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The motion of a fluid-rigid ball system at the zero limit of the

rigid ball radius

Ana Leonor Silvestre, Takéo Takahashi

Abstract

We study the limiting motion of a system of a rigid ball moving in a Navier-Stokes fluid flow
in R

3 as the radius of the ball goes to zero. Recently, Dashti and Robinson solved this problem
in the 2-D case, in the absence of rotation of the ball [Arch. Rational Mech. Anal. 200 (2011)
285–312]. This restriction was caused by the difficulty in obtaining appropriate uniform bounds
on the second order derivatives of the fluid velocity when the rigid body can rotate. In this
paper, we show how to obtain the required uniform bounds on the velocity fields in the 3-D case.
These estimates then allow to pass to the zero limit of the ball radius and show that the solution
of the coupled system converges to the solution of the Navier-Stokes equations describing the
motion of only fluid in the whole space. The trajectory of the centre of the ball converges to a
fluid particle trajectory, which justifies the use of rigid tracers for finding Lagrangian paths of
fluid flow.

1 Introduction

Suppose that, relatively to an inertial reference frame, a homogeneous three-dimensional rigid
body, represented by a closed ball Br(t) := {y ∈ R

3 : |y − h(t)| 6 r}, is moving in a Navier-
Stokes liquid which occupies the exterior domain Ωr(t) := R

3 \ Br(t). The function h = h(t)
describes the trajectory of the center of mass of the rigid body, which is also allowed to rotate,
ω = ω(t) being its angular velocity. Denoting by v = v(t, y) the Eulerian velocity of the fluid and
q = q(t, y) the corresponding pressure in the same inertial frame, the evolution of the motion of
the system body-liquid is described by the initial boundary value problem

∂tv(t, y) + (v(t, y) · ∇y) v(t, y) = ∇y · T (v(t, y), q(t, y)), y ∈ Ωr(t), t ∈ (0, T ), (1)

∇y · v(t, y) = 0, y ∈ Ωr(t), t ∈ (0, T ), (2)

v(t, y) = h′(t) + ω(t)× (y − h(t)) y ∈ ∂Br(t), t ∈ (0, T ), (3)

mrh
′′(t) = −

∫

∂Br(t)

T (v(t, y), q(t, y))n(t, y) dS, t ∈ (0, T ), (4)

Jrω
′(t) = −

∫

∂Br(t)

(y − h(t))× T (v(t, y), q(t, y))n(t, y) dS, t ∈ (0, T ), (5)

v(0, y) = v0(y), y ∈ Ωr(0), (6)

h(0) = h0, h′(0) = h′0, ω(0) = ω0. (7)

In the above system, we have denoted by n(t) = n(t, y) the external unit normal to Ωr(t), and
by T (v, q) the stress tensor of the liquid, defined by

T (v, q) = 2νD(v) − q I3, (8)

D(v)ij =
1

2

(

∂vi
∂yj

+
∂vj
∂yi

)

i, j = 1, 2, 3, (9)
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where ν is the viscosity coefficient of the liquid and where I3 is the identity matrix of order 3.
Finally, mr and Jr are respectively the mass of the body, and the moment or the matrix of
inertia of the body. We have assumed that the density of the ball is constant and we denote it
by ρ. Then mr and Jr have explicit formulas:

mr =
4

3
πr3ρ (10)

and

Jr =
8

15
πr5ρ I3 . (11)

Note that Jr is independent of time since the structure is a homogeneous ball.
By means of the changes of variables

x := y − h(t),

u(t, x) := v(t, x+ h(t)),

p(t, x) := q(t, x+ h(t)),

ℓ(t) := h′(t),

(12)

system (1)-(7) can be written in a frame attached to the rigid ball:

∂tu+ ((u− ℓ) · ∇)u = ∇ · T (u, p) in (0, T )× Ωr, (13)

