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A RELATIVE BASIS FOR MIXED TATE MOTIVES OVER THE

PROJECTIVE LINE MINUS THREE POINTS

ISMAEL SOUDÈRES

Abstract. In a previous work, the author have built two families of distin-
guished algebraic cycles in Bloch-Kriz cubical cycle complex over the projective
line minus three points.

The goal of this paper is to show how these cycles induce well-defined
elements in the H0 of the bar construction of the cycle complex and thus
generated comodules over this H0, that is a mixed Tate motives as in Bloch
and Kriz construction.

In addition, it is shown that out of the two families only ones is needed at
the bar construction level. As a consequence, the author obtains that one of
the family gives a basis of the tannakian coLie coalgebra of mixed Tate motives
over P1 \ {0, 1,∞} relatively to the tannakian coLie coalgebra of mixed Tate
motives over Spec(Q). This in turns provides a new formula for Goncharov
motivic coproduct, which really should be think as a coaction.

Note : Preliminary version. Missing :
• introduction;
• typos, English and writing corrections.
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1. Introduction

2. Bar and cobar adjunctions

In this section we recall how the bar/cobar constructions gives a pair of adjoint
functors in the two following cases:

B :

{
diff. gr. ass.

algebras

}

⇋

{
diff. gr. coass.

coalgebras

}

: Ω
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and

Bc :

{
diff. gr. com.
ass. algebras

}

⇋

{
diff. gr. coLie.

coalgebras

}

: ΩL.

As a differential graded commutative algebras A is also and associative algebra,
we will recall how the two construction are related in this case and how suitable
degree 1 differential systems in A naturally induce families of 0 cocycle in the bar
construction B(A).

The material developed here is well known and can be found in Ginzburg-
Kapranov [GK94] work even if their use of graded duals replace coalgebra structure
by algebra structures. The presentation used here is closer to the Kozul duality as
developed by Jones and Getzler in [GJ94]. We follow here the signs conventions
and the formalism presented by Loday and Vallette in [LV12]. The associative case
is directly taken from [LV12, Chap. 2] in a cohomological version.

2.1. Notation and convention.

2.1.1. Koszul sign rule. The objects are all object of the category of (sign) graded
Q-vector spaces with the tensor product ⊗. The degree of an homogeneous element
v in V is denoted by |v| or |v|V if we want to emphasis where v is. The symmetric
structure is given by the switching map

τ : V ⊗W −→W ⊗ V , τ(v ⊗ w) = (−1)|v||w|w ⊗ v.

For any maps f : V → V ′ and g :W →W ′ of graded spaces, the tensor product

f ⊗ g : V ⊗W −→ V ′ ⊗W ′

is defined by

(f ⊗ g)(v ⊗ w) = (−1)|g||v|f(v)⊗ g(w).

A differential graded vector space abbreviated into dg vector space is a graded
vector space equipped with a differential dV (or when the context is clear enough
simply d) ; that is a degree 1 linear map satisfying d2V = 0.

Definition 2.1. Let V = ⊕nV n and W = ⊕nWn be two graded vector spaces. A
morphism of degree r, say f : V −→ W , of graded vector spaces is a collection of
morphisms fn : V n −→Wn+r. Let Hom(V,W )r be the vector space of morphisms
of degree r from V to W .

The vector space Hom(V,W ) = ⊕Hom(V,W )r is graded by the degree of the
morphisms. When V and W are morphisms of dg vector spaces, Hom(V,W ) turns
into a a dg vector space with differential dHom(f) given by :

dHom(f) = dW ◦ f − (−1)rf ◦ dV

for any homogeneous element f of degree r.
A degree r dg morphism f : V −→ W of dg vector space is a degree r morphism

of graded vector space f : V • −→ W •+r satisfying dw ◦ f = (−1)rf ◦ dV ; that is
such that dHom(f) = 0.

The dual of a graded vector space V = ⊕nV
n is defined by

V ∗ = ⊕nHomV ect(V
−n,Q) = Hom(V,N)

where the dg vector space N is defined by N = Q concentrated in degree 0 with 0
differential.

One has an obvious notion of cohomology on dg vector space.
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2.1.2. Symmetric and antisymmetric tensor products. We review here the definition
in the dg context of the tensor product and its symmetric and anti-symmetric
version

Let (V, dV ) and (W,dW ) be two dg vector space, their tensor product (V ⊗W )
is defined by

(V ⊗W )r = ⊕p+q=rV
p ⊗W q and dV⊗W id V ⊗dW + dV ⊗ idW .

It is the total complex of the obvious double complex.
The symmetric product V ⊙ V is the quotient of the dg vector space V ⊗ V

modulo the relations

a⊗ b− (−1)|a|b||b⊗ a = 0.

The anti-symmetric product V ⊘ V is the quotient of the dg vector space V ⊗ V
modulo the relations

a⊗ b+ (−1)|a|b||b⊗ a = 0.

Definition 2.2 ((de)suspension). Let S be the 1 dimensional dg vector space
concentrated in degree 1 (that is dS = 0) generated by s : that is S = sQ

The dual of S is a one dimensional dg vector space denoted by S1 and generated
by a degree one element s−1 dual to s.

Let V, dV be a dg vector space. Its suspension (sV, dsV ), is the dg vector space
S ⊗ V . Its desuspension (s−1V, ds−1V ) is S−1 ⊗ V .

Lemma 2.3. There is a canonical identification V n−1 ≃ (sV )n given by the dg
morphism of degree 1

is : V −→ sV v 7−→ (−1)|v|V s⊗ v.

Under this identification dsV = −dV .

2.1.3. Associative dg algebra / coassociative dg coalgebra. A differential graded as-
sociative algebra (A, dA) abbreviated into dga algebra is a dg vector space equipped
with a unital associative product µA of degree 0 commuting with the differential :

dA ◦ µA = µA ◦ dA⊗A

and satisfying the usual commutative diagrams for an associative algebra, all the
maps involved being maps of dg vector spaces.

This last equality is nothing but Leibniz rules making dA into a derivation for
the product. Observe that the unit 1A belongs to A0. On elements, one writes
a ·A b or simply a · b instead of µA(a⊗ b).

Definition 2.4. The dga A is connected if A0 = 1AQ.
A dga algebra A is quasi-free if, as a graded algebra, it is free over some graded

vector space V .

Definition 2.5 (Tensor algebra). The tensor algebra over a dg vector space V is
defined by

T (V ) =
⊕

n>0

V ⊗n

and equipped with the differential induced on each V ⊗n by dV and with the con-
catenation product given by

[a1| · · · |an]⊗ [an+1| · · · an+m] 7−→ [a1| · · · |an|an+1| · · ·an+m]

where the “bar” notation [a1| · · · |an] stand for a1 ⊗ · · · ⊗ an in V ⊗n.
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Note that the degree of [a1| · · · |an] is |a1|V + · · · |an|V and that T (V ) admits
a natural augmentation given by ε([a1| · · · |an]) = 0 for n > 0 and the convention
V ⊗0 = Q.

The concatenation product is clearly associative and the natural inclusion iV :
V −→ T (V ) into the tensor degree 1 part makes T (V ) into the quasi-free unital
dga algebra over V .

2.1.4. Commutative and anti commutative algebras. A commutative dga algebra
(A, dA, µA) or cdga algebra is a dga algebra such that the multiplication commutes
with the switching map

A⊗A A⊗A

A

τ

µA µA

On homogeneous elements, this reads as

a · b = (−1)|a||b|b · a.

Let V be a dg vector space and n > 1 an integer. The symmetric group Sn acts
on V ⊗n in two ways : the symmetric action ρS and the antisymmetric action ρΛ
(both graded).

For i in {1, . . . n− 1}, let τi be the permutation exchanging i and i+ 1. As any
permutation can be decomposed as a product of transposition τi, it is enough to
define the action for the τi:

ρS(τi) = id ⊗ · · · id
︸ ︷︷ ︸

i−1 factors

⊗τ ⊗ id ⊗ · · · ⊗ id

and

ρΛ(τi) = id ⊗ · · · id
︸ ︷︷ ︸

i−1 factors

⊗(−τ)⊗ id ⊗ · · · ⊗ id .

Note that both action involved signs. The graded signature εgr(σ) ∈ {±1} of a
permutation σ is defined by

ρS(σ)(v1 ⊗ · · · ⊗ vn) = εgr(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

Then, one has

ρΛ(σ)(v1 ⊗ · · · ⊗ vn) = ε(σ)εgr(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n)

where ε(σ) is the usual signature. When we want to keep track of where the action
takes place, we will write ρS,V , ρΛ,V and εgr,V (σ).

Definition 2.6. The (graded) symmetric algebra Sgr(V ) over a dg vector space V
is defined as the quotient of T (V ) by the two side ideal generated by (id −τ)(a⊗b).

On can write

Sgr(V ) =
⊕

n>0

V ⊙n

where V ⊙n = Sgr,n(V ) is the quotient of V ⊗n by the symmetric action of Sn.

Let pS,n be the projector defined on V ⊗n by

pS,n =
1

n!

(
∑

σ∈Sn

ρS(σ)

)

.

On also has the isomorphism Sgr,n(V ) = pS,n(V
⊗n). Sgr(V ) is the free commuta-

tive algebra over V .
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Definition 2.7. The (graded) antisymmetric algebra Λgr(V ) over a dg vector space
V is defined as the quotient of T (V ) by the two side ideal generated by (id +τ)(a⊗b).

On can write

Λgr(V ) =
⊕

n>0

V ⊘n

where V ⊘n = Λgr,n(V ) is the quotient of V ⊗n by the antisymmetric action of Sn.

As in the symmetric case, Λgr(V ) is also the image of V ⊗n by the projector
pΛ,n = 1/(n!)(

∑

σ ρΛ(σ)) and Λ(V ) is the free antisymmetric algebra over V .
Considering a dg morphism of degree r f : V → V ′, we have the following

relations on the antisymmetric and symmetric representations.

Lemma 2.8. Let V and V ′ be two dg vector space and f be dg morphism of degree
r. Let f⊗n : V ⊗n −→ (V ′)⊗n be the induced morphism. Then for any permutation
σ in Sn, one has

f⊗n ◦ ρΛ,V (σ) =

{
ρΛ,sV (σ) ◦ f⊗n if r even
ρS,sV (σ) ◦ f⊗n if r odd

Thus, when f is of degree 1, f⊗ induces a degree n morphism of dg vector space

Λgr,n(V )
f⊗n

−→ Sgr,n(sV ).

