf algebra of mixed Tate motive over X .

The ground field is Spec(Q). The projective line minus three points P1 \ {0, 1,∞}
will be simply denoted by X . A generic smooth quasi-projective variety will be
denoted by Y .

We define �1 to be �1 = P1 \ {1} and �n to be (�1)n. The standard projective
coordinates on �n is [Ui : Vi] on the i-th factor; and ui = Ui/Vi is the corresponding
affine coordinate. A face F of codimension p of �n is given by uik = εk for
k = 1, . . . , p and εk in {0,∞}. Such a face is isomorphic to �n−p. For ε = 0,∞
and i in {1, . . . , n}, let sεi denote the insertion morphism of a codimension 1 face

sεi : �
n−1 −→ �n

given by the identification

�n−1 ≃ �i−1 × {ε} ×�n−i.

Definition 3.11 ([Lev11, Example 4.1.6]). Let Y be an irreducible smooth variety.
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• Let Zp
q.f.(Y, n) denote the free abelian group generated by irreducible closed

subvarieties
Z ⊂ Y ×�n × (P1 \ {1})p

such that the restriction of the projection on Y ×�n,

p1 : Z −→ Y ×�
n,

is dominant and quasi finite (that is of pure relative dimension 0).
• We say that elements of Zp

q.f.(Y, n) are quasi-finite.

Intersection with codimension 1 faces give morphisms

∂εi = (sεi )
∗
: Zp

q.f.(Y, n) −→ Zp
q.f.(Y, n− 1)

The symmetric group Sp acts on Zp
q.f.(Y, n) by permutation of the factors of

(P1 \ {1})p. Let Symp
P1\{1} denotes the projector corresponding to the symmetric

representation.
The symmetric group Sn acts on Zp

q.f.(Y, n) by permutation of the factor �1,

and (Z/2Z)n acts on Zp
q.f.(Y, n) by ui 7→ 1/ui on the �1. The sign representation

of Sn extends to a sign representation

Gn = (Z/2Z)n ⋊Sn −→ {1,−1}.

Let Altn ∈ Q[Gn] be the corresponding projector.

Definition 3.12. Let N qf, k
Y (p) denote

N qf, k
Y (p) = Symp

P1\{1} ◦Alt2p−k
(

Zp
q.f.(Y, 2p− k)⊗Q

)

.

• The intersection with codimension 1 faces of �2p−k induces a differential

∂Y =

2p−k
∑

i=1

(−1)i−1(∂0i − ∂∞i )

of degree 1.
• The complex of quasi finite cycles is defined by

N qf, •
Y = Q⊕

⊕

p>1

N qf, •
Y (p).

• Concatenation of factors �n and of factors P1 \ {1} followed by the pull-

back by the diagonal gives a product structure to N qf, •
X . This product is

graded commutative and N qf, •
X is a cdga ([Lev11, Section 4.2]).

Thanks to [VSF00, Chapter IV and VI], the cohomology of N qf, •
X agrees with

higher Chow groups of Y tensored with Q (one can also see [Lev11, Lemma 4.2.1]).

In [Sou12], the author defined two weight 1 degree 1 cycles L0
1 and L1

0 in N qf, 1
X

as the image under Sym1
P1\{1} ◦Alt1 of the irreducible varieties defined respectively

by:

Z0 ⊂ X ×�1 × (P1 \ {1}) : (U − V )(A −B)(U − xV ) + x(1− x)UV B = 0

and
Z1 : (U − V )(A−B)(U − (1− x)V ) + x(1− x)UV B = 0.

Starting with these two cycles, the author built in [Sou12] two families of degree

1 elements in N qf, •
X whose differential are given by the cobracket in T coL

1;x .

Let j be the inclusion P1 \ {0, 1,∞} = X →֒ A1. The differential on N qf, •
X is

simply denoted by ∂.