∇ · u = 0 in (0, T )× Ωr, (14)

u(t, x) = ℓ(t) + ω(t)× x for t ∈ (0, T ), x ∈ ∂Br, (15)

mrℓ
′ = −

∫

∂Br

T (u, p)n dS in (0, T ), (16)

Jrω
′ = −

∫

∂Br

x× T (u, p)n dS in (0, T ), (17)

u(0, x) = u0(x), x ∈ Ωr (18)

ℓ(0) = ℓ0, ω(0) = ω0. (19)

The advantage of this formulation is that now the fluid domain is known and time-independent
Ωr = {x ∈ R

3 : |x| > r}. As concerns the well-posedness of the system (13)-(19), we refer to
the works of Galdi and Silvestre [9], Takahashi and Tucsnak [25]. In particular, for all r, for any
(u0, ℓ0, ω0) ∈ H1(Ωr)× R

3 × R
3 such that

u0(x) = ℓ0 + ω0 × x on ∂Br,

the system (13)–(19) admits a unique local strong solution

ur ∈ H1(0, T ;L2(Ωr)
3) ∩ L∞(0, T ;H1(Ωr)

3) ∩ L2(0, T ;H2(Ωr)
3),

ℓr ∈ H1(0, T )3, ωr ∈ H1(0, T )3.

Note that the maximal time of existence may be finite and may depend on r. In the last years,
fluid–structure systems such as system (13)–(19) have been extensively studied. After the pioneer
results of Judakov [18], Serre [22], and Weinberger [27], many results have been published in the
case of exterior domain (see, for instance, [23, 3, 11, 10, 8]) or in the case of bounded domain
(see, for instance, [1, 5, 6, 7, 12, 13, 15]).

As in the work of Dashti and Robinson [4], our aim is to investigate the limit of system (13)-
(19) when the radius r of the ball goes to 0. We show that the limiting system is the following
Navier–Stokes system in R

3:

∂tu+ ((u− ℓ) · ∇)u = ∇ · T (u, p) in (0, T )× R
3, (20)

∇ · u = 0 in (0, T )× R
3, (21)

u(0, x) = u0(x), x ∈ R
3. (22)
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The function ℓ is such that
u(t, 0) = ℓ(t). (23)

In particular, using the change of variables (12) we conclude that

∂tv + (v · ∇) v = ∇ · T (v, q) in (0, T )× R
3, (24)

∇ · v = 0 in (0, T )× R
3, (25)

v(0, x) = v0(x), x ∈ R
3, (26)

and
h′(t) = v(t, h(t)) in (0, T ). (27)

Dashti and Robinson [4] have solved this problem in R
2, in the absence of rotation, considering

ω = 0 by imposing an external torque and zero initial angular velocity of the disc. This last
restriction has been made because of the difficulty in obtaining L2-estimates independent of r
for D2ur when the particle can rotate, see Lemma 4 of [4]. Such estimates are crucial to pass
to the limit of the ball radius in the equations of motion of the fluid and show that the solution
of the coupled system converges to the solution of the Navier-Stokes equations describing the
motion of only fluid in the whole space.

The study of this type of asymptotic analysis problems is also considered in [16], [17] for the
case of a fixed obstacle. In [21], a simplified model of combustion is analyzed with this approach.

In this paper we extend the results of Dashti and Robinson, considering the three-dimensional
fluid-ball interaction problem (13)-(19). We show that the required uniform bounds on the
velocity fields can be obtained by a careful analysis of a steady Stokes-type problem associated
with the problem (13)-(19). Dashti and Robinson derived the estimates for D2ur based on
the classical exterior steady Stokes problem with a rigid velocity on the boundary. Here, we
decompose the solution of the Stokes problem associated with the fluid-structure interaction
problem in such a way that the explicit solutions for Stokes flow past a translating ball and
around a rotating ball can be used to obtain a precise information about the dependence in
r when combined with the Newton’s laws-type equations of the modified Stokes problem (see
Theorem 3.1).

To state our main result more precisely, we extend the fluid velocities ur in Br by the rigid
velocities:

ur(x) = ℓr + ωr × x in Br.

This convention is used in all that follows. We also use some classical notation for functional
spaces of divergence-free velocities H and V . We define them in Section 2 (see (28), (29)).

Theorem 1.1. Assume (u0
r)0<r<r∗ is a bounded sequence of V with

u0
r(x) = ℓ0r + ω0

r × x in Br,

for all r and assume that there exists u0 ∈ V such that u0
r ⇀ u0 in H as r → 0. Then there exists

T independent of r such that for all r, the strong solution (ur, ℓr, ωr) of (13)–(19) associated to
(u0

r, ℓ
0
r, ω

0
r) exists on (0, T ). Moreover, for all r0, R > 0,

ur ⇀ u in H1(0, T ;L2(R3)3) ∩ L2(0, T ;H2(Ωr0)
3)− weak,

ur ⇀ u in L∞(0, T ;H1(R3)3)− weak*,

ur → u strongly in L2(0, T ;L2(BR)
3),

ℓr → ℓ strongly in L2(0, T )3,

where (u, ℓ) is the solution of (20)–(22), (23) associated to u0.

The plan of the paper is the following. In Section 2, we introduce some notation and prove
some auxiliary interpolation inequalities. Section 3 is devoted to the analysis of the above
mentioned steady Stokes-type problem, where we obtain an uniform estimate in r for the second
derivatives of the solution of such a problem in terms of a norm of the associated Stokes-
type operator. In Section 4, we obtain a number of uniform estimates for the fluid-structure
interaction problem (13)–(19) and, finally, in Section 5, we pass to the zero limit of the ball
radius to obtain the Navier-Stokes flow (20)–(22). For the reader’s convenience, we include in
an Appendix (Section A) some calculations for the explicit Stokes solutions that have been used
in Section 3.
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2 Notation and auxiliary results

For a sufficiently regular vector field v : R3 → R
3, we denote by ∇v the second order tensor field

whose components (∇v)jk are given by ∂vk
∂xj

, and by D(v) we denote the symmetric part of ∇v

(see (9)). The second order derivatives of v will be indicated by D2v, more precisely, for each
j ∈ {1, 2, 3}, D2vj is the Hessian matrix of vj .

We shall use standard notation for function spaces. So, for instance, Ls(D) and Hm(D)
will denote the usual Lebesgue and Sobolev spaces on the domain D, with norms ‖ · ‖s,D and
‖ · ‖m,2,D , respectively. Notations like Ls(D)3 (resp. Ls(D)3×3), Hm(D)3 (resp. Hm(D)3×3),
etc. will be used to denote analogous spaces of vector-valued functions (resp. tensor-valued
functions).

We also use the following classical notation

H := {φ ∈ L2(R3)3 : ∇ · φ = 0 in R
3}, (28)

V := H ∩H1(R3)3. (29)

Finally, we consider in this paper the following subsets of R3:

Ωr = {x ∈ R
3 : |x| > r},

Br = {x ∈ R
3 : |x| 6 r},

Br,R = {x ∈ R
3 : R > |x| > r},

where 0 < r < R.
In the next lemma, we establish a useful interpolation inequality in the exterior domain Ωr,

where the embedding constant is independent of r.

Lemma 2.1. Let u ∈ H2(Ωr). Then the following inequality holds

‖u‖∞,Ωr 6 C‖u‖1/42,Ωr
‖D2u‖3/42,Ωr

with a constant C independent of u and r.

Proof. Let D ⊆ R
3 be an exterior domain. In [2], Crispo and Maremonti proved, in particular,

that any function u ∈ L2(D) with D2u ∈ L2(D)3×3 satisfies

‖u‖∞,D 6 C‖D2u‖
3

4

2,D‖u‖
1

4

2,D , (30)

where C is a constant independent of u.
Let u ∈ L2(Ωr). Then, by a simple change of variables, we find the relation

‖u‖2,Ωr = r
3

2 ‖ur‖2,Ω1

where ur(x) := u(rx) (x ∈ Ω1). Analogously, if the second derivatives of u belong to L2(Ωr), we
have

‖D2u‖2,Ωr = r−
1

2 ‖D2ur‖2,Ω1
.