This applies in particular to the dg isomorphism of degree 1, is : V −→ sV .

Proof. Let f : V −→ V ′ a dg morphism of degree r. First, it is enough to check the
relation when σ is any transposition τi exchanging i and i + 1 (for 1 6 i 6 n − 1.
This case follows from the case n = 2 and τi = τ the switching morphism. As
ε(τi) = −1, it is enough to compute (f ⊗ f) ◦ (−τ)

A direct computation shows that for any v1 ⊗ v2 in V ⊗ V one has:

(f ⊗ f) ◦ (−τ)(v1 ⊗ v2) = (−1)|v1||v2|+1+r|a2|f(v2)⊗ f(v1)

= (−1)r|a1|(−1)−r
2+1τ(f(v1)⊗ f(v2)).

This last equality concludes the proof. �

2.1.5. Associative coalgebra. A differential graded associative coalgebra (C, dC) ab-
breviated into dga coalgebra is a dg vector space equipped with a counital associa-
tive coproduct ∆C of degree 0 commuting with the differential :

dC⊗C ◦∆C = ∆C ◦ dC

and satisfying the usual commutative diagrams for an associative coalgebra, all the
maps involved being maps of dg vector spaces.

One defines an iterated coproduct ∆n : C −→ C⊗(n+1) by

∆n = (∆⊗ id ⊗ · · · ⊗ id )∆n−1 and ∆1 = ∆.

Note that, in the above formula∆n is independent of the place of the ∆ factor
(here in first position) because of the associativity of the coproduct. We may use
Sweedler’s notation:

∆(x)
∑

x(1) ⊗ x(2) , (∆)⊗ id )∆(x) =
∑

x(1) ⊗ x(2) ⊗ x(3)

and

∆n(x) =
∑

x(1) ⊗ · · · ⊗ x(n+1).

A coaugmentation on C is a morphism of dga coalgebra u : Q → C. In this case,
C is canonically isomorphic to ker(ε)⊕Qu(1). Let C̄ = ker(ε) be the kernel of the
counit.
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If C is coaugmented, its admits a decomposition C = Q ⊕ C̄. The reduced
coproduct is ∆̄ = ∆ − 1 ⊗ id − id ⊗1. It is associative and there is an iterated
reduced coproduct ∆̄n.

We may also use Sweedler’s notation for the reduced coproduct ∆̄n(x) =
∑
x(1)⊗

· · · ⊗ x(n+1).

Definition 2.9. C is conilpotent if it is coaugmented and if for any x in C ∆̄n(x)
vanishes for n large enough.

A cofree associative dga coalgebra over the dg vector space is by definition
a conilpotent dga coalgebra F c(V equipped with a linear map of degree 0 p :
F c(C) −→ V commuting with the differential such that p(1) = 0 which factor any
morphism of dg vector space φ : C −→ V where C is a conilpotent dga coalgebra
with φ(1) = 0.

Definition 2.10 (Tensor coalgebra). The tensor coalgebra over a dg vector space
V is defined by

T c(V ) =
⊕

n>0

V ⊗n

and equipped with the differential induced on each V ⊗n by dV and with the decon-
catenation coproduct given by

[a1| · · · |an] 7−→
n+1∑

i=0

[a1| · · · |ai]⊗ [ai+1| · · ·an].

The deconcatenation coproduct is clearly associative. The natural projection
πV : T c(V ) −→ Q = V ⊗0 onto the tensor degree 0 part is a counit for T c(V ) while
the inclusion Q = V ⊗0 −→ T c(V ) gives the coaugmentation. The tensor coalgebra
T c(V ) is the cofree counital dga coalgebra over V ; the conilpotency condition
which is part of the definition of cofree is clearly satisfied.

Let C be a conilpotent counital dg coalgebra and φ : C −→ V be a dg morphism
of degree 0 with φ(1) = 0. As essentially shown in [LV12, Proposition 1.2.7], there

exist a unique morphism of (conilpotent counital) dga coalgebra φ̃ : C −→ T c(V )
extending φ.

2.1.6. dg Lie algebra. We review here the definition of Lie algebra and coLie coal-
gebra in the dg formalism.

For any dg vector space V , let ξ be the cyclic permutation of V ⊗V ⊗V defined
by

ξ = (id ⊗τ)(τ ⊗ id ).

It corresponds to the cycle sending 1 to 3, 3 to 2 and 2 to 1.

Definition 2.11. A dg Lie algebra L is a dg vector space equipped with a degree
0 map of dg vector spaces c : L⊗ L −→ L (c stands for “crochet”) satisfying

c ◦ τ = −c and c ◦ (c⊗ id ) ◦ (id +ξ + ξ2) = 0

where τ is the switching morphism on L ⊗ L and xi is the above permutation of
the factor on L⊗ L⊗ L.

On elements, we will use a bracket notation [x, y] instead of c(x⊗ y).

In the above definition, the first relation is the usual antisymmetry of the bracket
which gives in the dg context:

[x, y] = (−1)|x||y|[y, x].

The second relation is the Jacobi relation:

[[x, y], z] + (−1)|x|(|y|+|z|)[[y, z], x] + (−1)|z|(|y|+|x|)[[z, x], y] = 0.
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One remarks that (c ⊗ id ) ◦ ξ = τ ◦ (id ⊗c) and that (c ⊗ id ) ◦ ξ2 = ((c ◦ τ) ⊗
id )◦ (id ⊗τ). Using this and the antisymmetry relation, one can rewrite the Jacobi
relation as a Leibniz relation:

c ◦ (c⊗ id ) = c ◦ (id ⊗c) + c ◦ (c⊗ id ) ◦ (id ⊗τ).

2.1.7. dg coLie coalgebra. The definition of a dg coLie coalgebra is dual to the
definition of a Lie algebra.

Definition 2.12. A dg coLie coalgebra Lc is a dg vector space equipped with a
degree 0 map of dg vector spaces δ : Lc −→ Lc ⊗ Lc satisfying

τ ◦ δ = −δ and (id +ξ + ξ2) ◦ (δ ⊗ id ) ◦ δ = 0

where τ is the switching morphism on Lc ⊗ Lc and xi is the above permutation of
the factor on Lc ⊗ Lc ⊗ Lc.

The first condition shows that δ induces a map (again denoted by δ)

δ : Lc −→ Lc ⊘ Lc.

Then, the second condition show the following.

Lemma 2.13. Let τ12 : Lc⊗3 −→ Lc⊗3 be the permutation exchanging the two first
factors. The following diagram is commutative

Lc ⊗ Lc Lc ⊗ Lc ⊗ Lc

Lc

Λgr,2(Lc) Λgr,3(Lc)

δ

δ

δ ⊗ id − id ⊗δ

δ ⊘ id − id ⊘δ

1/6(id −τ12)(id +ξ + ξ2)

and the composition going through the bottom line is 0

Proof. We remark that

(id ⊗δ) = ξ2 ◦ (δ ⊗ id ) ◦ τ

which show that

((−1) id ⊗δ) ◦ δ = ξ2 ◦ (δ ⊗ id ) ◦ δ.

Thus, using the fact that (id +ξ + ξ2) ◦ (δ ⊗ id ) ◦ δ = 0, one gets

(id −τ12) ◦ (id +ξ + ξ2) ◦ (δ ⊗ id − id ⊗δ) ◦ δ =

2(id −τ12) ◦ (id +ξ + ξ2) ◦ (δ ⊗ id ) ◦ δ = 0.

�

2.1.8. Twisting morphisms. Let (C, dC) be a differential graded coaugmented coal-
gebra and let (A, dA) be a differential graded augmented algebra.

Definition 2.14. Let f, g : C −→ A be two linear maps. The composition

(1) f ⋆ g = µ ◦ (f ⊗ g) ◦∆ : C −→ C ⊗ C −→ A⊗A −→ A

defines a internal composition law on Hom(C, V ) called the convolution of f and g.

Note that f ⋆ g is defined as soon as there are dg morphisms C :
∆
−→ C ⊗ C and

A⊗A
µ

−→ A.
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Proposition 2.15 (Proposition 2.1.2 in [LV12]). The composition law ⋆ on the dg
vector space Hom(C,A) satisfies the Leibniz rule:

dHom(f ⋆ g) = dHom(f) ⋆ g + (−1)pf ⋆ dHom(g)

for any morphism f and g of degree p and q respectively.
When A is associative with unit u and C is coassociative with counit ǫ then

(Hom(C,A), dHom, ⋆) is a dga algebra with unit given by u ◦ ǫ.

Definition 2.16 (Twisting morphisms-associative case). Let (C, dC) be a differ-
ential graded coaugmented coalgebra and let (A, dA) be a differential graded aug-
mented algebra.

A twisting morphism f : C −→ A is a degree 1 morphisms satisfying the Mauer-
Cartan equation

(2) dHom(f) + f ⋆ f = 0

and null when composed with either the augmentation of A or the coaugmentation
of C.

The set of twisting morphisms is denoted by Tw(C,A).

Definition 2.17 (Twisting morphisms-coLie case). Let (Lc, dLc) be a differential
graded coLie coalgebra and let (A, dA) be a differential graded augmented commu-
tative algebra.

Loday and Vallette explained in [LV12, Proposition 6.4.7], that the natural struc-
ture on Hom(Lc, A) is a dg Lie algebra structure given by

[f, g] = f ⋆ g − g ⋆ f.

A twisting morphism f : C −→ A is a degree 1 morphisms satisfying the Mauer-
Cartan equation which in this case is written in the equivalent form (coefficients
are rational):

(3) dHom(f) +
1

2
[f, f ] = 0.

and null when composed with the augmentation of A.

2.2. Bar/cobar adjunction: associative case.

2.2.1. Bar construction. In this subsection, we recall briefly the bar/cobar con-
struction and how they give a pair of adjoint functor in the associative case.

B :

{
diff. gr. ass.

algebras

}

⇋

{
diff. gr. coass.

coalgebras

}

: Ω.

Let (A, dA, µA, εA) be an augmented dga algebra and Ā = ker(εA) its augmen-
tation ideal. The bar construction of A is obtained by twisting the differential of
the dga free coalgebra T c(s−1Ā).

The differential dA makes Ā and thus s−1Ā into a dg vector vector space. Let
D1 denote the induced differential on T c(s−1Ā) which in tensor degree n is:

n∑

i=1

id i−1 ⊗ds−1Ā ⊗ id n−i .

S−1 = s−1Q admits an associative product-like map of degree +1 defined by:

Πs : s
−1Q⊗ s−1Q −→ s−1Q Πs(s

−1 ⊗ s−1) = s−1.

The map Πs and the restriction µĀ of the multiplication µA to Ā induce the fol-
lowing map:

f : s−1Q⊗ Ā⊗ s−1Q⊗ Ā
id ⊗τ⊗id
−−−−−−→ s−1Q⊗ s−1Q⊗ Ā⊗ Ā

Πs⊗µĀ−−−−−→ s−1Q ⊗ Ā.
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This map induces a degree 1 map D2 : T c(s−1Ā) −→ T c(s−1Ā) which satisfies
D2

2 = 0 because of the associativity of µA
One check that the degree 1 morphism D1 and D2 commutes (in the graded

sense):

D1 ◦D2 +D2 ◦D1 = 0

The coproduct on T c(s−1Ā) is given by the deconcatenation coproduct. From
these definitions, one obtains (see [LV12][Section 2.2.1]) the following.

Lemma 2.18. The complex B(A) = (T c(s−1Ā), dB) with dB = D1 + D2 and
endowed with the deconcatenation coproduct ∆ is a conilpotent dga coalgebra.

We recall below the explicit formulas related to the bar construction B(A):

• An homogeneous element a of tensor degree n is denoted by

[s−1a1| · · · |s
−1an]

or when the context is clear enough not to forget the shifting simply by
[a1| · · · |an]. Its degree is given by:

degB(a) =

n∑

i=1

degs−1Ā(sai) =

n∑

i=1

(degA(ai)− 1)

• the coproduct is given by:

∆(a) =
n∑

i=1

[s−1a1| · · · |s
−1ai]⊗ [s−1ai+1| · · · |s

−1an].

• Let ηa(i) or simply η(i) denote the “partial degree” of a:

ηa(i) =

i∑

k=1

degs−1Ā(s
−1ak) =

i∑

k=1

(degA(ak)− 1).

• The differential D1 and D2 are explicitly given by the formulas:

D1(a) = −
n∑

i=1

(−1)η(i−1)[s−1a1| · · · |s
−1dA(ai)| · · · |s

−1an]

and

D2(a) = −
n∑

i=1

(−1)η(i)[s−1a1| · · · |s
−1µA(ai, ai+1)| · · · |s

−1an].

The global minus sign in D1 appears because the differential of the dg
vector space s−1Ā is given by ds−1Ā(s

−1a) = −s−1dA(a). The other signs
are due to the Kozul sign rules taking care of the shifting.

Remark 2.19. This construction can be seen as a simplicial total complex associated
to the complex A (as in [BK94]). Here, the augmentation makes it possible to use
directly Ā without referring to the tensor coalgebra over A and without the need
of killing the degeneracies. However this simplicial presentation usually masks the
need of working with the shifted complex.

The bar construction B(A) also admits a product x which shuffles the tensor
factors. However, this extra structure becomes more interesting when A is graded
commutative and we will present it in the next section.

The bar construction is a quasi-isomorphism invariant as shown in [LV12] (Propo-
sition 2.2.4) and the construction provides a functor:

B : {aug. dga algebra} −→ {coaug. dga coalgebra} .
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2.2.2. Cobar construction. Analogously, one constructs the cobar functor. Let
(C, dC ,∆C , εC be a coaugmented dga coalgebra decomposed as C = C̄ ⊕ Q with .
Consider T (sC̄) the free algebra over sC̄ (with concatenation product). The differ-
ential on C induces a differential d1 on T (sC̄). S = sQ comes with a coproduct-like
degree 1 map:

∆s : sQ −→ sQ⊗ sQ , ∆s(s) = −s⊗ s.

The map ∆s and the restriction of the reduced coproduct ∆̄c to C̄ induce the
following map:

g : sC̄
∆s⊗∆̄C−−−−−→ sQ⊗ sQ⊗ C̄ ⊗ C̄

id ⊗τ⊗id
−−−−−−→ sQ⊗ C̄ ⊗ sQ⊗ C̄

which induces a degree 1 map d2 on T (sC̄) satisfying d22 = 0 because of the coas-
sociativity of ∆c. The two degree 1 maps d1 and d2 commutes (in the graded
sense):

d1 ◦ d2 + d2 ◦ d1 = 0.

Lemma 2.20. The complex Ω(C) = (T (sC̄), dΩ) with dB = D1 + D2 and en-
dowed with the concatenation product is a augmented dga algebra called the cobar
construction of C.

Note that the cobar construction is not in general a quasi-isomorphisms invariant.
The reader may look at [LV12, Section 2.4] for more details.

2.2.3. Adjunction. The two functors bar and cobar induces an adjunction described
as follows:

Theorem 2.21 ([LV12, Theorem 2.2.9 and Corollary 2.3.4]). For every augmented
dga algebra A and every conilpotent dga coalgebra C there exist natural bijections

Homdga alg(Ω(C), A) ≃ Tw(C,A) ≃ Homdga coalg(C,B(A)).

This adjunction, gives two universal twisting morphisms : π : B(A) −→ A
induced by the projection onto the tensor degree 1 onto s−1Ā; ι : C −→ Ω(C)
induced by the inclusion of sC̄ into the tensor degree 1 part.

The unit υ : C −→ B ◦ Ω(C) and the counit ǫ : Ω ◦ B(A) −→ A are quasi-
isomorphisms of dga coalgebras and algebras respectively.

2.3. Bar/cobar adjunction: commutative algebras/coLie Coalgebras. In
this section we recall the bar/cobar adjunction in the commutative/coLie case giving
a pair of functors:

Bc :

{
diff. gr. com.
ass. algebras

}

⇋

{
diff. gr. coLie.

coalgebras

}

: ΩL.

The cobar construction in the coLie case is a little more delicate. We will concen-
trate on this construction. The bar construction in the commutative case, will be
presented as the set of indecomposable elements of the associative bar construction.
A direct construction can be found in [SW11a]. Other description were given in
[GJ94, GK94].

2.3.1. Cobar construction for coLie coalgebras. The construction essentially follows
the one given for commutative dga coalgebra, however the lack of associativity and
the use of the symmetric algebra makes the construction a little more delicate.

First we need a notion of conilpotency for a coLie algebra (Lc, δ, d). As δ is not
associative, one can not directly use the reduced iterated coproduct and one needs
to introduce trivalent trees.

A rooted trivalent tree, or simply a tree when the context is clear, is a planar
tree (at each internal vertex a cyclic ordering of the incident edges is given) where
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vertices have valency 1 (external vertices) or 3 (internal vertices) together with a
distinguished external vertex (the root); other external vertices are called leaves.

Trees will be drawn with the convention that the cyclic ordering of the edges
around an internal vertex is displayed in counterclockwise direction. The root
vertex in the case of a rooted tree is displayed at the top. A tree comes with a
canonical numbering of its edge, starting from the root edge and induced by the
cyclic ordering at each vertex. This numbering of the edge, induce a canonical
numbering of the leaves (the root has number 0).

Let (Lc, δ, d) be a dg coLie coalgebra. Recall that δ is a dg morphism δ : Lc −→
Lc ⊗Lc. In order to emphasize the target space, we may write δ⊗ for δ and δΛ for
the induced morphism δΛ : Lc −→ LcΛLc.

Definition 2.22. Let T be a tree with n as above and let {e1, . . . , en} be the set
of its leaves (ei is the i-th leaf). T induces a morphism

δT : Lc −→ Lc⊗n

as follows:

• if T has n = 1 leaf, δT = id Lc ;

• if T has n = 2 leaves, then T =

e1 e2

and δT = δ⊗;

• if T has n > 3 leaves, then there exists at least one leaf ei in a strict subtree
of the form

T0 =

v

ei ei+1

where v is an internal vertex of T . Let T ′ be the tree T \ T0, where the
internal vertex v of T is the i-th leaf (in T ′). The morphism δT is defined
by

δT = (id⊗(i−1) ⊗δ ⊗ id⊗(n−i)) ◦ δT ′ .

This definition does not depend on the choice of the leaf ei; it is as if each internal
vertex of T contributes for a δ keeping track of the positions of the factors in Lc in
the tensor products.

We can now define a conilpotent dg coLie coalgebra by analogy with the asso-
ciative case.

Definition 2.23. We say that (Lc, δ, d) is conilpotent if for any x ∈ Lc there exist
n big enough such that for any tree T with k leaves, k > n, δT (x) = 0.

We now fix a conilpotent dg coLie coalgebra (Lc, δ, dLc). Its cobar construction
is given by twisting the differential of the free commutative dga Sgr(sLc).

The differential dLc induces a differential dsLc on sLc and thus on (sLc)⊗n given
by

n∑

i=1

id⊗(i−1) ⊗ dsLc ⊗ id⊗(n−i) : (sLc)⊗n −→ (sLc)⊗n.

This differential goes down to a differential on n-th symmetric power of sLc:

D1 : Sgr,n(sLc) −→ Sgr,n(sLc).

Using the map ∆s and the cobracket δLc , one has a morphism:

gL : sLc
∆s⊗Lc

−−−−−→ sQ⊗ sQ⊗ Lc ⊗ Lc
id ⊗τ⊗id
−−−−−−→ sQ⊗ Lc ⊗ sQ⊗ Lc.
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which induces a degree 1 map δs : sLc −→ S2,gr(sLc) because

−τsLc⊗sLc ◦ gL = (id ⊗τ id ) ◦ (−τS⊗S ⊗ τLc⊗Lc) ◦ (∆s ⊗ δLc)

= (id ⊗τ ⊗ id ) ◦ ((id S⊗S ◦∆s)⊗ (τLc⊗Lc ◦ δLc))

which shows that

(id −τ)sLc⊗sLc ◦ gL = (id ⊗τ ⊗ id ) ◦ (∆s ⊗ ((id +τ)Lc⊗Lc ◦ δLc)) = 0

Now, we want to show that δs induce a differential D2 on Sgr(sLc) given on
Sgr,n(sLc) by the formula:

D2|Sgr,n(sLc) =

n∑

i=1

id⊗(i−1) ⊗gL ⊗ id⊗(n−i) .

In order to do so, it is enough to prove the following lemma.

Lemma 2.24. The composition given by the bottom line of commutative diagram
below is zero:

sLc ⊗ sLc sLc ⊗ sLc ⊗ sLc

sLc Sgr,2(sLc) Sgr,3(sLc)

g

δs

gL ⊗ id + id ⊗gL

δs ⊙ id + id ⊙δs

1/6(id +τ12)(id +ξ + ξ2)

where τ12 exchange the two first factors of sLc and ξ is the cyclic permutation of
the factors sLc previously describe (1 → 3 → 2 → 1).

Proof. In order to check that the bottom line is 0, we will work with the following
spaces :

sLc = sQ⊗ Lc , (sQ)⊗2 ⊗ (Lc)⊗2 , (sLc)⊗2 (sQ)⊗3 ⊗ (Lc)⊗3 (sLc)⊗3.

Let φ be an element of Q[Sn], we shall denote by (φ)V the induce morphism on
V ⊗n. Let f : (sQ)⊗3 ⊗ (Lc)⊗3 −→ (sLc)⊗3 be the morphism defined by (note that
S = sQ)

f =(id S⊗Lc⊗S ⊗τ ⊗ id Lc) ◦ (id S ⊗τ ⊗ id S⊗Lc⊗Lc) ◦ (id S⊗S ⊗τ ⊗ id Lc⊗Lc)

=(id S ⊗τ ⊗ id Lc⊗S⊗Lc) ◦ (id S⊗S⊗Lc ⊗τ ⊗ id Lc) ◦ (id S⊗S ⊗τ ⊗ id Lc⊗Lc).

Then for any permutation σ in S3, one has

(σ)sLc = f ◦ ((σ)S ⊗ (σ)Lc) ◦ f−1.

Thus, as τ12 and ξ act on S3 by − id and id respectively, one gets

(4) (id +τ12)sLc(id +ξ + ξ2)sLc = f ◦ (id S⊗3 ⊗(id −τ12)Lc(id +ξ + ξ2)Lc) ◦ f−1.

Now, we remark that

(gL ⊗ id sLc) ◦ gL = f ◦ ((∆s ⊗ id S) ◦∆S)⊗ ((δLc ⊗ id Lc) ◦ δLc)

and
(id sLc ⊗gL) ◦ gL = f ◦ ((id S ⊗∆s) ◦∆S)⊗ ((id Lc ⊗δLc) ◦ δLc) .

Because (id S ⊗∆s) ◦∆S = −(∆s ⊗ id S) ◦∆S , the above relations show that

(5) (gL ⊗ id sLc + id sLc ⊗gL) ◦ gL =

f ◦ ((∆s ⊗ id S) ◦∆S⊗)⊗ (δLc ⊗ id Lc − idLc ⊗δLc) δLc .

Putting equations (4) and (5) together, Lemma 2.13 concludes the proof.
�



A RELATIVE BASIS FOR MTM(P1 \ {0, 1,∞}) 13

The differential D1 and D2 commute (in the graded sens), that is D1 ◦D2+D2 ◦
D1 = 0 and one obtains the following.

Lemma 2.25. The complex ΩcoL(L
c) = (Sgr(sLc), dΩ,coL) with the symmetric

concatenation product is an augmented commutative dga algebra called the cobar-
coLie construction of Lc.

2.3.2. Bar construction for commutative dga algebras. Let (A, dA, µA, εA) be an
augmented commutative dga algebra and Ā = ker(εA). One can consider its bar
construction B(A) as associative algebra. One defines on the coalgebra B(A) an
associative product x by the formula

[x1| · · · |xn]x [xn+1| · · · |xn+m] =
∑

σ∈sh(n,m)

ρS(σ)([x1| · · · |xn|xn+1| · · · |xn+m])

=
∑

σ∈sh(n,m)

εgr(σ)([xσ−1(1)| · · · |xσ−1(n+m)])

where sh(n,m) denotes the subset Sn+m preserving the order of the ordered sets
{1, . . . , n} and {n+ 1, . . . , n+m}. For grading reasons, and thus for signs issues,
it is important to note that, in the above formula, the xi’s are elements of s−1A.

A direct computation shows that x turns B(A) into an augmented commutative
dga Hopf algebra; that is it respects the expected diagrams for a Hopf algebra, all
the morphisms involved being dg-morphisms.

The augmentation of B(A) is the projection onto the tensor degree 0 part. Let
B(A)+ be the kernel of the augmentation of B(A) and

QB(A) = B(A)+/(B(A)+)
2

be the set of its indecomposable elements. Ree’s theorem [LV12, Theorem 1.3.9]
(originally in [Ree58]) shows the following

Lemma 2.26. The reduced coproduct ∆′ induce a cobracket δQ = ∆′ − τ∆′ on
QB(A) making it a conilpotent coLie dg coalgebra. The differential dB induces a
differential dQ on QB(A).

The complex (QB(A), dQ) endowed with the cobracket δQ is the commutative bar
construction of A and denoted by Bcom(A).

Working with the indecomposable elements is not always easy as one has to work
modulo products. In particular, obtaining explicit formula may be problematic as
such a formula would be defined up to shuffle. Moreover, some structure, say
for example extra filtrations, may not behave well by taking a quotient. For this
purpose, R. Hain, dealing with Hodge structure problems, gave in [Hai86] a splitting

iQ : QB(A) −→ B(A)+

of the projection pQ : B(A)+ −→ QB(A) commuting with the differential. The
projector of B(A)+ given by the composition px = iQ ◦ pQ can be express using
the following explicit formula

px([a1| · · · |an]) =
n∑

i=1

(−1)i−1

i
x ◦(∆̄)i−1([a1| · · · |an])

where the associative product x has been extend to B(A)⊗n for all n > 2 and
where ∆̄(0) = id .
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2.3.3. Adjunction. As in the case of associative algebras and coalgebras, the func-
tors ΩcoL and Bcom are adjoint.

Theorem 2.27. For any augmented commutative dga algebra A and any conilpo-
tent dg coLie coalgebra Lc there exist natural bijections

Homcom dga alg(ΩcoL(L
c), A) ≃ TwcoL;com(L

c, A) ≃ Homconil dg coLie(L
c, Bcom(A)).

This adjunction, gives two universal twisting morphisms : π : Bcom(A) −→ A
induced by the projection onto the tensor degree 1 onto s−1Ā; ι : Lc −→ ΩcoL(Lc)
induced by the inclusion of sL̄c into the tensor degree 1 part of Sgr(sLc).

The unit υ : Lc −→ Bcom ◦ΩcoL(Lc) and the counit ǫ : ΩcoL ◦Bcom(A) −→ A are
quasi-isomorphisms of conilpotent dg co Lie algebras and commutative dga algebras
respectively.

Note that the following diagram of vector space is commutative:

Lc ΩcoL(Lc) = (Sgr(sLc), dΩ,coL)

Bcom(ΩcoL(Lc)) = QB (Sgr(sLc), dΩ,coL)

υ π1

where π1 is the projection onto the tensor degree 1 part π1 : ⊕n>0Ω(Lc)⊗n restricted
to the set of indecomposable elements, that is restricted to the image of px .

2.4. An explicit map. In this last section about the bar/cobar adjunction, we
present an explicit description for the unit υ : Lc −→ Bcom ◦ ΩcoL(Lc) with image
in T c(Sgr(sLc)) using the projector px onto the indecomposable elements.

In order to make explicit the morphism υ, we need to introduce the following
definition.

Definition 2.28. Let n be a positive integer.

• The Catalan number C(n − 1) gives the number of rooted trivalent trees
with n leaves.

• Let T be such a rooted trivalent tree with n leaves. Define ∆̃T by

∆̃T =
1

2n
∆T

where the map φT : Lc −→ Lc⊗n was introduced at Definition 2.22.
• The morphism ∆̃n is up to a normalizing coefficient the sums for all trees
T with n Leaves of the morphism ∆̃T :

∆̃n =
∑

T s.t. |T |=n

1

nC(n− 1)
∆̃T .

where |T | denotes the number of leaves of the tree T .

Note that using the identification Lc ≃ s−1 ⊗ s⊗ Lc given by x 7→ s−1 ⊗ s⊗ x,
the morphism ∆̃n induces a morphism

Lc −→
(
s−1 ⊗ s⊗ Lc

)⊗n

again denoted by ∆̃n.

Claim. The composition

φLc = px ◦




∑

n>1

∆̃n




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which lands into the indecomposable elements of the bar construction over ΩcoL(Lc)
(which is as algebra isomorphic to Sgr(sLc) but not with the dg structure):

φcL : Lc −→ Bcom ◦ ΩcoL(L
c) = (QB (Sgr(sLc), dΩ,coL) , dB)

is equal to the unit of the adjunction; that is

φLc = υ.

Note that by definition
∑

n>1
˜Deltan lands into

(
s−1 ⊗ s⊗ Lc

)⊗n
which is a

subspace of
(
s−1Sgr(sLc)

)⊗n
⊂ B(Sgr(sLc))+.

Then, the projection px makes sure that the morphism φLc lands into the set of
indecomposable elements.

The idea for this formula comes from mimicking the associative case where the
unit morphism being a coalgebra morphisms has to be compatible with the iter-
ated reduced coproduct. Similarly, in the coLie case, the unit have to be compatible
with the map ∆T,Lc and ∆T,QB(Sgr(sLc)). In order to obtain a direct expression in
∑

n>1

(
s−1 ⊗ s⊗ Lc

)⊗n
one needs to relate the morphisms ∆T with the iterated

reduced deconcatenation coproduct on B(Sgr(sLc)). This leads us to the normal-
izing coefficients. This formula can be derived as a consequence of the work of
Getzler and Jones [GJ94] or of the work of Sinha and Walter [SW11b].

3. Families of bar elements

3.1. From differential systems to bar elements. Let (A, µA, dA, εA) be an
augmented cdga algebra. As previously, the product µA(x, y) can be denoted simply
by x·y. Under some additional conditions on A, the indecomposable elements of the
H0 of the bar-construction B(A) provides generating the 1-minimal model of A in
the sens of Sullivan [Sul77]. In [DGMS75], the authors gave a concrete construction
for such a model. This construction induces (and is essentially encoded) by a family
of elements of degree 1 {vi,k}i∈Ik, k>1 where Ik is a finite set and a differential system
in A relating the elements vi,k:

dA(vi,k) =
∑

l+l′=k
j∈Il, j

′∈Il′

ai,kj,l
j′,l′

vj,l · vj′,l′ .

A general question is to relate such a construction of the 1-minimal model to the
bar construction setting, in particular to relate such a differential system to specific
elements in B(A) providing the expected classes in QB(H

0(B(A))).
The goal of this section is to show how, some differential systems in A (recovering

partly the above question) induce naturally elements in B(A) lying into the image
of px and having 0 differential; these elements which can written directly in terms
of A⊗n provide classes in QB(H

0(B(A))).

Definition 3.1. (Adams or weight graded cdga Algebra) An augmented cdga
(A, µA, dA, εA) is weight (or Adams) graded if the dg vector space A = A• ad-
mits a decomposition into sub-dg vector space A• = ⊕n>0A

•(p) such that:

• the multiplication restricts as µA : Ak(p)⊗Al(q) −→ Ak+l(p+ q) and does
not see the weight grading; as if the weight grading was only even.

• A(0) = Q is the image of the unit morphism Q −→ A.

We now assume that (A, µA, dA, εA) is weight graded. Consider a family of
elements {vi,p}i∈Ip, p>1 in A1 such that

(1) Ip is a finite set of indices depending on p;
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(2) for any p > 1 and any i ∈ Ip, the element vi,p is in A1(p); that is of degree
1 and weight p;

(3) elements of weight 1 are mapped to 0 by the differential:

∀i ∈ I1 dA(vi,1) = 0;

(4) the differential of any element vi,p is decomposable inside the family:

∀p > 2, ∀i ∈ Ip dA(vi,p) =
∑

p1+p2=p
i1∈Ip1 , i2∈Ip2

ai,pi1,p1
i2,p2

vi1,p1 · vi2,p2

where the coefficients ai,pi1,p1
i2,p2

are rationals;

(5) the coefficients ai,pi1,p1
i2,p2

alone show that d2A(vi,p) = 0 for any p and i ∈ Ip;

that is no relation between the vi,p is used in the relation d2A(vi,p) = 0.

Proposition 3.2. Let A and a differential system of elements vi,p be as above.
Then for any p > 1 and any i in Ip there exist an element vBi,p in B(A) the bar
construction over A satisfying:

(1) Let π1 : B(A) −→ A be the projection onto the tensor degree 1 part, then
π1(v

B
i,p) = vi,p;

(2) vBi,p = px(v
B
i,p);

(3) vBi,p is of degree 0 in B(A) and

dB(A)(v
B
i,p) = 0;

(4) Writing vBi,p for the class of vBi,p in the H0(QB(A)) which is the set of inde-

composable elements of the H0(B(A)), one has for all p > 2 and all i ∈ Ip

δQ(vBi,p) =
∑

p1+p2=p
i1∈Ip1 , i2∈Ip2

−ai,pi1,p1
i2,p2

vBi1,p1 ∧ v
B
i2,p2

where δQ : H0(QB(A)) −→ H0(QB(A)) ∧ H0(QB(A)) is the cobracket in-

duced on H0(QB(A)) by the coproduct on B(A); with a slight abuse of no-
tation δQ = 1/2(∆̄− τ ◦ ∆̄).

In weight 1 one has δQ(vi,1) = 0 for any i ∈ I1.

The general idea is to relate the above differential system to a coLie algebra in
order to use the unit of the adjunction bar/cobar in the commutative/coLie case.
The condition (5) on the coefficients of the differential system insures that one has
an “underlying” coLie algebra while condition (3) and the weight grading insures
the conilpotency of this coLie algebra.

Proof. Let A and a family of elements {vi,p} be as above. Let Lc be the dg-vector
space concentrated in degree 0 generated by formal elements fi,p:

Lc = ⊕p>1 ⊕i∈Ip Qfi,p.

The differential system satisfied by the vi,p’s induces a cobracket δ : Lc −→ Lc⊗Lc:

∀i ∈ I1, δ(fi,1) = 0

and

∀p > 2 ∀i ∈ Ip δ(vi,p) =
∑

p1+p2=p
i1∈Ip1 , i2∈Ip2

−
1

2
ai,pi1,p1
i2,p2

(fi1,p1 ⊗ fi2,p2 − fi2,p2 ⊗ fi1,p1).

Note that, as the fi,p are of degree 0, δ satisfies

(id Lc⊗Lc −τ) ◦ δ = 0
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by definition.
We now check the co-Jacobi identity; that is

(id +ξ + ξ2) ◦ (δ ⊗ id ) ◦ δ = 0.

The anti-symmetry of δ implies that

(id ⊗δ) ◦ δ = −ξ2 ◦ (δ ⊗ id ) ◦ δ

and

(id −τ12)(id +ξ + ξ2) ◦ (δ ⊗ id ) = 2(id +ξ + ξ2) ◦ (δ ⊗ id )

where τ12 exchanges the two first factors of Lc⊗3. Hence, in order to prove co-
Jacobi, it is enough to prove that

(id −τ12)(id +ξ + ξ2) ◦ (δ ⊗ id − id ⊗δ) ◦ δ = 0.

That is, one can compute directly in the exterior algebra Λgr,3(Lc). As the vi,p’s
are of the degree 1 and the fi,p of degree 0, the computation above gives the same

coefficients as dA ◦ dA(vi,p). Thus, condition (5) on the coefficients ai,pi1,p1
i2,p2

’s induces

the co-Jacobi identity.
Now, the natural morphism ψ : ΩcoL(Lc) = Sgr(sLc) −→ A sending s ⊗ fi,p to

vi,p for any p > 1 and any i ∈ Ip is a morphism of cdga algebra; its commutes with
the differential on ΩcoL(Lc) because Lc is concentrated in degree 0 and thus has 0
differential.

It induces a morphism on the bar construction (for the associative case)

ψB : B(ΩcoL(L
c)) −→ B(A)

compatible with projection on tensor degree n (for any n) and with the projector
px onto the indecomposable elements.

Hence we obtain the following commutative diagram (of vector space)

ΩcoL(L
c) A

Lc Bcom(ΩcoL(Lc)) QB(A)
υ

ψ

ψQ

π1
π1

where the morphisms in the bottom line are morphisms of dg coLie algebras and
where υ is the unit of the bar/cobar adjunction.

For any p > 1 and any i ∈ Ip, one defines vBi,p as the image:

vBi,p = ψQ ◦ υ(fi,p).

Recall that Lc is concentrated in degree 0 and that the composition π1 ◦ υ sends
fi,p to sfi,p. The properties of the vBi,p now follow because ψQ ◦ υ is a morphism of
dg coLie algebra. �

3.2. A differential system in Bloch’s cycle algebra over P1 \ {0, 1,∞}. In
[Sou12a], the author defined a family of algebraic cycles LεW indexed by couple
(W, ε) where W is a Lyndon word and ε in {∅, 1}. Note that, all words considered
in this work are words in the two letters 0 and 1.

One of the idea underling the construction of the cycles was to follow explicitly
a 1-minimal model construction as in [DGMS75] with the hope to use the relation
between 1-minimal model and bar construction in order to obtain motives over
P1 \ {0, 1,∞} in the sense of Bloch and Kriz [BK94].

The construction of the family of cycles provides in fact a differential system
for these cycles together with an underlying combinatorial differential system for a
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family of rooted trivalent trees. In this subsection we will associated bar elements
to the previously defined algebraic cycles.

Before dealing with the algebraic cycles situations, we need to recall the combina-
torial situation from [Sou12a]. This is need for the condition (5) on the differential
system and will be used later on.

As previously, a tree is a finite tree whose internal vertices have valency > 3 and
where at each vertex a cyclic ordering of the incident edges is given. A rooted tree
have a distinguished external vertex called the root and a forest is a disjoint union
of trees.

Note that even if the we have already used rooted trees before, the trees below
are unrelated to the one previously used.

3.2.1. Trees, Lie algebras and Lyndon words. Let T tri be the Q-vector space gener-
ated by rooted trivalent trees with leaves decorated by 0 and 1 modulo the relation

T1

T2 T3

= −
T1

T3 T2

where the Ti’s are subtrees (and T1 contains the root of the global tree). Note that
in the above definition, the root is not decorated.

Define on T tri the internal law by

T1 T2 T3 T4

=

•

T1 T2 T3 T4

.

and extend it by bilinearity. One remarks that by definition is antisymmetric.
Identifying {0, 1} with {X0, X1} by the obvious morphism and using the correspon-
dence ↔ [, ], this internal law allows us to identity the free Lie algebra Lie(X0, X1)

with T tri modulo the Jacobi identity. Thus, one can identify the (graded) dual of
Lie(X0, X1) as a subspace of T tri

Lie(X0, X1)
∗ ⊂ T tri.

A Lyndon word in 0 and 1 is a word in 0 and 1 strictly smaller than any of
its nonempty proper right factors for the lexicographic order with 0 < 1 (for more
details, see [Reu93]). The standard factorization [W ] of a Lyndon wordW is defined
inductively by [0] = X0, [1] = X1 and otherwise by [W ] = [[U ], [V ]] with W = UV ,
U and V nontrivial and such that V is minimal. The sets of Lyndon brackets {[W ]},
that is Lyndon words in standard factorization, form a basis of Lie(X0, X1) which
can then be used to write the Lie bracket

[[U ], [V ]] =
∑

W Lyndon
words

αWU,V [W ].

with U < V Lyndon words.

Example 3.3. Lyndon words in letters 0 < 1 in lexicographic order are up to
weight 5:

0 < 00001 < 0001 < 00011 < 001 < 00101 < 0011 < 00111 <

01 < 01011 < 011 < 0111 < 01111 < 1

The above identification between Lie(X0, X1) as a quotient of T tri and the basis
of Lyndon brackets allows us to define a family of trees dual to the Lyndon bracket
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basis beginning with T0∗ =
0

and T1∗ =
1

and then setting

(6) TW∗ =
∑

U<V

αWU,V TU∗ TV ∗ .

Example 3.4. We give below the corresponding dual trees in weight 1, 2 and 3

T0∗ =
0

, T1∗ =
1

, T01∗ =
0 1

, T001∗ =

0 0 1

, T011∗ =

0 1 1

.

In weight 4 appears the first linear combination

T0001∗ =

0 0 0 1

, T0011∗ =

0 0 1 1

+

0 0 1 1

, T0111∗ =

0 1 1 1

.

due to the fact that both [0] ∧ [011] and [001] ∧ [1] are mapped onto [0011] =
[X0, [[X0, X1], X1]] under the bracket map.

3.2.2. The combinatorial context. Now, we introduced rooted oriented decorated
trees which give the combinatorial context.

Definition 3.5. A rooted oriented decorated tree (T, ω) (not necessarily trivalent)
is a rooted tree T such that:

• the root vertex is decorated by 0, 1, or a formal parameter t;
• the leaves are decorated by 0 or 1;
• ω is a numbering of the edge of T , that is a map from ω : E(T ) −→

{1, . . . , n} where E(T ) is the set of edge of T and n = e(T ) the number of
edges.

Note that there is an obvious direction on the edges of a rooted tree T : away from
the root. A rooted tree T comes with a canonical numbering, starting from the
root edge and induced by the cyclic ordering at each vertex.

The above definition extends naturally to forest, that is to disjoint union of
rooted oriented decorated trees.

Example 3.6. With our convention, an example of this canonical ordering is shown
at Figure 1; we recall that by convention we draw trees with the root at the top
and the cyclic order at internal vertices counterclockwise.

e3 e4

e2
e5

e1

t

0 1 1

Figure 1. A tree with its canonical orientation, that is the canon-
ical numbering of its edges.

Definition 3.7.

• Let V t be the Q-vector space generated by a unit 1 and oriented forests of
rooted oriented decorated trees. The degree of such a tree T is 2w(T )−e(T )
where w(T ) denotes the number of leaves in T .



20 ISMAEL SOUDÈRES

• Let · denote the product induced by the disjoint union of the trees and
shift of the numbering for the orientation of the second factor. That is the
product of (F1, ω1) and (F2, ω2) is the forest F = F1 ⊔ F2 together with
the numbering ω satisfying ω|E(F1) = ω1 and ω|E(F2) = ω2 + n1 where
n1 = e(F1) is the number of edges in F1. Note that here, by convention,
the empty tree is 0 and the unit for · is the extra generator 1.

• Define T dec,or to be the algebra V t modulo the relations:

(T, σ(ω)) = ε(σ)(T, ω),
T1T2

0

= 0 and
1

0

= 0.

for any permutation σ and where ε(σ) denotes the usual signature of the
permutation σ.

The algebra T dec,or endowed with the product · is graded commutative. Note that
for any forest F one has (−1)deg(F ) = (−1)e(F ).

The algebra T dec,or is endowed with a differential dcy given essentially by contrac-
tion of internal edges and contraction and splitting of external edges, see [Sou12a]
or [GGL09].

Note that there are two morphisms ϕt, ϕ1 : T tri −→ T dec,or, sending a rooted
trivalent tree in T tri to the same tree (with same decoration of leaves), canonical
ordering of the edge and with the root vertex decoration equal to t and 1 respec-
tively. The differential dcy on T dec,or is in particular defined in order to mimic
the differential on algebraic cycle (see [GGL09]). The main result of the combina-
torial aspects shows that the image of the linear combination TU∗ in T dec,or have
decomposable differential under dcy.

Theorem 3.8. By an abuse of notation, for any Lyndon word U the image of
TU∗ in T dec,or with root vertex decorated by t and canonical orientation is also
denoted by TU∗(t). The image of TU∗ in T dec,or with root vertex decorated by 1 and
canonical orientation is denoted by TU∗(1).

Let W be a Lyndon word. Then, the following equality holds in T dec,or:

(ED-T) dcy(TW∗(t)) =
∑

U<V

αWU,V TU∗(t) · TV ∗(t) +
∑

U,V

βWU,V TU∗(t) · TV ∗(1)

where the αWU,V are the ones from Equation (6). In the above equation, coefficients
α’s and β’s are in Z.

Remark 3.9. They are no relations between the TU∗(t) and TU∗(1), thus computing
d2cy(TU∗(t)) = 0 provides relations among the coefficients α’s and β’s (explicitly
given in [Sou12a]).

Remark 3.10. One remarks that contracting the root edge and then splitting in two
new rooted trees in all the trees appearing in TU∗ is exactly the cobracket operation
dual to the Lie bracket in Lie(X0, X1) viewed as quotient of T tri. This explains
why the coefficients α’s from (6) appear in the above equation.

We give below examples in weight 1, 2 and 3 of the differential dcy which will be
useful later on.

Example 3.11. The trees are endowed with their canonical numbering. First,
trees with only one edge are mapped to 0 so

dcy(T0∗) = dcy(
t

0

) = 0 and dcy(T1∗) = dcy(
t

1

) = 0.

We recall that a tree with root decorated by 0 is 0 in T dec,or. As applying an
odd permutation to the numbering changes the sign of the tree, the trivalency of
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the tree TW∗ shows that some trees arising from the computation of dcy are 0 in
T dec,or because they contain a symmetric subtree; that is they contain a subtree of
the form

T T

where T is a trivalent tree.

Using the fact that the tree
1

0

is 0 in F•
Q, one computes in weight 2

dcy(T01∗) = dcy(

t

0 1

) =
t

0

·
t

1

= T0∗ T1∗ .

In weight 3, one has

dcy(T001∗) = dcy(

t

0 0 1

) =
t

0

·

t

0 1

= T0∗ T01∗

and

dcy(T011∗) = dcy






t

0 1 1




 =

t

0 1

·
t

1

+
t

1

1

0 1

= T01∗ T1∗ + T1∗ T01∗(1).

3.2.3. A differential system for cycles. From this differential system, the author
defined in [Sou12a] a twisted version defining the following coefficients.

Definition 3.12. Let W be a Lyndon word and U , V two Lyndon words. We set:

(7)
aWU,V = αWU,V + βWU,V − βWV,U for U < V

bWU,V = −βWU,V for any U, V

and

(8)

a′
W
U,V = −aWU,V for 0 < U < V,

b′
W
U,V = aWU,V + bWU,V for 0 < U < V,

b′
W
V,U = −aWU,V + bWV,U for 0 < U < V,

a′
W
0,V = a0,V for any V,

b′
W
U,U = bWU,U for any U.

It is also convenient to define b′
W
0,V = b′

W
V,0 = 0.

The introduction of coefficient a’s and b’s corresponds to changing the basis in
which one writes the trees differential system (ED-T). More precisely, instead of
writing (ED-T) with trees TU∗(t) and TU∗(1), one writes two differential systems
using the trees TU∗(t) and T 1

U∗ = TU∗(t)− TU∗(1).
As explained in [Sou12a], this change in the coefficient is required by the geomet-

ric situation in Bloch cycle algebra N •
A1 and the need to work with equidimensional

cycles.
The projective line minus three points P1 \ {0, 1,∞} will be simply denoted by

X . Recall that in section ?? were defined two weight 1 degree 1 equidimensional
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cycles in N 1
X :

L0 = Alt([t; t]) ⊂ X ×�1, and L1 = Alt([t; 1− t]) ⊂ X ×�1,

using the graph of the identity

A1 t7→t
−−→ A1

and the graph of the involution

A1 t7→1−t
−−−−→ A1.

This allows to obtain in the geometric situation:

Theorem 3.13 ([Sou12a]). Let j be the inclusion X →֒ A1. For any Lyndon word
of length p greater than or equal to 2, there exist two cycles LW and L1

W in N 1
X(p)

such that:

• LW , L1
W are elements in N eq, 1

X (p).

• There exist cycles LW , L1
W in N eq, 1

A1 (p) such that

LW = j∗(LW ) and L1
W = j∗(L1

W ).

• The restriction of LW (resp. L1) to the fiber t = 0 (resp. t = 1) is empty.
• The cycle LW and L1

W satisfy the following differential equations in N •
X :

(ED-L) ∂(LW ) =
∑

U<V

aWU,V LULV +
∑

U,V

bWU,V LUL
1
V

and

(ED-L1) ∂(L1
W ) =

∑

0<U<V

a′
W
U,V L

1
UL

1
V +

∑

U,V

b′
W
U,V LUL

1
V +

∑

V

a′0,V L0LV

The same equations hold for their extension to N eq, •
A1 LW and L1

W .

One will write generically a cycle in the above families as LεW with ε in {∅, 1}
when working over X = P1 \ {0, 1,∞} and LεW with ε in {∅, 1} when working over
A1.

Remark 3.14. The above theorem gives us two differential systems : one in N eq, •
X

given by the LεW ’s and one in N eq, •
X given by the LεW ’s. Over X or over A1, which

will be the interesting case for us, the two different differential systems are related
by the following relation

(ED-L − L1) ∂
(

LW − L1
W

)

=
∑

0<U<V <1

aWU,V

(

LU − L1
U

)(

LV − L1
V

)

.

This relation is a direct consequence of the relation between the coefficient of Def-
inition 3.12.

When W is a Lyndon word of length greater or equal to 2, the equidimensionality
of the cycle LεW allows us to consider its fiber at a point x ∈ A1; in particular its
fiber at 1. This fiber can now be extended as a constant equidimensional cycle to A1

and then restricted (when needed) to X = P1 \ {0, 1,∞}. All these operations are
compatible with the differential providing us with three other differential systems
(one over the point 1, one over A1 and one over X). Following the previous section
each of these systems of equations induced a family of elements in the corresponding
bar construction (over the point, over A1, and over X). The rest of this section
makes the above idea precise and the next subsection shows how the mentioned
differential systems are related.
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The geometric situation relates P1 \ {0, 1,∞}, A1 and the point {1} as follows:

X = P1 \ {0, 1,∞} A1

{1}

j

p1 i1

where j is the open inclusion, p1 is the projection onto {1} and i1 the closed
inclusion (or the 1-section). On the cycle algebra level one gets

N •
X N •

A1

N eq, •
X N eq, •

A1

N eq, •
Spec(Q)

Then LW is in N eq, 1
A1 (p) and is equidimensional over A1. Its pull-back i∗1(LW )

is simply its fiber at {1} and one can pull this fiber back again to A1 as a constant

equidimensional cycle in N eq, 1
A1 (p).

Definition 3.15. Let W be a Lyndon word of length p > 2. One defines the cycle
LW (1) as:

LW (1) = p∗1 ◦ i
∗
1(LW ) = p1(LW |t=1)

together with its restriction to X : LW (1) = j∗(LW (1)).

Morphisms i∗1, p
∗
1 and j∗ commute with the differential on N eq, •

Spec(Q), N
eq, •
A1 and

N eq, •
X respectively. Note that from [Sou12a, Remark 4.2], the coefficients aWU,1’s are

0 and that L0 has empty fiber at 1. As cycles L1
V have empty fiber at 1, one obtains

the following differential system for the LW (1).

(ED-L(1)) ∂(LW (1)) =
∑

0<U<V<1

aWU,V LU (1)LV (1)

for any Lyndon word W of length greater or equal to 2. The same holds for the
family over A1.

Let BX , BA1 and B{1} denote the bar construction over N eq, •
X , N eq, •

A1 and

N eq, •
Spec(Q) respectively. Let QX , QA1 and Q{1} be the corresponding set of inde-

composable elements. By an abuse of notation, we will write dB, ∆, x and δQ the
natural operation in the corresponding spaces. When required, the “base” space
will be precise by the subscript X , A1 and {1} respectively.

The bar elements LB0 and LB1 in BX defined by

LB0 = [L0] andLB1 = [L1]

are of bar degree 0 with bar differential equals to 0. They give non-trivial class in
QX and map to 0 under the cobracket δQ (because their image under the reduced
coproduct ∆̄ is 0).

Theorem 3.16 (bar elements). For any Lyndon word W of length p > 2 there

exist elements LBW , L1,B
W and LBW (1) in the bar construction BX satisfying:
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• Their images under the projection onto the tensor degree 1 part π1 : BX −→
N •
X are the expected cycles:

π1(L
B
W ) = LW , π1(L

1,B
W ) = L1

W and π1(L
B
W (1)) = LW (1).

• They are invariant under px ; that is they are in the image of the projector
px.

• They are of bar degree 0 and their image under dB is 0. That is they induced
classes in H0(BX) and in H0(QX).

• Their image under δQ is given up to a global minus sign by the differential
equations (ED-L), (ED-L1) and (ED-L(1)).

Proof. The main point is to apply Proposition 3.2. In order to do so, we need to
describe the family vi,p and to check that it fulfill the condition of Proposition 3.2.

In weight 1, the set of indices I1 is the set I1 = {0, 1}. In weight p, the set of
indices is

Ip = {∅, 1} × {W s. t. W is a Lyndon word of length p}.

The family of elements vi,p is then given by

v0,1 = L0, v1,1 = L1

and

v(ε,W ),p =

{
LW if ε = ∅
L1
W if ε = 1

Then, Remark 3.9 and the definition of coefficients a’s, a′’s, b’s and b′’s in terms
of the coefficients of (ED-T) (Definition 3.12) insure that the condition (5) about

the coefficients ai,pi1,p1
i2,p2

is satisfied (for explicit computations one can see [Sou12a,

Proposition 4.3]). The theorem is then a consequence of Proposition 3.2. Similar
arguments works for the elements LBW (1). �

Proposition 3.17. The family of elements in N eq, 1
A1 given by LW − L1

W for any

Lyndon word W of length p > 2 gives a family of bar elements L∅−1,B
W in B(N eq, •

A1 )
satisfying

• Their image under the projection onto the tensor degree 1 part π1 : BA1 −→
N eq, •

A1 is the expected cycle

π1(L
∅−1,B
W ) = LW − L1

W

• They are in the image of the projector px .
• They are of bar degree 0 and their image under dB is 0. That is they induce

classes in H0(BX) and in H0(QX).
• Their image under δQ is given up to a global minus sign by the differential

equations (ED-L − L1).

• Their restrictions j∗(L∅−1,B
W ) to B(N eq, •

X ) equal

j∗(L∅−1,B
W ) = LBW − L1,B

W .

The family i∗1(LW ) for Lyndon word W of length p > 2 gives a family of bar
elements LBW,t=1 in B{1} satisfying

the following properties :

• Their image under π1 : B1 −→ N eq, •
Spec(Q) is π1(L

∅−1,B
W ) = i∗1(LW )

• They are invariant under px;
• They induce classes in H0(BX) and in H0(QX).
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• Their images under δQ is given by

δQ(L
B
W,t=1) = −

∑

0<U<V<1

LBU,t=1 ∧ LBV,t=1

which is corresponding to (ED-L(1)).

They induce (by pull-back on A1) bar elements p∗1(L
B
W,t=1) and are related to the

elements LBW (1) by

j∗ ◦ p∗1(L
B
W,t=1) = LBW (1)

where

B(N •
X) B(N •

A1)

B(N eq, •
X ) B(N eq, •

A1 )

B(N eq, •
Spec(Q))

We will write LBW (1) = p∗1(L
B
W,t=1) as these pull-back give also the bar elements

corresponding to the family LW (1) from Definition 3.15.

Proof. The existence of the bar elements goes as in Theorem 3.16 above and rely
on Proposition 3.2 and on [Sou12a, Proposition 4.3]) for the explicit relations on
the coefficient.

The relations between constructions over {1}, A1 and X = P1 \ {0, 1,∞} follow
because i∗1, p

∗
1 and j∗ are morphisms of cdga algebra. �

The cycle L0 and L1 are not equidimensional over A1, even if they are well-

defined element in N 1
A1 . Thus differentials ∂A1(LW ) and ∂A1(L1

W ) are not decom-

posable in N eq, 2
A1 . In particular, one can not consider bar elements corresponding

to LW and L1
W in BA1 . However the differential ∂A1(LW − L1

W ) is a linear com-

bination of products in N eq, 2
A1 which allows us to define the family of bar elements

L∅−1,B
W .

These elements L∅−1,B
W correspond to the difference LW −L1

W and working over
A1 makes it possible to take the fiber at 1 of relations coming from the bar con-
struction level. This is a key point in the next section.

3.3. Relations between bar elements. This subsection proves that the corre-
spondence

LW − LW (1) ↔ L1
W

for W a Lyndon word of length greater or equal to 2 is an equality in the H0 of the
bar construction modulo shuffle products; that is

LBW − LBW (1) = L1,B
W ∈ H0(QX).

This relation is coming from the geometric situation and its expectation was
one of the reasons to introduce the cycles L1

W with empty fiber at 1 instead of the
difference LW − LW (1).

A key point in order to build cycles LW and L1
W in [Sou12a] was a pull-back

by the multiplication. More precisely, the usual multiplication A1 × A1 −→ A1

composed with the isomorphism A1 ×�1 ≃ A1 × A1 gives a multiplication

m0 : A1 ×�
1 −→ A1
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sending {0} ×�1 to 0. Twisting m0 by θ : t 7→ t gives a “twisted multiplication”

m1 = (θ × id ) ◦m0 ◦ θ : A
1 × �1 −→ A1

sending {1} ×�1 to 1.

Proposition 3.18 ([Sou12a, Propositions 4.9 and 4.11]). For ε = 0, 1 the morphism
mε induces a linear morphism

m∗
ε : N

eq, k
A1 −→ N eq, k−1

A1

giving a homotopy
∂A1 ◦m∗

ε +m∗
ε ◦ ∂A1 = id −p∗ε ◦ i

∗
ε

where pε : A1 −→ {ε} is the projection onto the point {ε} and iε its inclusion is
A1.

From this homotopy property, one derives the following relation between m∗
0 and

m∗
1.

Lemma 3.19. One has:

(9) m∗
1 = m∗

0 − p∗1 ◦ i
∗
1 ◦m

∗
0 − ∂A1 ◦m∗

1 ◦m
∗
0 +m∗

1 ◦m
∗
0 ◦ ∂A1 +m∗

1 ◦ p
∗
0 ◦ i

∗
0

and

(10) m∗
0 = m∗

1 − p∗0 ◦ i
∗
0 ◦m

∗
1 − ∂A1 ◦m∗

0 ◦m
∗
1 +m∗

0 ◦m
∗
1 ◦ ∂A1 +m∗

0 ◦ p
∗
1 ◦ i

∗
1

In particular, when b ∈ N eq, k
A1 satisfies ∂A1 = (b)0 and i0(b) = 0, one has:

m∗
1(b) = m∗

0(b)− p∗1 ◦ i
∗
1(m

∗
0(b)) + ∂A1(m∗

0 ◦m
∗
1(b))

Proof. Let b be in N eq, k
A1 . We treat only Equation 9. Using the homotopy property

for m∗
0, one writes

b = ∂A1 ◦m∗
0(b) +m∗

0 ◦ ∂A1 + p∗0 ◦ i
∗
0(b).

Computing m∗
1, the homotopy property

m∗
1 ◦ ∂A1(m0(b)) = m∗

0(b)− p∗1 ◦ i
∗
1(m0(b))− ∂A1 ◦m∗

1(m
∗
0(b))

gives the desired formula. �

Writing AW (resp. A1
W ) the A1-extension of the right hand side of Equation

(ED-L) (resp. Equation (ED-L1)), cycles LW = j∗(LW ) (resp L1
W = j∗(L1

W ) are
obtained in [Sou12a] as

LW = m∗
0(AW )

(

resp L1
W = m∗

1(A
1
W )
)

.

The main difficulties are to show that AW (resp. A1
W ) has 0 differential and that

it has empty fiber at 0 (resp. 1).
The tree weight 2 example 3.4 together with Definition 3.12 show that

L01 = m∗
0(L0 L1) and L1

01 = m∗
1(L0 L1)

Using Lemma 3.19, one gets

(11) L1
01 = L01 − L01(1) + ∂A1(m∗

1 ◦m
∗
0(L0 L1)).

Note that as a parametrized cycle,

m∗
1 ◦m

∗
0(L0 L1) = m∗

1(L01)

can be written (omitting the projector Alt) as

m∗
1 ◦m

∗
0(L0 L1) =

[

t;
y − t

y − 1
, 1−

y

x
, x, 1− x

]

⊂ A1 ×�4.

This expression coincides, up to reparametrization, with the expression of C01 given
in [Sou12b, Example 5.5] relating L01 and L1

01.
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Thus, L01−L01(1) and L1
01 differs only by a boundary. The differential of L01(1)

is zero and one can compute explicitly the corresponding bar elements:

L∅−1,B
01 = [L01]− [L1

01], LB01(1) = [L01(1)]

Lemma 3.20. In B(N eq, •
A1 ), one has the following relation

(12) L∅−1,B
01 − LB01(1) = dB([m

∗
1(L01)]).

Thus in H0(BA1) as in H0(QA1) one has the equality between the respective classes

L∅−1,B
01 − LB01(1) = 0.

Taking the restriction to P1 \ {0, 1,∞}, one obtains in H0(QX)

(13) LB01 − L1,B
01 = j∗(L∅−1,B

01 ) = LB01(1).

For W a Lyndon word of length p > 2, the explicit comparison between LBW and

L1,B
W is in general much more complicated as

∂A1(LW − L1
W ) =

∑

0<U<V <1

aWU,V (LU − L1
U )(LV − L1

V ) 6= 0.

However, working at the bar construction level in H0(QA1) allows to use an
induction argument.

Theorem 3.21. For any Lyndon word W of length p > 2 the following relation
holds

(14) L∅−1,B
W = LBW (1) in H0(QA1) = QH0(B

A1
).

Taking the restriction to X = P1 \ {0, 1,∞}, one obtains in H0(QX) = QH0(BX )

(15) LBW − L1,B
W = j∗(L∅−1,B

W ) = LBW (1).

Proof. From Lemma 3.20 above it is true for p = 2 as there is then only one Lyndon
word to consider W = 01.

Now we assume that the theorem is true for all Lyndon words of length k with
2 6 k 6 p− 1. Let W be a Lyndon word of length p.

From Proposition 3.17, one has in QA1 and in particular in H0(QA1)

δQ(L
∅−1,B
W ) = −

∑

0<U<V<1

aWU,V (L
∅−1,B
U ) ∧ (L∅−1,B

V )

and
δQ(LBW (1)) = −

∑

0<U<V<1

aWU,V (L
B
U (1)) ∧ (LBV (1)).

Using the induction hypothesis, one has in H0(QA1)

δQ(L
∅−1,B
W ) = −

∑

0<U<V <1

aWU,V (L
B
U (1)) ∧ (LBV (1))

and thus

δQ

(

L∅−1,B
W − LBW (1)

)

= 0 in H0(QA1).

LetCW be the class of L∅−1,B
W −LBW (1) in H0(QA1) and sCW its image in ΩcoL(H

0(QA1)) =

Sgr(sQ⊗H0(QA1)).
As δQ(CW ) = 0, dΩ,coL(sCW ) = 0 and sCW gives a class in

H1(ΩcoL(H
0(QA1))) ≃ H1(N eq, •

A1 );

where the was isomorphism is given by Bloch and Kriz in [BK94, Corollary 2.31]
after a choice of a 1-minimal model in the sens of Sullivan. Using the comparison
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with H1(N •
A1) and the A1-homotopy invariance for higher Chow groups, this class

can be represented by p∗1(C) in N eq, 1
A1 with C a cycle in N 1

X .
The cycle p∗1(C) satisfies ∂A1(p∗1(C)) = 0 and [p∗1(C)] gives a degree 0 bar element

CB in BA1 with bar differential and reduced coproduct equal to 0.
From this, one gets a class C̃W = CW − CB in H0(QA1). Its image sC̃W in

ΩcoL(H
0(QA1)) also gives a class in

H1(ΩcoL(H
0(QA1)))

which is 0 by construction.
As, on the degree 0 part of ΩcoL(H

0(QA1)), the differential dOmega,coL is zero, one

obtains that sC̃W = 0 in sQ⊗H0(QA1) and thus C̃W is zero in H0(QA1) = QH0(B
A1

).
So far one has obtained that in BA1

(16) L∅−1,B
W − LBW (1)− [p∗1(C)] = dB(b) modulo x products

with b in the degree −1 part of BA1 = B(N eq, •
A1 ).

In the above equation, all elements involved are in ⊕nsN
eq, •
A1

⊗n
that is each ten-

sor component is equidimensional over A1. Because taking the fiber at 1 commutes
with products and differential, one gets modulo shuffles

i∗1(L
∅−1,B
W )− LBW,t=1 − [C] = dB(i

∗
1(b)).

The bar element i1 ∗(L
∅−1,B
W ) is the bar element corresponding to the differential

system

∂{1}(i
∗
1(LW − L1

W )) =
∑

0<U<V <1

aWU,V i
∗
1(LU − L1

U )i
∗
1(LV − L1

V )

which is nothing but the differential system for i∗1(LW ) because i∗1(L
1
W ′) = 0 for

any Lyndon words. Moreover the bar elements i∗1(L
∅−1,B
W ) and LBW,t=1 agree on the

tensor degree 1 part. Thus, one has

−[C] = dB(i
∗
1(b)) + shuffle products

which shows that [p∗(C)] is zero in H0(BA1) modulo shuffles. Hence Equation (16)
can be written has

L∅−1,B
W − LBW (1) = 0 in QH0(B

A1
) = H0(QA1)

Finally, taking the restriction to P1 \ {0, 1,∞}, one has LBW −L1,B
W = j∗(L∅−1,B

W )
because the construction of the bar elements is linear. �

The main consequence of Equation (15) in the previous theorem is that in
QH0(BX ) one can replace the bar avatar of the geometric differential system (ED-L)
by a bar avatar of the differential system (ED-T) coming from trees.

Corollary 3.22. In QH0(BX ), the set of indecomposable elements of H0(B(N eq, •
X )),

the following holds for any (non-empty) Lyndon word W :

(ED-QX) δQ(L
B
W ) = −

∑

U<V

αWU,V L
B
U ∧ LBV −

∑

U,V

βWU,V L
B
U ∧ LBV (1).

Proof. Let W be a Lyndon word. The statement holds when W has length equal 1
and one can assume that W has length greater or equal to 2. One begins with the
formula giving δQ(LBW ) from Theorem 3.16:

δQ(L
B
W ) = −

∑

U<V

aWU,V L
B
U ∧ LBV −

∑

U,V

bWU,V L
B
U ∧ L1,B

V .
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Then using the relations given by Equation (15), one has

δQ(L
B
W ) = −

∑

U<V

aWU,V L
B
U ∧ LBV −

∑

U,V

bWU,V L
B
U ∧

(
LBV − LBV (1)

)
.

Expanding terms as LBU
(
LBV − LBV (1)

)
and using the Definition 3.12 of coefficients

a’s and b’ in terms of α’s and β’s concludes the proof. �

4. A relative basis

This section shows that the image of the family of bar elements LBW in Deligne-
Goncharov motivic fundamental coLie coalgebra is a basis of this coLie coalgebra.
Hence the family LBW induced a basis of the tannakian coLie coalgebra of mixed
Tate motives over P1 \ {0, 1,∞} relative to the one for mixed Tate motives over Q.

More precisely, Together with defining an avatar of NX in DM(X), Levine
[Lev11][Theorem 5.3.2 and beginning of the section 6.6] shows that when the motive
of X is in DMT(Q) and satisfies the Beilinson-Soulé conjecture, one can identify
the Tannakian group associated with MTM(X) with the spectrum of the H0 of the
bar construction over the cdga NX :

GMTM(X) ≃ Spec(H0(B(NX))).

Then, he uses a relative bar-construction in order to relate the natural morphisms

p∗ : DMT(Spec(Q)) −→ DMT(X) x∗ : DMT(X) −→ DMT(Spec(Q)),

induced by the structural morphism p : X → Spec(Q) and a choice of a Q-point x,
to the motivic fundamental group of X at the base point x defined by Goncharov
and Deligne, π1

mot(X, x) (see [Del89] and [DG05]).
In particular, applying this to the the case X = P1 \ {0, 1,∞}, we have the

following result.

Theorem 4.1 ([Lev11][Corollary 6.6.2]). Let x be a Q-point of X = P1 \ {0, 1,∞}.
Then there is a split exact sequence:

1 π1DG
mot (X, x) Spec(H0(B(NX))) Spec(H0(B(NQ))) 1

p∗

x∗

where p is the structural morphism p : P1 \ {0, 1,∞} −→ Spec(Q) and where
π1DG
mot (X, x) is the Deligne-Goncharov motivic fundamental group of X described

in [DG05].

Theorem 4.1 can be reformulate in terms of coLie algebras, looking at indecom-
posable elements of the Hopf algebras of the functions on the pro-unipotent radical
of above pro-algebraic pro-groups.

Proposition 4.2. There is a split exact sequence of coLie algebras:

0 QH0(BQ) QH0(BX ) Qgeom 0
p̃ φ

x̃

where Qgeom is the set of indecomposable elements of O(π1DG
mot X, x) and is isomor-

phic as coLie algebra to the graded dual of the Lie algebra associated to π1
mot(X, x).

Hence, Qgeom is isomorphic as coLie coalgebra to the graded dual of the free Lie
algebra on two generators Lie(X0, X1).

Considering the family of bar elements LBW for all Lyndon words W in this short
exact sequence of coLie algebra, ones gets
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Theorem 4.3. The family φ(LBW ) for any Lyndon words W is a basis of the coLie
algebra Qgeom. Hence the family LBW is a basis of QH0(BX ) relatively to QH0(BQ).

Proof. The above short exact sequence being a sequence of coLie coalgebra, one
has

0 QH0(BQ) ∧QH0(BQ) QH0(BX ) ∧QH0(BX ) Qgeom ∧Qgeom 0

0 QH0(BQ) QH0(BX ) Qgeom 0
p̃ φ

δQ,Q δQ,X δgeom

p̃ ∧ p̃ φ ∧ φ

As δQ,X(LB0 ) = δQ,X(LB1 ) = 0, weight reasons show that φ(LB0 ) and φ(LB1 ) are
dual to the weight 1 generators (X0 and X1) of Lie(X0, X1).

In order to show that the family φ(LBW ) is a basis of Qgeom, it is enough to show
that the elements φ(LBW ) satisfy:

δgeom(φ(LBW )) = −
∑

U<V

αWU,V φ(L
B
U ) ∧ φ(L

B
V )

because δgeom is dual to the bracket [ , ] of Lie(X0, X1) and using the beginning of
Subsection 3.2.1, in particular equation (6) ; for more details one could see [Sou12a,
Proposition 3.19].

As φ commutes with the cobracket, it is enough to compute (φ ∧ φ) ◦ δX(LBW ) :

δgeom(φ(LBW )) =(φ ∧ φ) ◦ δX(LBW )

=(φ ∧ φ)



−
∑

U<V

αWU,V L
B
U ∧ LBV −

∑

U,V

βWU,V L
B
U ∧ LBV (1)





=−
∑

U<V

αWU,V φ(L
B
U ) ∧ φ(L

B
V )−

∑

U,V

βWU,V φ(L
B
U ) ∧ φ(L

B
V (1))

By construction φ(LBV (1)) is zero which gives the desired formula for δgeom(φ(LBW )).
�

Note that δX gives the coaction of QH0(BQ) on Qgeom described in [Bro12] in

relation with Goncharov motivic coproduct ∆mot. Thus, Equation (ED-QX)

δQ(L
B
W ) = −

∑

U<V

αWU,V L
B
U ∧ LBV −

∑

U,V

βWU,V L
B
U ∧ LBV (1)

is nothing but another expression for the cobracket 1/2(∆mot − τ∆mot). This new
expression has the advantage that it is stable under the generating family LBW . The
price to pay is that there is so fare no combinatorial closed formula computing the
coefficients α’s and β’s.
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