Theorem 3.13 ([Sou12]). For any Lyndon word of length p > 2, there exist two

cycles L0
W and L1

W in N qf, 1
X (p) such that:
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• There exist cycles L0
W , L1

W in N qf, 1
A1 (p) such that

L0
W = j∗(L0

W ) and L1
W = j∗(L1

W ).

• The restriction of L0
W (resp. L1) to the fiber t = 0 (resp. t = 1) is empty.

• The cycle L0
W and L1

W satisfy the following differential equations in N qf, •
X :

(ED-L0) ∂(L0
W ) = −




∑

U<V

aWU,V L
0
UL

0
V +

∑

U,V

bWU,V L
1
UL

0
V





and

(ED-L1) ∂(L1
W ) = −




∑

U<V

a′
W
U,V L

1
UL

1
V +

∑

U,V

b′
W
U,V L

1
UL

0
V





where coefficients a’s, b’s, a′’s and b′’s are the ones of equations (ED-T 0) and
(ED-T 0).

One will write generically a cycle in the above families as LεW with ε in {0, 1}
when working over X = P1 \ {0, 1,∞} and LεW when working over A1.

The above equations differ from the cobracket in T coL
1;x given at equations (ED-T 0)

and (ED-T 1) by a global minus sign. This is due to a shift in the degree. Hence
the above cycles LεW differ from the ones defined in [Sou12] by a global minus sign.

Remark 3.14. The extension LεW of the cycles to N qf, •
A1 satisfy the same differential

equations as LεW by considering the Zariski closure of the product in the R.H.S. of
(ED-L0) and (ED-L1). However, this Zariski closure is not decomposable: terms

of the form L1
0L

0
V are not product in N qf, •

A1 because L1
0 is not in N qf, 1

A1 ; it is not
quasi-finite over 0 (cf proof of Proposition 6.3 in [Sou12]).

Despite the above remark, Theorem 3.13 and the proof of Theorem 5.8 in [Sou12]

give two other but related families of cycles with decomposable boundary in N qf, 1
A1 .

Their are described below.
Let W be a Lyndon word of length greater than 2. We define L0−1

W to be the
difference

L0−1
W = L0

W − L1
W .

The geometric situation relates P1 \ {0, 1,∞}, A1 and the point {1} as follows:

X = P1 \ {0, 1,∞} A1

{1}

j

p1 i1

where j is the open inclusion, p1 is the projection onto {1} and i1 the closed

inclusion (or the 1-section). We define the constant cycle L0
W (1) as

L0
W (1) = p∗1 ◦ i

∗
1(L

0
W ) = p∗1(L

0
W |x=1)

where L0
W |x=1 denotes the fiber at 1 of the cycle L0

W . Its restriction to X is denote
by L0

W (1).

Lemma 3.15. For any Lyndon word of length p > 2 the cycle L0−1
W satisfies

(ED-L0−1) ∂
(

L0
W − L1

W

)

= −

(
∑

0<U<V <1

aWU,V

(

L0
U − L1

U

)(

L0
V − L1

V

)
)

.
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The differential of L0
W (1) is given by

(9) ∂
(

L0
W (1)

)

= −

(
∑

0<U<V <1

aWU,V L
0
U (1)L

0
V (1)

)

The above equation also holds for L0
W (1) and i∗1(L

0
W ).

Proof. The combinatoric being the same as in T coL
1;x , the first part follows from

Equation (7). The second part is a consequence of Lemma 3.10 because product of

the form L1
UL

0
V have empty fiber at 1. �

The rest of this section shows that each family of “differential system” gives rise
to a family of elements in the corresponding bar constructions.

Let BX , BA1 and B{1} denote the bar construction over N qf, •
X , N qf, •

A1 and

N qf, •
Spec(Q) respectively. Let QX , QA1 and Q{1} be the corresponding set of inde-

composable elements. By an abuse of notation, we will write dB, ∆, x and δQ the
natural operation in the corresponding spaces. When required by the context, we
will precise the “base” space by the subscript X , A1 and {1} respectively.

Note that the geometric relation between X = P1 \ {0, 1,∞}, A1 and {1} gives
rise to morphisms of cdga between the corresponding cycles algebras:

N qf, •
X N qf, •

A1

N qf, •
Spec(Q)

which then induce morphisms between bar construction and sets of indecomposable
elements. These morphisms are also denoted j∗, p∗1 and i∗1.

Theorem 3.16 (bar elements). For any Lyndon word W of length p there exist an
element LBW , in the bar construction BX satisfying:

• Its image under the projection onto the tensor degree 1 part π1 : BX −→
N qf, •
X is π1(LBW ) = L0

W .
• Its is in the image of the projector px ; hence it is in QX .
• It is of bar degree 0 and its image under dB is 0. Thus it induced a class

in H0(BX) and in H0(QX) = QH0(BX ).

• Its image under δQ is given by the differential equations (ED-L0) without
the minus sign

δQ(L
0
W ) =

∑

U<V

aWU,V L
0
UL

0
V +

∑

U,V

bWU,V L
1
UL

0
V .

A similar statement holds for L1
W , L0−1

W and L0
W (1) with replace Equation (ED-L0)

by equation (ED-L1), (ED-L0−1) and (9).

Proof. The main point is the relation between T coL
1;x and the above family of alge-

braic cycles and to use the unit of the adjunction cobar/bar.
As in Section 2.3.1, ΩcoL(T

coL
1;x ) = Sgr(sT coL

1;x ) denotes the cobar construction

over the Lie coalgebra T coL
1;x concentrated purely in degree 0 (hence with 0 as dif-

ferential). Let

ψ : ΩcoL(T
coL
1;x ) −→ N qf, •

X

be the morphism of cdga induced by

sT 0
W∗ 7−→ L0

W , sT 1
W∗ 7−→ L1

W
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for any Lyndon word W of length p > 2 together with

ψ(sT 1
0∗) = L0

1, ψ(sT 0
1∗) = L1

0 and ψ(sT 0
0∗) = ψ(sT 1

1∗) = 0

where the prefix s denotes the suspension.
The morphism ψ is compatible with the differential because of equations (ED-L0)

and(ED-L1) and Lemma 3.10. The minus sign difference between equations (ED-L0)
and (ED-T 0) (and similarly for Equation (ED-L1)) makes it possible to define ψ
without sign (cf Section 2.3.1)

It induces a morphism on the bar construction (for the associative case)

ψB : B(ΩcoL(T
coL
1;x )) −→ BX = B(N qf, •

X )

compatible with projection on tensor degree n part (for any n) and with the pro-
jector px onto the indecomposable elements.

Hence we obtain the following commutative diagram (of vector space)

ΩcoL(T coL
1;x ) N qf, •

X

B(ΩcoL(T coL
1;x )) BX

T coL
1;x Bcom(ΩcoL(Lc)) QX

υ

ψ

ψB

ψQ

π1 π1

where the morphisms in the bottom line are morphisms of dg Lie algebras and
where υ is the unit of the bar/cobar adjunction.

The bar element LBW is then defined by

LBW = ψQ ◦ υ(T 0
W∗).

Similarly we define L1,B
W and L0−1,B

W .
In order to defined LBW (1), one consider only the sub Lie coalgebra T coL

1 of T coL
1;x

and the morphism

ψ : sTW∗(1) 7−→ L0
W (1)

when W has length p > 2 and sending sT0∗(1) and sT1∗(1) to zero. �

Over A1 a similar statement holds:

Proposition 3.17. For any Lyndon word W of length p > 2, there exists an

element L0−1,B
W in the bar construction BA1 satisfying

• π1(L
0−1,B
W ) = L0−1

W = L0
W − L1

W .
• It is in the image of the projector px ; hence in QA1 .
• It is of bar degree 0 and their image under dB is 0; hence it give a class in

H0(BX) and in H0(QX).

• Its image under δQ is given by Equation (ED-L0−1) without the minus sign.

• j∗(L0−1,B
W ) = LBW − L1,B

W .

A similar statement holds for L0
W (1) and i∗1(L

0
W ) = i∗1(L

0
W (1)) with (ED-L0−1)

replace by (9). The corresponding bar elements are denoted

LBW (1) and LBW,x=1

respectively. We have the appropriate compatibilities with p∗1 and j∗.
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Proof. The proof goes as in Theorem 3.16 above but using only the sub Lie coalge-
bra T coL

1 and equations (ED-L0−1) and (9). The coefficients aWU,V appearing in the

differential equation for the cycle are equal to coefficients γWU,V giving the cobracket

of the element TW∗(1) (cf. Lemma 3.6).
The relations between bar elements over {1}, A1 and X = P1 \ {0, 1,∞} follow

because i∗1, p
∗
1 and j∗ are morphisms of cdga algebra. �

Lemma 3.18. In BQ the following relation holds :

i∗1(L
0−1,B
W ) = i∗1(L

B
W (1)) = LBW,x=1.

Proof. It follows from equations (7) and (8) which holds for the cycle on A1 and

because in the cycle setting one has in N qf, •
Q :

i∗1(L
0−1
W ) = i∗1(L

0
W (1)) = LBW |x=1

for any Lyndon word W . �

4. A relative basis for mixed Tate motive over P1 \ {0, 1,∞}

4.1. Relations between bar elements. A motivation for introducing cycles L1
W

in [Sou12] was the idea of a correspondence

L0
W − L0

W (1) ↔ L1
W

In this section, we prove that this relation is an equality in the H0 of the bar
construction modulo shuffle products; that is

LBW − LBW (1) = L1,B
W ∈ H0(QX).

A key point in order to build cycles L0
W and L1

W in [Sou12] was a pull-back
by the multiplication. More precisely, the usual multiplication A1 × A1 −→ A1

composed with the isomorphism A1 ×�1 ≃ A1 × A1 gives a multiplication

m0 : A1 ×�1 −→ A1

sending (t, u) to t
1−u . Twisting m0 by θ : t 7→ 1− t gives a “twisted multiplication”

m1 = (θ × id ) ◦m0 ◦ θ : A
1 ×�1 −→ A1.

Proposition 4.1 ([Sou12]). For ε = 0, 1 the morphism mε induces a linear mor-
phism

m∗
ε : N

qf, k
A1 −→ N qf, k−1

A1

giving a homotopy

∂A1 ◦m∗
ε +m∗

ε ◦ ∂A1 = id −p∗ε ◦ i
∗
ε

where pε : A1 −→ {ε} is the projection onto the point {ε} and iε its inclusion is
A1.

From this homotopy property, one derives the following relation between m∗
0 and

m∗
1.

Lemma 4.2. One has:

(10) m∗
1 = m∗

0 − p∗1 ◦ i
∗
1 ◦m

∗
0 − ∂A1 ◦m∗

1 ◦m
∗
0 +m∗

1 ◦m
∗
0 ◦ ∂A1 +m∗

1 ◦ p
∗
0 ◦ i

∗
0

and a similar expression for m∗
1.

In particular, when b ∈ N qf, k
A1 satisfies ∂A1(b) = 0 and i0(b) = 0, one has:

m∗
1(b) = m∗

0(b)− p∗1 ◦ i
∗
1(m

∗
0(b)) + ∂A1(m∗

0 ◦m
∗
1(b))
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Proof. Let b be in N qf, k
A1 . We treat only Equation 10. Using the homotopy property

for m∗
0, one writes

b = ∂A1 ◦m∗
0(b) +m∗

0 ◦ ∂A1 + p∗0 ◦ i
∗
0(b).

Computing m∗
1(b), the homotopy property

m∗
1 ◦ ∂A1(m0(b)) = m∗

0(b)− p∗1 ◦ i
∗
1(m0(b))− ∂A1 ◦m∗

1(m
∗
0(b))

gives the desired formula. �

Writing AW the A1-extension of the right hand side of Equation (ED-L0), cycles

L0
W are obtained in [Sou12] as

L0
W = m∗

0(AW )

and similarly for L1
W .

An explicit computation in low weight [Sou12, Sou13] shows that

L0
01 = m∗

0(L
0
0 L

0
1) and L1

01 = m∗
1(L

0
0 L

0
1).

Using Lemma 4.2, one gets

(11) L1
01 = L0

01 − L0
01(1) + ∂A1(m∗

1 ◦m
∗
0(L

0
0 L

0
1)).

Note that as a parametrized cycle,

m∗
1 ◦m

∗
0(L

0
0 L

0
1) = m∗

1(L
0
01)

can be written (omitting the projector Alt) as

m∗
1 ◦m

∗
0(L

0
0 L

0
1) =

[

t;
y − t

y − 1
, 1−

y

x
, x, 1− x

]

⊂ A1 ×�4.

This expression coincides, up to reparametrization, with the expression of C01 given
in [Sou13, Example 5.5] relating L0

01 and L1
01.

Thus, L0
01−L0

01(1) and L1
01 differs only by a boundary. The differential of L0

01(1)
is zero and one can compute explicitly the corresponding bar elements:

L0−1,B
01 = [L0

01]− [L1
01], LB01(1) = [L0

01(1)].

Lemma 4.3. In B(N qf, •
A1 ), one has the following relation

(12) L0−1,B
01 − LB01(1) = dB([m

∗
1(L

0
01)]).

Thus in H0(BA1) as in H0(QA1) one has the equality between

L0−1,B
01 − LB01(1) = 0.

Taking the restriction to P1 \ {0, 1,∞}, one obtains in H0(QX)

(13) LB01 − L1,B
01 = j∗(L0−1,B

01 ) = LB01(1).

For W a Lyndon word of length p > 2, the explicit comparison between LBW and

L1,B
W is in general much more complicated as

∂A1(L0
W − L1

W ) = −
∑

0<U<V<1

aWU,V (L
0
U − L1

U )(L
0
V − L1

V ) 6= 0.

However, working at the bar construction level in H0(QA1) allows to use an
induction argument.
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Theorem 4.4. For any Lyndon word W of length p > 2 the following relation
holds

(14) L0−1,B
W = LBW (1) in H0(QA1) = QH0(B

A1
).

Taking the restriction to X = P1 \ {0, 1,∞}, one obtains in H0(QX) = QH0(BX )

(15) LBW − L1,B
W = j∗(L0−1,B

W ) = LBW (1).

Proof. From Lemma 4.3 above it is true for p = 2 as there is then only one Lyndon
word to consider W = 01.

Now we assume that the theorem is true for all Lyndon words of length k with
2 6 k 6 p− 1. Let W be a Lyndon word of length p.

From Proposition 3.17, one has in QA1 and in particular in H0(QA1):

δQ(L
0−1,B
W ) =

∑

0<U<V <1

aWU,V (L
0−1,B
U ) ∧ (L0−1,B

V )

and

δQ(LBW (1)) =
∑

0<U<V <1

aWU,V (L
B
U (1)) ∧ (LBV (1)).

Using the induction hypothesis, one has in H0(QA1)

δQ(L
0−1,B
W ) =

∑

0<U<V <1

aWU,V (L
B
U (1)) ∧ (LBV (1))

and thus

δQ

(

L0−1,B
W − LBW (1)

)

= 0 in H0(QA1).

Let CW be the class of L0−1,B
W − LBW (1) in H0(QA1) and sCW its image in

ΩcoL(H
0(QA1)) = Sgr(sQ⊗H0(QA1)).

As δQ(CW ) = 0, dΩ,coL(sCW ) = 0 and sCW gives a class in

H1(ΩcoL(H
0(QA1))) ≃ H1(N qf, •

A1 );

where the above isomorphism is given by Bloch and Kriz in [BK94, Corollary 2.31]
after a choice of a 1-minimal model in the sens of Sullivan. Using the comparison

between H1(N qf, •
A1 ) and the higher Chow groups, this class can be represented by

p∗1(C) in N qf, 1
A1 with C a cycle in N qf, 1

Q .

The cycle p∗1(C) satisfies ∂A1(p∗1(C)) = 0 and [p∗1(C)] gives a degree 0 bar element
CB in BA1 whose bar differential and reduced coproduct are equal to 0.

From this, one gets a class C̃W = CW − CB in H0(QA1). Its image sC̃W in
ΩcoL(H

0(QA1)) also gives a class in

H1(ΩcoL(H
0(QA1)))

which is 0 by construction.
As, on the degree 0 part of ΩcoL(H

0(QA1)), the differential dΩ,coL is zero, one

obtains that sC̃W = 0 in sQ⊗H0(QA1) and thus C̃W is zero in H0(QA1) = QH0(B
A1

).
The above discussion shows that:

0 = C̃W = CW − CB = CW − [p∗1(C)]

So far one has obtained that in BA1 :

(16) L0−1,B
W − LBW (1)− [p∗1(C)] = dB(b) modulo x products

with b in the degree −1 part of BA1 = B(N qf, •
A1 ).
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Because taking the fiber at 1 commutes with products and differential, one gets
modulo shuffles

i∗1(L
0−1,B
W )− i∗1(L

B
W (1))− [C] = dB(i

∗
1(b)).

Lemma 3.18 insures that i∗1(L
0−1,B
W )− i∗1(L

B
W (1)) = 0. Thus one has

−[C] = dB(i
∗
1(b)) + shuffle products

which shows that [p∗(C)] is zero in H0(BA1) modulo shuffles. Hence Equation (16)
can be written has

L0−1,B
W − LBW (1) = 0 in QH0(B

A1
) = H0(QA1)

Finally, taking the restriction to P1 \ {0, 1,∞}, one has LBW−L1,B
W = j∗(L0−1,B

W ).
�

The main consequence of Equation (15) in the previous theorem is that in
QH0(BX ) one can replace the bar avatar of the geometric differential system (ED-L0)
by a bar avatar of the differential system (ED-T) coming from Ihara action by spe-
cial derivations.

Corollary 4.5. In QH0(BX), the set of indecomposable elements of H0(B(N qf, •
X )),

the following holds for any (non-empty) Lyndon word W :

(ED-QX) δQ(L
B
W ) =

∑

U<V

αWU,V L
B
U ∧ LBV

∑

U,V

βWU,V L
B
U ∧ LBV (1).

Proof. Let W be a Lyndon word. The statement holds when W has length equal 1
and one can assume that W has length greater or equal to 2. One begins with the
formula giving δQ(LBW ) from Theorem 3.16:

δQ(L
B
W ) =

∑

U<V

aWU,V L
B
U ∧ LBV

∑

U,V

bWU,V L
B
U ∧ L1,B

V .

Then using the relations given by Equation (15), one has

δQ(L
B
W ) =

∑

U<V

aWU,V L
B
U ∧ LBV

∑

U,V

bWU,V L
B
U ∧

(
LBV − LBV (1)

)
.

Expanding terms as LBU
(
LBV − LBV (1)

)
and we conclude the proof using the expres-

sion of coefficients a’s and b’ in terms of α’s and β’s given at Lemma 3.9. �

4.2. A Basis for the geometric Lie coalgebra. This section shows that the
image of the family of bar elements LBW in Deligne-Goncharov motivic fundamental
Lie coalgebra is a basis of this coLie coalgebra. Hence the family LBW induced a
basis of the tannakian coLie coalgebra of mixed Tate motives over P1 \ {0, 1,∞}
relative to the one for mixed Tate motives over Q.

We recall that for X = P1 \ {0, 1,∞}, M. Levine in [Lev11][Theorem 5.3.2 and
beginning of the section 6.6] shows, one can identify the Tannakian group associated
with MTM(X) with the spectrum of H0(BX):

GMTM(X) ≃ Spec(H0(BX)).

Then, he uses a relative bar-construction in order to relate GMTM(X) to the

motivic fundamental group of X of Goncharov and Deligne, πmot1 (X, x) (see [Del89]
and [DG05]).

Theorem 4.6 ([Lev11][Corollary 6.6.2]). Let x be a Q-point of X = P1 \ {0, 1,∞}.
Then there is a split exact sequence:
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1 πmot1 (X, x) Spec(H0(B(NX))) Spec(H0(B(NQ))) 1
p∗

x∗

where p is the structural morphism p : P1 \ {0, 1,∞} −→ Spec(Q).

Theorem 4.6 can be reformulate in terms of Lie coalgebras, looking at indecom-
posable elements of the respective Hopf algebras.

Proposition 4.7. There is a split exact sequence of Lie coalgebras:

0 QH0(BQ) QH0(BX ) Qgeom 0
p̃ φ

x̃

where Qgeom is the set of indecomposable elements of O(πmot1 X, x) and is isomor-
phic as Lie coalgebra to the graded dual of the Lie algebra associated to πmot1 (X, x).
Hence, Qgeom is isomorphic as Lie coalgebra to the graded dual of the free Lie
algebra on two generators Lie(X0, X1).

Considering the family of bar elements LBW for all Lyndon words W in this short
exact sequence of Lie coalgebra, ones gets

Theorem 4.8. The family φ(LBW ) for any Lyndon words W is a basis of the Lie
coalgebra Qgeom. Hence the family LBW is a basis of QH0(BX ) relatively to QH0(BQ).

Proof. The above short exact sequence being a sequence of Lie coalgebra, one has

0 QH0(BQ) ∧QH0(BQ) QH0(BX ) ∧QH0(BX ) Qgeom ∧Qgeom 0

0 QH0(BQ) QH0(BX ) Qgeom 0
p̃ φ

δQ,Q δQ,X δgeom

p̃ ∧ p̃ φ ∧ φ

As δQ,X(LB0 ) = δQ,X(LB1 ) = 0, weight reasons show that φ(LB0 ) and φ(LB1 ) are
dual to the weight 1 generators of Lie(X0, X1).

In order to show that the family φ(LBW ) is a basis of Qgeom, it is enough to show
that the elements φ(LBW ) satisfy:

δgeom(φ(LBW )) =
∑

U<V

αWU,V φ(L
B
U ) ∧ φ(L

B
V )

because δgeom is dual to the bracket [ , ] of Lie(X0, X1).
As φ commutes with the cobracket, it is enough to compute (φ ∧ φ) ◦ δX(LBW ) :

δgeom(φ(LBW )) =(φ ∧ φ) ◦ δX(LBW )

=(φ ∧ φ)




∑

U<V

αWU,V L
B
U ∧ LBV

∑

U,V

βWU,V L
B
U ∧ LBV (1)





=
∑

U<V

αWU,V φ(L
B
U ) ∧ φ(L

B
V )
∑

U,V

βWU,V φ(L
B
U ) ∧ φ(L

B
V (1))

By construction φ(LBV (1)) is zero. Thus one obtains the expected formula for
δgeom(φ(LBW )). �
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Note that δX gives the coaction of QH0(BQ) on Qgeom described in [Bro12] in rela-

tion with Goncharov motivic coproduct ∆mot. In this context, Equation (ED-QX)

δQ(L
B
W ) =

∑

U<V

αWU,V L
B
U ∧ LBV

∑

U,V

βWU,V L
B
U ∧ LBV (1)

is nothing but another expression for Goncharov motivic cobracket 1/2(∆mot −
τ∆mot). This new expression has the advantage that it is stable under the gener-
ating family LBW .
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