Hence, applying (30) to ur and Ω1 yields

‖u‖∞,Ωr = ‖ur‖∞,Ω1
6 C‖D2ur‖

3

4

2,Ω1
‖ur‖

1

4

2,Ω1

with C independent of r. But

‖D2ur‖
3

4

2,Ω1
= r

3

4
(− 1

2
)‖D2u‖

3

4

2,Ωr
= r−

3

8 ‖D2u‖
3

4

2,Ωr

and

‖ur‖
1

4

2,Ω1
= r

1

4

3

2 ‖u‖
1

4

2,Ωr
= r

3

8 ‖u‖
1

4

2,Ωr

so that

‖u‖∞,Ω 6 C‖D2u‖
3

4

2,Ωr
‖u‖

1

4

2,Ωr

with a constant C independent of r.
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We have also the following estimate.

Lemma 2.2. Let u ∈ H2(Ωr). Then the following inequality holds

‖u‖C0,1/2(Ωr)
6 C‖D2u‖2,Ωr

with a constant C independent of u and r.

Proof. We proceed as in the proof of Lemma 2.1. More precisely, using [2] again, we know that
for an exterior domain D ⊆ R

3, a function u ∈ L2(D) with D2u ∈ L2(D)3×3 satisfies

‖u‖C0,1/2(D) 6 C‖D2u‖2,D (31)

where C is a constant independent of u. Then for u ∈ L2(Ωr) with D2u ∈ L2(Ωr)
3×3, we set

ur(x) := u(rx) (x ∈ Ω1), and we recall

‖D2u‖2,Ωr = r−
1

2 ‖D2ur‖2,Ω1
.

We can also prove
‖u‖C0,1/2(Ωr)

= r−1/2‖ur‖C0,1/2(Ω1)
.

Hence, applying (31) to ur and Ω1 yields the result.

As in Lemma 2 in [4], we can prove a useful result which shows how the trace inequality for
the domain Ωr depends on r in the three-dimensional case.

Lemma 2.3. Let w ∈ L1
loc(Ωr) be such that ∇w ∈ L2(Ωr)

3. Then there exist constants w0 and
C such that

‖w − w0‖L2(∂Br) 6 Cr1/2‖∇w‖L2(Ωr)3

where the constant C is independent of w and r. If w ∈ L6(Ωr) then w0 = 0.

Proof. Let w ∈ L1
loc(Ωr) be such that ∇w ∈ L2(Ωr)

3 and set wr(y) := w(ry) (y ∈ Ω1). It is well
known (see [2]) that there exist constants w0 and C such that

‖wr −w0‖L6(Ω1)
6 C‖∇wr‖L2(Ω1)3

(32)

where the constant C is independent of w and r, and w0 = 0 if w ∈ L6(Ωr).
Now

∫

∂Br

|w −w0|
2 dS = r2

∫

∂B1

|wr − w0|
2 dS 6 Cr2

[

∫

B1,2

|wr −w0|
2 dx+

∫

Ω1

|∇wr|2 dx

]

and since

∫

B1,2

|wr − w0|
2 dx 6 C

(

∫

B1,2

|wr − w0|
6 dx

)1/3

6 C‖wr − w0‖
2
6,Ω1

,

from (32), we get
∫

∂Br

|w − w0|
2 dS 6 Cr2‖∇wr‖22,Ω1

.

Finally, by changing variables again,
∫

∂Br

|w −w0|
2 dS 6 Cr2‖∇wr‖22,Ω1

6 Cr‖∇w‖22,Ωr
.
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Now we recall some function spaces appropriate for studying the system (13)-(19). The
spaces

Hr := {φ ∈ L2(R3)3 : ∇ · φ = 0 in R
3, D(φ) = 0 in Br} (33)

Vr := {φ ∈ H1(R3)3 : ∇ · φ = 0 in R
3, D(φ) = 0 in Br} (34)

are Hilbert spaces for the inner products of L2(R3)3 and H1(R3)3, respectively. It is well known
that, for each φ ∈ Hr, there exist ξφ ∈ R

3 and ωφ ∈ R
3 such that

φ|Br (x) = ξφ + ωφ × x.

We also define a global density by

ρr =

{

1 in Ωr,

ρ in Br,

and the following inner product of L2(R3)3

(u, v)Hr =

∫

R3

ρru · vdx.

The corresponding norm is equivalent to the usual L2 norm. The notation we choose for this
inner product comes from the fact that if u, v ∈ Hr, then

(u, v)Hr =

∫

Ωr

u · vdx+mrξu · ξv + (Jrωu) · ωv.

It is also common (see [8]) to consider the space

{v ∈ C∞
c (R3)3 : ∇ · v = 0, D(v) = 0 in Br}

and its completion Wr with respect to the seminorm ‖D(v)‖2,R3 . In what follows, we use several
times the following classical relation

‖∇v‖22,R3 = 2‖D(v)‖22,R3 = 2‖D(v)‖22,Ωr
, ∀v ∈ Wr. (35)

Let us recall (see [8, Lemma 4.11])

Wr = {v ∈ L6(R3)3 : ∇v ∈ L2(R3)3×3, ∇ · v = 0, D(v) = 0 in Br}.

We also recall the useful relations (see [8, Lemma 4.9])

r1/2|ξv| 6 C‖∇v‖2,R3 , ∀v ∈ Wr, (36)

r3/2|ωv| 6 C‖∇v‖2,R3 , ∀v ∈ Wr (37)

for positive constants C independent of v and r.
Finally let us give the following result.

Lemma 2.4. Let u ∈ Vr be such that u|Ωr ∈ H2(Ωr)
3 and u|Br (x) = ℓ+ ω × x. Then

|ℓ| 6 ‖u‖∞,Ωr .

Proof. We follow an idea of [4]. Since the normal to Ωr is given by n(x) = −x
r
, we have

u · n = ℓ · n on ∂Br.

Now, by taking a point x ∈ ∂Br such that ℓ · n(x) = |ℓ|, we obtain

|ℓ| = |u(x) · n(x)| 6 |u(x)| 6 ‖u‖∞,Ωr .
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3 The Stokes-type problem and the operator Ar

The semigroup approach of [25] for problem (13)-(19) is based on the operator defined by

D(Ar) := {φ ∈ H1(R3)3 : φ|Ωr ∈ H2(Ωr)
3, ∇ · φ = 0 in R

3, D(φ) = 0 in Br}

Ar := PrAr

(38)

with Pr the orthogonal projector in L2(R3)3 onto Hr (with respect to the inner product (·, ·)Hr )
and

Aru :=











−ν∆u in Ωr

2ν

mr

∫

∂Br

D(u)n dS +

[

2νJ−1
r

∫

∂Br

y ×D(u)n dS

]

× x in Br.
(39)

In this section, we analyze the operator Ar. Given u ∈ D(Ar), there exist ℓ ∈ R
3 and ω ∈ R

3

such that
u|Br (x) = ℓ+ ω × x.

Let f := Aru. Since f|Ωr ∈ L2(Ωr)
3, there exists (see, for instance, [25]) p ∈ L2

loc(Ωr) with
∇p ∈ L2(Ωr)

3 such that

−∇ · T (u, p) = f|Ωr in Ωr, (40)

∇ · u = 0 in Ωr , (41)

u(x) = ℓ+ ω × x for x ∈ ∂Br, (42)

lim
|x|→∞

u(x) = 0, (43)

mrℓf = −

∫

∂Br

T (u, p)n dS, (44)

Jrωf = −

∫

∂Br

x× T (u, p)n dS. (45)

Our aim is to show that

‖D2u‖2,Ωr 6 C
[

‖∇u‖2,R3 + (‖f|Ωr‖
2
2,Ωr

+mr|ℓf |
2 + Jrωf · ωf )

1

2

]

with C independent of u, f and r. Recall that mr = O(r3) and Jr = O(r5).

Theorem 3.1. There exists a positive constant C independent of r such that

‖D2u‖2,Ωr 6 C(‖Aru‖Hr + ‖∇u‖2,R3 ) (u ∈ D(Ar)). (46)

Proof. We use the following decomposition

(u, p) = (u(1), p(1)) + (u(2), p(2)) + (u(3), p(3)) (47)

where (u(1), p(1)) satisfies

−∇ · T (u(1), p(1)) = f|Ωr in Ωr, (48)

∇ · u(1) = 0 in Ωr, (49)

u(1)(x) = 0 for x ∈ ∂Br, (50)

lim
|x|→∞

u(1)(x) = 0 (51)

and

(u(2)(x), p(2)(x)) =

(

3r

4

[

ℓ

|x|
+

(ℓ · x)x

|x|3

]

+
r3

4

[

ℓ

|x|3
− 3

(ℓ · x)x

|x|5

]

,
3νr

2

ℓ · x

|x|3

)

(52)

(u(3)(x), p(3)(x)) =

(

r3
ω × x

|x|3
, 0

)

. (53)
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Using the results of Section A, we see that (u(2), p(2)) and (u(3), p(3)) satisfy

∇ · T (u(2), p(2)) = 0, in Ωr,

∇ · u(2) = 0, in Ωr,

u(2)(x) = ℓ, x ∈ ∂Br,

lim
|x|→∞

u(2)(x) = 0,

∫

∂Br

T (u(2), p(2))ndS = 6πνrℓ,
∫

∂Br

x× T (u(2), p(2))ndS = 0

(54)

and
∇ · T (u(3), p(3)) = 0, in Ωr,

∇ · u(3) = 0, in Ωr,

u(3)(x) = ω × x, x ∈ ∂Br,

lim
|x|→∞

u(3)(x) = 0,

∫

∂Br

T (u(3), p(3))ndS = 0,
∫

∂Br

x× T (u(3), p(3))ndS = 8πνr3ω .

(55)

From (52), (53) and the results of Section A, we deduce the existence of a positive constant C
independent of r such that

‖D2u(2)‖2,Ωr 6 C|ℓ|r−1/2 (56)

‖D2u(3)‖2,Ωr 6 C|ω|r1/2. (57)

Writing (44) and (45) in terms of the decomposition (47) of (u, p) yields

6πνrℓ = −mrℓf −

∫

∂Br

T (u(1), p(1))n dS

8πνr3ω = −Jrωf −

∫

∂Br

x× T (u(1), p(1))n dS.

This implies

ℓ = −
2r2

9ν
ℓf −

1

6πνr

∫

∂Br

T (u(1), p(1))n dS (58)

ω = −
r2

15ν
ωf −

1

8πνr3

∫

∂Br

x× T (u(1), p(1))n dS . (59)

By Lemma 1 of [14],

‖D2u(1)‖2,Ωr 6 C(‖f|Ωr‖2,Ωr + ‖∇u(1)‖2,Ωr ), (60)

with a constant C independent of r. Moreover, we have

‖∇u(1)‖2,Ωr 6 ‖∇u‖2,Ωr + ‖∇u(2)‖2,Ωr + ‖∇u(3)‖2,Ωr 6 ‖∇u‖2,Ωr + C|ℓ|r1/2 + C|ω|r3/2

and from (36) and (37) it follows

‖∇u(1)‖2,Ωr 6 C‖∇u‖2,R3

so that
‖D2u(1)‖2,Ωr 6 C(‖f|Ωr‖2,Ωr + ‖∇u‖2,R3 ). (61)
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In order to appropriatly bound ℓ and ω from (58) and (59), we begin by showing that the
inequality

∣

∣

∣

∣

∫

∂Br

x× T (u(1), p(1))n dS

∣

∣

∣

∣

6 Cr5/2‖f|Ωr‖2,Ωr , (62)

holds with C independent of r. Indeed, if we consider the functions Hi(x) := r3 ei×x
|x|3

, which

belong to L2(Ωr)
3, and note that for each i = 1, 2, 3,

ei ·

∫

∂Br

x× T (u(1), p(1))n dS =

∫

∂Br

ei × x · T (u(1), p(1))n dS =

∫

∂Br

Hi · T (u
(1), p(1))n dS,

by Green’s formula for the Stokes equations, we have

ei ·

∫

∂Br

x× T (u(1), p(1))n dS =

∫

∂Br

Hi · T (u
(1), p(1))n dS = −

∫

Ωr

f ·Hi dx .

Then (62) follows from the fact that ‖Hi‖2 6 Cr5/2 (see Section A). It remains to show that

∣

∣

∣

∣

∫

∂Br

T (u(1), p(1))n dS

∣

∣

∣

∣

6 Cr3/2(‖f|Ωr‖2,Ωr + ‖∇u‖2,Ωr ), (63)

where, again, C is independent of r. Since

∣

∣

∣

∣

∫

∂Br

T (u(1), p(1))n dS

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂Br

T (u(1), p(1) − p0)n dS

∣

∣

∣

∣

6 Cr(‖∇u(1)‖2,∂Br + ‖p(1) − p0‖2,∂Br )

for any p0 ∈ R, we can modify the pressure p(1) in such a way that, according to Lemma 2.3,

‖p(1) − p0‖2,∂Br 6 Cr1/2‖∇p(1)‖2,Ωr .

Also by Lemma 2.3,
‖∇u(1)‖2,∂Br 6 Cr1/2‖D2u(1)‖2,Ωr .

Now, we only have to note that

‖∇p(1)‖2,Ωr 6 C(‖f‖2,Ωr + ‖D2u(1)‖2,Ωr )

and use (61) to bound ‖D2u(1)‖2,Ωr .
Finally, (58) and (59) combined with (63) and (62) yield

|ℓ| 6 Cr2|ℓf |+ Cr1/2(‖f|Ωr‖2,Ωr + ‖∇u‖2,Ωr ),

|ω| 6 Cr2|ωf |+ C
1

r1/2
‖f|Ωr‖2,Ωr ,

for constants C independent of r. Coming back to (56) and (57) with the above estimates for
|ℓ| and |ω|, we get

‖D2u(2)‖2,Ωr 6 Cr3/2|ℓf |+ C(‖f|Ωr‖2,Ωr + ‖∇u‖2,R3 )

‖D2u(3)‖2,Ωr 6 Cr5/2|ωf |+ C‖f|Ωr‖2,Ωr

which together with (61) and (47) yields

‖D2u‖2,Ωr 6 Cr3/2|ℓf |+ Cr5/2|ωf |+ C‖f|Ωr‖2,Ωr + C‖∇u‖2,R3 6 C(‖Aru‖Hr + ‖∇u‖2,R3 ).
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4 Estimates independent of r for the solution of (13)–
(19)

Assume that u0
r ∈ Vr for some r > 0. Then, writing u0

r = ℓ0r + ω0
r × x in Br, and taking

(u0
r, ℓ

0
r, ω

0
r) for the initial conditions of (13)–(19), we obtain (see, for instance, [25]) the existence

and uniqueness of a strong solution

ur ∈ H1(0, T ;L2(R3)3) ∩ L∞(0, T ;H1(R3)3) ∩ L2(0, T ;H2(Ωr)
3).

Here and in what follows, we extend ur to Br by ℓr + ωr × x. Let us note that the maximal
time of existence T may be finite and may depend on r.

We can write (13)–(17) in an abstract way by using the operator Ar defined by (38)–(39)
and the following nonlinear operator:

Nr(u) =

{

− ((u− ℓ) · ∇)u in Ωr

0 in Br

(u ∈ Vr),

and its projection in Hr

Nr(u) := PrNr(u).

With this notation, we can write (13)–(17) as

∂tur + Arur = Nr(ur). (64)

Theorem 4.1. Assume (u0
r)0<r<r∗ is bounded in H1(R3)3, u0

r ∈ Vr for all r. Then there exists
T independent of r such that

(i) (ur)0<r<r∗ is bounded in H1(0, T ;L2(R3)3) ∩ L∞(0, T ;H1(R3)3) ∩ L2(0, T ;H2(Ωr)
3),

(ii) (ℓr)0<r<r∗ is bounded in L2(0, T )3.

Proof. Let us multiply (64) by ur and integrate over Ωr . We obtain

1

2

d

dt
‖ur‖

2
Hr

+ 2ν‖D(ur)‖
2
2,Ωr

= 0 (65)

which, combined with (35) yields

sup
t∈(0,T )

‖ur(t)‖
2
2,R3 + ν

∫ T

0

‖∇ur‖
2
2,R3 dt 6 C‖u0

r‖
2
2,R3 . (66)

Now we multiply (64) by Arur and integrate by parts over Ωr to get

ν
d

dt
‖D(ur)‖

2
2,Ωr

+ ‖Arur‖
2
Hr

= (Nr(ur), Arur)Hr , (67)

where

(Nr(ur), Arur)Hr 6 ‖Nr(ur)‖Hr‖Arur‖Hr 6 ‖ ((ur − ℓr) · ∇)ur‖2,Ωr‖Arur‖Hr . (68)

By Hölder’s inequality,
‖(ur · ∇)ur‖2,Ωr 6 ‖ur‖∞,Ωr‖∇ur‖2,Ωr (69)

and by Lemma 2.4
‖(ℓr · ∇)ur‖2,Ωr 6 ‖ur‖∞,Ωr‖∇ur‖2,Ωr . (70)

Again we use (69), (70) and Lemma 2.1 to get

‖ ((ur − ℓr) · ∇)ur‖2,Ωr 6 2‖ur‖∞,Ωr‖∇ur‖2,Ωr

6 C‖ur‖
1/4
2,Ωr

‖D2ur‖
3/4
2,Ωr

‖∇ur‖2,Ωr (71)

with a constant C independent of r. By combining (71) with (67) and (68), we deduce that

ν
d

dt
‖D(ur)‖

2
2,Ωr

+ ‖Arur‖
2
Hr

6 C‖ur‖
1/4
2,Ωr

‖D2ur‖
3/4
2,Ωr

‖∇ur‖2,Ωr‖Arur‖Hr . (72)
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Now, using Theorem 3.1, and (35) implies

ν

2

d

dt
‖∇ur‖

2
2,R3 + ‖Arur‖

2
Hr

6 C‖ur‖
1/4
2,Ωr

‖∇ur‖2,Ωr‖Arur‖
7/4
Hr

+C‖ur‖
1/4
2,Ωr

‖∇ur‖
7/4
2,Ωr

‖Arur‖Hr .

Applying Young’s inequality to the above estimate yields

ν
d

dt
‖∇ur‖

2
2,R3 + ‖Arur‖

2
Hr

6 C(‖ur‖
2
2,Ωr

+ 1)‖∇ur‖
8
2,Ωr

+ C‖ur‖
8/9
2,Ωr

with C independent of r. Using the estimate (66) we get

ν
d

dt
‖∇ur‖

2
2,R3 + ‖Arur‖

2
Hr

6 C(1 + ