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A Statistical Study of the Correlation Between Interest
Points and Gaze Points

Michael Nauge, Mohamed-Chaker Larabi and Christine Fernandez-Maloigne

XLim Lab, SIC dept., University of Poitiers, France

ABSTRACT

This study intends to measure the degree of correlation/similarity between the subjective gaze points (obtained
by eye tracking experiments) and the objective interest points of several well-known detectors such as Harris and
SURF. For each of the latter, we look for the best setting in term of maximization of likeness with the gaze points.
For this task, the Earth Mover’s Distance (EMD)1 is used to compare two data-sets with different cardinalities.
We also used ANOVA to measure the influence of each parameter involved in the detectors’ settings as well
as the possible introduced bias. The conclusions of this study are related to the suitability of each detector to
estimate the subjective gaze points.
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1. INTRODUCTION

Understanding the human perception and cognition, and modeling the Human Visual System (HVS) is funda-
mental for the improvement of electronic media systems. Plenty of experiments have been conducted by using
eye-trackers for a variety of applications in psychology, human-computer interaction, marketing, cognitive sci-
ence. . . Eye tracking experiments allow to determine the salient points/regions on a given image. Understanding
and modeling the salient stimulus localization is a hard task due to the complexity and the variety of involved
brain and eyes processes. For example the location of the region of interest can depend on the nature of the
experiment (free watching or task-oriented) such as demonstrated by Yarbus.2 However, some studies3 demon-
strated the invariance of the gaze points when text and faces are in the image. The recognition of text and faces
are high level processes and not present in all situations. So, in this case other stimuli are attractive. Itti &Koch4

demonstrated the influence of low level criteria such as intensity, color and direction of the stimulus. Another
old and well known criterion is the central biais re-explored by B. W. Tatler5 who tried to explain why when
observers view complex scenes presented on computer monitors, there is a strong trend to look more frequently
around the center of the scene than around the corners. The study of the human gaze and eye movement has
attracted an important research effort in the last decade.

From another point of view, in the image/video processing field, several algorithms have been constructed
following the concept of interest points, like Harris corner detector6 , Scale-Invariant Feature Transform (SIFT7)
detector or Speeded Up Robust Features (SURF8) detector. Interest points are very important for the charac-
terization of an object or a texture and allow the discrimination of shapes and objects. These algorithms are
classically used in motion detection and object recognition. These detectors can be categorized by the kind of
the detected features. Harris detector is design to localize the corners, whereas SIFT and SURF are design to
detect scale- and rotation-invariant blob-like structures. Lowe7 explained the interest of the detection of features
invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine
or 3D projection. He explained that these features share similar properties with neurons in inferior temporal
cortex that are used for object recognition in primate vision. H. Bay8 noted a lot of similarity between his
SURF detector and the SIFT detector in term of the kind of blob-like structure detected. But the process to
detect theses features is completely different and designed to be faster than SIFT. For this study we focus our
study on Harris for the detection of corner, and on SURF to detect the blob-like structure with its low time
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computation and its robustness. Few papers9 studied the performance and the robustness of these detectors in
image matching task over various distortions.

In this study, we propose to study the performance of these kind of detectors with a totally different point
of view, by studying similarity/correlation between the subjective gaze points and the objective interest points.
The aim is to determine whether the interest points can be used to predict salient informations on an image
like the HVS does. This can help for several applications like quality assessment,10 simplified saliency maps
construction,11 . . . Even though the interest points have not been originally designed to be close to the gaze
points, they may have a particular setting that maximizes the similarity between them. For this study a battery
of statistical tools is used to test a large range of settings/configurations for two interest point detectors (Harris
and SURF).

For our experiments we used the Visual Attention for Image Quality (VAIQ) Database.12 This database
was created after an eye-tracking experiment at the University of Western Sydney in Australia. It contains 53
reference images extracted from the widely used image quality databases (LIVE, MICT, IVC). A comparison with
other eye-tracking results on the same images coming from Delft University of Technology (TUD) in Netherlands
demonstrated the reliability of the VAIQ database.

The number of interest points extracted by each detector depends of the used parameters and is often different
from the number of subjective gaze points. So, for the measurement of similarity between objective and subjective
interest points, it is necessary to use a distance/metric able to compare two datasets with different cardinalities.
We selected the Earth Mover’s Distance (EMD) based on a solution to a special case of the old transportation
problem13 and implemented by Rubner et al.1 in the context of image retrieval. The EMD Distance is based
on the concept of measurement of work needed to move many masses of earth into many holes. Precisely, given
two distributions, one can be seen as a mass of earth properly spread in space, the other as a collection of holes
in that same space. Then, the EMD measures the least amount of work needed to fill the holes with earth.
Here, a unit of work corresponds to transporting a unit of earth by a unit of ground distance. In our case,
we can consider than the subjective gaze points are the holes and the interest points are the earth. With this
EMD distance we can estimate which detector and setting minimize the cost of the transformation between the
subjective and objective values.

We used several statistical tools such as Bartlett, ANOVA, . . . to understand the effect and the influence of
each parameters for each detector. These studies illustrate that particular parameters can minimize the cost
of transformation and predict interest points in accordance with the subjective gaze points. We also proposed
a solution to give a scale to facilitate the interpretation of the EMD values by analyzing the mean human
behavior. By comparing the best settings for each detector we can also indicate which detector is the most
reliable to estimate the subjective gaze points. This study is also a good way to prove that interest points
detector share some properties with the HVS.

The remainder of this paper is organized as follows : Section 2 gives a description of the interest points
detectors uses in this study. Section 3 describes the subjective gaze point database and the retained solution for
clustering the multiple gaze points. The experimental study by using different statistical tools is given is section
4. This paper ends with some conclusions and gives ideas of future works.

2. OBJECTIVE INTEREST POINTS DESCRIPTION

For this study we used two different types of interest points detectors: the Harris detector for the detections
of corners and the SURF detector for the detection of blob-like structures. The following sections give the
description of these two retained detectors.

2.1 Harris

The Harris corner detector was designed to find points in an image such that, there is only a small number of
isolated points detected and the points are reasonably invariant to : rotation, different sampling and quantization,
to small changes of scale and small affine transformations. Since this detector satisfies these requirements, it is
a standard for matching and tracking task in computer vision.
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Figure 1. local changes of the signal with patches shifted in different directions

The Harris corner detector6 is based on the local auto-correlation function of a signal. The latter measures
the local changes of the signal with patches shifted by a small amount in different directions.

Given a shift (u,v) and a point (x,y), the auto-correlation function is defined as:

E(u, v) =
∑

(x,y)∈W

w(x, y)[I(x+ u, y + v)− I(x, y)]2 (1)

where I(., .) denotes the intensity image function. The w windows can be a smooth circular window, like a
Gaussian in order to reduce the noise introduced by using a binary and rectangular window. For a small shifts
(u,v) we have a bilinear approximation:

E(u, v) ≈ (u, v)M

[
u
v

]
(2)

where M is a 2 × 2 matrix computed from image derivatives:

M =
∑

(x,y)∈W

w(x, y)

[
Ix(x, y)

2 Ix(x, y)Iy(x, y)
Ix(x, y)(Iy(x, y) Iy(x, y)

2

]
(3)

where M captures the intensity structure of the local neighborhood. Let λ1 and λ2 be the eigenvalues of matrix
M. The eigenvalues form a rotationally invariant description. Three cases of eigenvalues can be considered. In
the first case λ1 and λ2 are small, the windowed image region is of approximately constant intensity, this is a
flat/uniform region. In the second case one eigenvalue λ1 or λ2 is high and the the other is low. This indicates
an edge. In the third case λ1 and λ2 are high and thus indicates a corner. Figure 2 shows the eigenvalues
configurations.

A measure of corner response can be applied on each detected corner,

R = det(M)− k(trace(M))2 (4)

where

det(M) = λ1λ2

trace(M) = λ1 + λ2

k is a constant whose value was determined empirically to give results in the range [0.04, 0.06].

Finally an interest point is a corner with a particular response in respect of these criteria:

R > threshold ∧ ∀x, y ∈ 8− neighbourhoodf(x, y) ≥ f(x′, y′) (5)
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Figure 2. Four configurations of λ1 and λ2

Table 1. Harris detector function parameters

Param. Description
qualityLevel (ql) Characterizes the minimal accepted quality of image corners; the value of the param-

eter is multiplied by the corner quality measure (r in equation 4). The corners, which
quality measure is less than the product, will be rejected. For example, if the best
corner has the quality measure = 1500, and the qualityLevel = 0.01 , then all the
corners which quality measure is less than 15 will be rejected

minDistance (md) The minimum possible Euclidean distance between the returned corners.
blockSize (bs) Size of the averaging block for computing derivative covariation matrix over each pixel

neighborhood.
k weighting parameters used in the formula 4 for the calculation of corner response.

To conclude, an interest point can be defined as the intersection of two edges. It can also be defined as a point
for which there are two dominant and different edge directions in a local neighborhood of the point. The number
and the position of detected corners can be tuned by different factors, such as neighborhood size, threshold on
the corner response... However, Harris corners are not really scale-invariant. Mikolajczyk and Schmid refined
the Lindeberg method9 in order to create a robust and scale-invariant feature detector with high repeatability
named Harris-Laplace.14

2.1.1 Harris parameters

For this experiment we used the Harris corner detector implementation available by the GoodFeaturesToTrack-
Detector function in the openCV Library.15 Details about parameters are given in table 1.

2.2 SURF

The Speeded Up Robust Features (SURF) aims, like the Harris detector, to detect and describe local features
in image for tasks like object recognition and tracking. This method has been presented for the first time in
2006 and revised in 20088 by Herbert Bay et al. It focuses on scale and image rotation invariant detectors and
descriptors with a good compromise between feature complexity and robustness with a low computation time.
This method can be decomposed in three parts: Key Point Detection, Descriptors Extraction and Matching.

The key point detection is based on calculating approximate Hessian response for image points in order to
detect blob-like structure. For the scale-space analysis a pyramid of filters (not image) is used to approximate
Laplace of Gaussian (LoG), supposedly run faster than SIFT, which uses Difference of Gaussians (DoG) for
approximation (Figure 3). The box-filter is used with the integral image in order to have a constant execution
time although each filter is more and more large. In order to localise interest points in the image and over
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Figure 3. DoG (Left) - LoG (the use of integral images allows the up-scaling of the filter at constant cost (right))

scales, a non-maximum suppression (in a 3×3×3 neighbourhood) is applied. Feature points are maxima of the
determinants in the adjacent scale and points like SIFT method.

The descriptor extraction describes the distribution of the intensity content within the interest point neigh-
bourhood (similar to the SIFT gradient informations) and its variants. It is built on the distribution of first order
Haar wavelet responses in x and y directions rather than the gradient which exploit integral images for speed,
and use only 64 dimensions.Furthermore a new indexing step based on the sign of the Laplacian is introduced,
which increases not only the robustness of the descriptor, but also the matching speed.

2.2.1 SURF parameters

The used implementation of SURF is ExtractSURF function in the openCV Library. Details about parameters
and tested values are given in table 2.

Table 2. SURF detector function parameters

param. Description
hessianThreshold Only features with Hessian larger than that are extracted. good default value is 300-

500 (can depend on the average local contrast and sharpness of the image). user can
further filter out some features based on their hessian values and other characteristics.

nOctaves The number of octaves to be used for extraction. With each next octave the feature
size is doubled (3 by default).

nOctaveLayers The number of layers within each octave (4 by default).

3. SUBJECTIVE GAZE POINTS

3.1 eye-tracking database

For our experiments, we used the Visual Attention for Image Quality (VAIQ) Database.12 This database was
created after an eye-tracking experiment at the University of Western Sydney in Australia. It contains 53
reference images extracted from the widely used image quality database (LIVE, MICT, IVC). These images
were displayed on a 19” Samsung SyncMaster monitor with a 1280 × 1024 screen resolution. An eye tracker was
installed under the screen and the participants were seated at a distance of approximately 60 cm from the screen.
This experiment used an EyeTech TM3 eye tracker to record the gaze of the human observers. The accuracy
with which the gaze is recorded is approximately 1 deg of visual angle. The eye tracker records gaze points (GP)



at about 40-45 GP/sec. Each image was shown for 12 seconds with a mid-grey screen shown between images for
3 seconds. The number of gaze point by image and by user is between 480-540.

The validity of this database is tested (16) with a second experiment at Delft University of Technology (TUD)
in Netherlands, with twenty new observers and twenty nine similar images. This second experiment proved a good
correlation between these two different experiments in two different laboratories for same images and different
observers. So using the VAIQ Database appears reliable.

In addition to the 53 reference images, the gaze points of 15 observers and the generated heatmaps for
each images are available. The heatmaps are obtained by applying Gaussian on filtered gaze points. For our
experimentation we used the original gaze patterns and not the heatmaps in order to have a set of points to
make possible the comparison with the objective points.

3.1.1 Clustering parameters

It is not adapted to use the original gaze points because they may be concentrated in a small region while the
detectors try to avoid to have a concentration of points. Moreover, the aim of eye-tracking experiments is to
produce the average behavior of a human. So we choose to adapt the proposed filtering/clustering12 in order
to create a new set of points than represent this average behavior of human observers. The adapted filtering
algorithm is detailed in 3.1.1. The main idea is to create a collection of clusters Ccollection where each cluster
Cx in Ccollection includes many Gaze Points GPx. The aim is to reduce the number of GP by aggregating all
adjacent GPx where the acceptance distance is fixed by the threshold Tclus. Each Cx can be weighted by the
number of aggregated GPx. A final step removes all Cx which do not have aggregated enough GPx where the
minimum number of GPx is defined by Fmin. We use Tclus = 20 and Fmin = 4 like the original algorithm.

Algorithm 1 adapted gaze points filtering algorithm

create empty cluster collection Ccollection

{the first GazePoint GP1 is a special case}
create the first Cluster C1

add GP1 in C1

add C1 in Ccollection

for i = 2 → numberOfGP do
find the Cluster Cfind in Ccollection which minimize the euclidean distance D between the coordinate of GPi

and the coordinate of Cfind

if D<Tclus then
add GPi in Cfind

else
create new Cluster Cnew

add GPi in Cnew

add Cnew in Ccollection

end if
end for
for j = 1 → numberOfCluster do

if numberOfGPinCj<Fmin then
remove Cj in Ccollection

end if
end for

The algorithm proposed in12 computes only the distance between the current GP and the current Cluster.
So the clustering method is dependent of the apparition order of GP (example in Fig 4). In our case, we look for
the average behavior of a human, so we search for the cluster which minimizes the distance with the current GP
before to check the acceptance of this GP in the founded cluster. So the clustering becomes relatively invariant
to the apparition order of GP and allows to aggregate close GPs from different observers.

Figure 5 shows the effect of filtering where the color and the opacity of each circle inform about the importance
of each point (the number of aggregated points). The radius of each circle is defined by the far point aggregated
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Figure 4. effect of GP order in Clustering method

during the clustering process. A red, opaque and small little circle informs than there are a lot of near gaze
points aggregated in this cluster. At the opposite a yellow, transparent and large circle informs than there are
few scatter gaze points in this cluster. For the subjective gaze point before clustering (Fig.5-a), the fixation of
each viewer has the same importance, so the color is red and we fix the opacity to 10%. In this case, a red
opaque region informs that many viewer had looked at the same position. In this example our filtering reduces
the number of clusters by a factor close to 50%, reduce the number of circles superposition and emphases the
difference between the regions where all human are in accordance and the regions where only few viewers looked
at.

(a) subjective points (7328 pts) (b) original filtering (387 pts) (c) used filtering (164 pts)
Figure 5. Subjective Gaze Points from 15 observers before and after filtering/clustering

4. STATISTICAL ANALYSIS FOR SIMILARITY MEASUREMENT

Thus study intends to measure the degree of correlation/similarity between the subjective gaze points and the
objective interest points of several well-known detectors. For each of the latter, we look for the best setting in
term of maximization of likeness with the gaze points. For this task, the Earth Mover’s Distance (EMD)1 is
used to compare two datasets with different cardinalities. We also use ANOVA to measure the influence of each
parameter involved in the detectors’ settings as well as the possible introduced bias.

4.1 Earth Mover’s Distance (EMD)

The number of interest points extracted by each detector depends on the used parameters and is often different
from the number of subjective gaze points. So, for the measurement of similarity between objective and subjective
interest points, it is necessary to use a distance able to compare two datasets with different cardinalities. We
selected the Earth Mover’s Distance (EMD) based on a solution to a special case of the old transportation
problem13 and implemented by Rubner et al.1 in the context of image retrieval. The EMD Distance is based
on the concept of measurement of work needed to move masses of earth into different holes. Precisely, given
two distributions, one can be seen as a mass of earth properly spread in space, the other as a collection of holes
in that same space. Then, the EMD measures the least amount of work needed to fill the holes with earth.
Here, a unit of work corresponds to transporting a unit of earth by a unit of ground distance. In our case, we
consider than the subjective gaze points are the holes and the interest points are the earth. Moreover this metric
may assign weighting factors on holes and masses of earth. Since the subjective gaze points are clustered (as



explained in section 3.1.1), we can use the number of aggregated points to weight the holes in order to reflect
regions of images having the saliency. Furthermore, each objective detector not only indicates the location of
interest points but also give additional information. The latter can be the response (R in equation 4) for Harris
and the size and the hessian for SURF.

The idea behind using the EMD distance is to be able to estimate which detector and associated settings
minimize the cost of the transformation between the subjective points (holes) and objective points (earth masses).
The experimental analysis is discussed in the following sections.

4.2 Experimentation for the maximization of similarity

To this point, we have already described the used interest points detectors, our method to exploit the gaze points
and the metric for similarity measurement. As discussed previously, each of the interest points detectors has
several parameters that influence the location and the number of the detected points. In order to find the most
suitable parameters, the detectors have been run with thousands of combinations representing their different
ranges of values. This operation is applied on the whole set of images from the VAIQ database.12 Hence, the
EMD cost is obtained for each setting applied on each image. Let remind that a low EMD distance means a high
similarity between the subjective and objective datasets. However, the same setting will not lead automatically
to a minimization of the EMD distance for the whole images. For example, the VAIQ database contains a variety
of content including faces, people, animals, close-up shots, wide-angle shots, nature scenes, man-made objects,
images with distinct foreground/background configurations, and images without any specific object of interest.
In this experiment, there is no specific task to address and no targeted types of images. This is why our focus
was mainly on the average distance.

4.2.1 Experience 1

There is no previous knowledge neither about the similarity between interest points and gaze points nor on
the ranges of parameters’ values. Our exploration started without any a priori about the setting but with
some experience about the usage of each detector. So, the initial ranges of values are listed in tables 3, and 4
respectively for Harris and SURF.

Table 3. Harris parameters

ql
{
10−2, 10−3, 10−4, 10−5, 10−6

}

md {20, 40, 60, 70, 80, 100, 120}
bs {3, 6, 9, 12}
k {0.04, 0.08, 0.12, 0.20}

Table 4. SURF parameters

ht {100 : 100 : 6900}
no {1, 2, 3, 4, 6, 9, 12, 18}
nol {1, 2, 3, 4, 6, 9, 12, 18}

Since the EMD distance can take in consideration a weighting for each point, we choose to perform this study
with and without weightings. When they are not used, each extracted point will be equally weighted. So, in this
case only location is taken into account. In the opposite case, additional data such as the strength and the size
could be used to study whether the similarity with the human gaze is increased.

As first experiments, the two selected detectors have been run using the combinations of parameters given in
tables 3 and 4 with and without weighting. Table 5 (resp. table 6 ) summarizes the results by giving the mean,
the minimum, the maximum and the standard deviation of the EMD cost for the best setting without (resp.
with) weighting.

Table 5. EMD cost for the best detector’s setting without weighting

Detector mean min max std
Harris 0,02290 0,01547 0,04148 0,00546
SURF 0,00132 0,00027 0,00480 0,00092

From the results of table 5, one can notice that best settings of the two detectors provide results in two
different ranges. SURF appears to be the best with regards to human gaze followed by Harris. This rank is also



Table 6. EMD cost for the best detector’s setting with weighting

Detector mean min max std
Harris (Response) 72,312 12,28 175,14 39,23
SURF (Hessian) 44,79 6,66 130,52 28,38
SURF (Scale) 42,04 2,71 119,28 27,02

confirmed on table 6 where some properties are used as weightings for each detector. For the SURF case, two
different weightings have been experimented namely SURFscale and SURFhessian corresponding respectively to
the size of the detected object and its strength. SURFscale performs better than SURFhessian and may lead to
a first conclusion about the influence of the size. One can also notice than the scores of this two tables are very
different. So it is difficult to conclude about the usage of additional information for increasing the similarity with
the subjective behavior. This raises other questions about the difference between scores and the best settings
obtained with and without weightings. To answer these questions for the case of Harris, table 7 (a) and (b) give
respectively the top ten settings (minimizing the mean EMD distance) with and without weightings.

Table 7. Top ten Harris settings

ql md bs k mean
1,00E-06 20 3 0,04 0,0229
1,00E-06 20 3 0,08 0,0236
1,00E-06 20 3 0,12 0,0244
1,00E-06 20 6 0,04 0,0244
1,00E-06 20 6 0,08 0,0253
1,00E-06 20 9 0,04 0,0256
1,00E-06 20 6 0,12 0,0259
1,00E-06 20 3 0,2 0,0262
1,00E-06 20 9 0,08 0,0263
1,00E-06 20 12 0,04 0,0266

ql md bs k mean
1,00E-06 20 9 0,04 72,313
1,00E-05 20 9 0,04 72,314
1,00E-04 20 9 0,04 72,331
1,00E-06 40 9 0,04 72,460
1,00E-05 40 9 0,04 72,461
1,00E-06 40 6 0,04 72,462
1,00E-05 40 6 0,04 72,463
1,00E-04 40 9 0,04 72,468
1,00E-04 40 6 0,04 72,468
1,00E-03 40 6 0,04 72,557

(a) Harris without weighting (b) Harris with weightings

Several remarks can be made from the previous table. For example, ql=1,00E-06 and md=20 are the values
for the top ten experiments without weighting and lead to the conclusion that these values are the most important
for Harris. Moreover, they corresponds to the lower bounds of the parameters’ ranges. So, the minimization
of this parameters appears to be the most important to reduce the cost of the EMD distance. In the Harris
definition, md tunes the distance between detected points whereas ql defines the strength threshold. Low values
of these two parameters increase the number of detected points. It can explain the minimization of the EMD
distance because of the large availability of points to be matched with human gaze. The behavior of the Harris
parameters is also visible on the graphical representations given in figure 6. Each curve corresponds to the
variation of the mean EMD distance versus parameter value for ql, md, bs and k.

As mentioned already, the EMD distance seems to be sensitive to the number of detected points. For the
Harris detector and the associated settings (table 3), the average range of detected points is between [13,02-
473,73]. This range is higher for SURF [34,11-5515,30]. We noticed that for a low number of interest points the
EMD distance is high and for a large number of interest points the EMD cost tends to zero. This means that
the number of points has an influence on EMD and that the two detectors have not been used equally.

To statistically confirm the hypothesis of EMD sensitivity to the number of detected points and to study
the influence of each parameter, we used ANOVA. First, there are two essential hypothesis to be checked to use
anova: Distributions must be gaussian and variance of distributions must be equal. The second hypothesis can
be controlled using a Bartlett test.

ANOVA is a statistical test. So like others statistical tests, it compares two hypothesis :
H0 (null hypothesis) means of distributions are equal. In our experiment, this implies that the parameter has
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Figure 6. Mean distance for each parameters

no influence.
H1 (alternative hypothesis) : there exists at least one distribution whose mean is different from the others.
ANOVA returns a ”p-value” that determines the influence of a parameter. Closer is the value to 0, more influent
is the parameter. In practice, when the p-value is less than 0.05, we reject the null hypothesis, and it means that
the parameter has an influence.
Bartlett’s test of homogeneity of variances confirms that we can use ANOVA in our set for the four parameters
explained previously ql,md,bs and k. Results are summarized in Tables 8 and 9. Note that, for column ”Influ-
ence”, an empty box means that the parameter has no influence, and the number of ∗ represents the intensity
of the influence (Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1).

Table 8. Influence of Harris’ parameters on EMD without
weighting

Parameters p-value Influence

ql < 2.2e− 16 ∗ ∗ ∗
md < 2.2e− 16 ∗ ∗ ∗
bs 0.07815 .
k 2.686e− 05 ∗ ∗ ∗

nbPtsMean < 2e− 16 ∗ ∗ ∗

Table 9. Influence of Harris’ parameters on EMD with
weighting

Parameters p-value Influence

ql 0.4632
md 6.985e− 07 ∗ ∗ ∗
bs 1.04e− 11 ∗ ∗ ∗
k < 2.2e− 16 ∗ ∗ ∗

nbPtsMean 1

From the results above, one can notice than the null hypothesis is rejected for the parameters nbPtsMean in
table 8 and accepted in table 9. So the mean number of points has an influence on the EMD distance for the
measurement without weighting, and no influence with weighting. The plausible explanation for this modification
of influence lies in the fact of giving an importance to some points in the case of weighting which minimizes the
impact of the remaining points and consequently their number. This is completely different in the case of no
weighting because each point has an equal influence and the total number becomes thus influent.

This analysis brings interrogations about the conclusion drawn from table 5 which may be biased. So the best
setting determined for each detector is probably not the best one. Moreover, the comparison between detectors
is not reliable in this case because the EMD cost is too dependent on the minimum and maximum number of
detected points within the tested range. The second experience will take this aspect into account for reducing
the observed bias.

4.2.2 Experience 2

In order to reduce the bias observed in experience 1, we constrained the number of detected points for the two
detectors. This constraint is used to reject all settings producing a mean number of detected points outside the
filtI interval. This interval has been defined thanks to an analysis of the subjective data contained in the VAIQ
database (cf. section 3.1). In the database, the number of gaze points by image and by user is between [480-540].
Even though each subject observed the same image with the same duration, the number of gaze points is often
different. Each subject has its own saccades and fixations. So we choose the filtI interval equal to [420-600] to
be as close as possible from the human behavior while allowing several parameters’ settings for each detector.



The parameters’ ranges for experience 2 changed for Harris because the former ones did not allow to respect
the filtI constraint. These parameters are given in tables 10. No additional parameters are tested for SURF
due to of its high number of allowed settings (511).

Table 10. Harris parameters

ql
{
10−6, 10−7, 10−8

}

md {0.1, 1, 10, 20, 30, 40, 50}
bs {3, 6, 9}
k {0.005, 0.02, 0.04}

By using the parameters values given in the previous table, the same protocol has been used as in experience
1. The top ten settings allow thus to analyze deeply the influence of each parameter on the minimization of the
distance between interest points and gaze points. Hence, the results of this experience are illustrated in table 11
for Harris, table 12 for SURF weighted using the size and finally table 13 for SURF weighted using the hessian.

Table 11. Top ten Harris settings for experience 2

ql md bs k mean min max std
1,00E-07 20 9 0,005 71,056 11,874 180,221 39,862
1,00E-08 20 9 0,005 71,057 11,874 180,221 39,862
1,00E-06 20 9 0,005 71,061 11,874 180,222 39,860
1,00E-07 20 6 0,005 71,316 9,963 180,570 39,911
1,00E-08 20 6 0,005 71,316 9,963 180,570 39,911
1,00E-06 20 6 0,005 71,317 9,963 180,570 39,911
1,00E-07 20 9 0,02 71,841 12,598 176,448 39,322
1,00E-08 20 9 0,02 71,841 12,598 176,448 39,322
1,00E-06 20 9 0,02 71,842 12,598 176,449 39,322
1,00E-07 20 6 0,02 72,032 11,496 179,781 39,527

For the harris detector, the ql parameter receives values between 1,00E-08 and 1,00E-06 in order to keep
interest points of medium and high strength. If the ql parameter is too high, the detector cannot detect enough
points for our experiment (like in the range of experience 1). md=20 gives the best results which confirms the
results of experience 1. This parameter defines the minimum distance between two detected points. It seems that
md behaves similarly to the parameter Tclus introduced in section 3.1.1 but it needs more investigation to prove
it. The parameter bs is equal either to 6 or 9 for the top ten settings. Since it represents the size of observation
window, this results means that very small corners cannot be detected. Finally, the values of parameter k has to
be very small with regards to the behavior of figure 6 in order to be kept in the top ten. When this parameter
is minimized, the detected point can be a horizontal/vertical contour and not only a corner.

For the SURF detector, ht=800 is selected to minimize the EMD distance as shown in figure 8. This parameter
is used to reject the very low points defined by their local contrast. The parameter no can take several values (cf.
table 12), but figure 8 indicates a stabilization from the value 4. So, we selected a value around 5 and avoided to
select higher values to limit the calculation cost. For the parameter nol, the value 1 has been selected because
when this parameter increases, the number of detected points increases fast and not allows with respect to filtI.

By looking to the two tables 12 and 13, we can see that the best settings are the same for the two cases,
but the scale weighting have a better cost than the hessian weighting. We can conclude than the location of the
points are good but the weighting by a size is better than a weighting by the hessian. The figure 7 shows that
the information about size and strength can be complementary. In this example a strong point is detected on
the text on the yellow cap by the hessian weighting, but the red cap is highlight by the scale weighting.

With this second experimentation, we can see on table 14 that all the mean scores are different from those
obtained in experience 1 (table 6). However, the rank order is still the same (SURFscale, SURFhessian and
Harris).



Table 12. Top ten SURF (weighting Size filtered)

ht no nol mean min max std
800 9 1 47,906 5,045 138,739 30,645
800 18 1 47,906 5,045 138,739 30,645
800 6 1 47,906 5,045 138,739 30,645
800 12 1 47,906 5,045 138,739 30,645
800 4 1 48,702 6,408 138,739 30,824
900 6 1 48,873 7,564 140,738 31,285
900 12 1 48,873 7,564 140,738 31,285
900 9 1 48,873 7,564 140,738 31,285
900 18 1 48,873 7,564 140,738 31,285
1000 18 1 48,989 4,738 142,834 32,134

Table 13. Top ten SURF (weighting Hessian filtered)

ht no nol mean min max std
800 9 1 56,992 8,055 153,909 35,123
800 18 1 56,992 8,055 153,909 35,123
800 6 1 56,992 8,055 153,909 35,123
800 12 1 56,992 8,055 153,909 35,123
800 4 1 57,138 8,448 154,162 35,134
900 6 1 57,735 8,541 155,529 35,534
900 12 1 57,735 8,541 155,529 35,534
900 9 1 57,735 8,541 155,529 35,534
900 18 1 57,735 8,541 155,529 35,534
900 4 1 57,887 8,922 155,792 35,548

subjective GP SURFhessian IP SURFscale IP

Figure 7. Maps of subjective and objective gaze points

Table 14. Comparison of best EMD distances with weighting (experience 2)

Detector mean min max std
Harris (Response) 71,056 11,874 180,221 39,862
SURF (Hessian) 56,992 8,055 153,909 35,123
SURF (Scale) 47,906 5,045 138,739 30,645

Human (Duration) 48,153 0,984 186,294 28,959
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Figure 8. Mean distance for SURFscale parameters

Since Harris and SURFhessian are the worst, we study the parameters influence to determine if an improvement
is possible (table 15 and 16). By using the ANOVA results, none of the parameters appears to have an influence
on the EMD cost for Harris and SURFhessian.

Table 15. Harris response (range 2)

Param. p-value Influence

ql 1
md
bs 0.3778
k 0.860

nbPts 1

Table 16. SURFhessian

Param p-value Influence

ht 0.757
no 0.6201
nol 0.0098 ∗∗

nbPts 1

Table 17. SURFscale

Param p-value Influence

ht 0.04747 ∗
no 2.044e− 08 ∗ ∗ ∗
nol 0.03675 ∗

nbPts 1

Even though this study allowed to determine an order among the three tested configurations, there still some
questions related to the interpretation of the EMD cost. For example, is EMD=47 a low and acceptable cost
to reveal a similarity with the human behavior? To find an answer to this question, we decided to study the
observers’ data available in the VAIQ database. For each observer and each image, we calculate the EMD cost
between computed between its gaze points and the average gaze points of all other observers. The latter is
obtained by applying the clustering process described in section 3.1.1. In order to exploit the weightings in the
EMD distance, we used the duration of the gaze points fixation to weight the observers’ points.

Table 14 gives the values of EMD costs weighted by the duration. The mean EMD cost is around 48
representing the mean cost for an observer in comparison to the average of all the others. We can notice than
SURFscale has an average cost under this value. So, it is possible to conclude that this detector behaves in a
comparable way to a human. We can also notice a high maximum distance for the human case in comparison
with all other detectors.

To conclude, all detectors can find interest points more or less in accordance with the human eyes. We can
notice than all detectors take in consideration the local contrast to define the strength of the corner/edge/blob
structure. The human attention is also guided by this low level property (local contrast of luminance and
chrominance). We also noticed that the SURF detector takes also in consideration the size of the detected points
as well as the human observer. Independently of the targeted task, the human observer is also attracted by the
text area and in this case Harris performs better than the others.

5. CONCLUSION AND FUTURE WORKS

In this study, we have measured the correlation/similarity between the subjective gaze points (obtained by an
eye-tracking experiment on a variety on pictures) and the objective interest points detected by Harris and SURF
detectors. An important effort has been put in this work to minimize the measurement bias. The first possible
bias was related the selected image database. As we wanted images representing a large variety of content,
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Figure 9. maps of subjective and Harris points

we used databases with the majority of the state-of-the-art images with pictures of faces, animals, landscapes,
manufactured objects . . . The second possible bias concerns the quality and the reproducibility of the eye tracking
experiment. For the selected eye-tracking data, it has been mentioned previously that another work has validated
them.

In this work, we proposed an adaptation of the gaze points clustering process to have more comprehensive
data with a better representation of the average behavior of observers. To measure the similarity between
subjective and objective gaze points, the EMD distance has been used. This distance is interesting because it
allows comparing two datasets with different cardinalities and by assigning a weighting factor to each point.
Moreover, in comparison to other distances, EMD is a real metric which respect the triangle inequality.

By this study, We found for each detector the settings which maximize the similarity with the human gaze
points by a large range of tests and analysis of the setting’s parameters. We have analyzed the subjective data in
order to compare and rank the objective detectors. We found that the EMD cost to transform the SURF points
to the subjective clustered gaze points is under the cost to transform an observer to the whole observers data.
As a conclusion, all detectors can detect interest points in accordance with the human visual system function of
the selected settings. We noticed than all detectors take in consideration the local contrast as the HVS does.

In this experiment, we considered the size and the strength of the SURF interest points separately. It will
be interesting to combine these two informations in order to increase the similarity with the human gaze points.
Moreover, since the detection of blob-like structure appears suitable to mimik the HVS, it is interesting to
compare SURF with other blob detectors such as SIFT detector.

Finally, it seems that with suitable settings, the interest points detectors can generate a kind of simplified
saliency map that can be used for automatic applications like quality assessment or image coding. They can



also be combined with additional informations like the central bias, the face detection, . . . in order to increase
the efficiency of the saliency map construction.
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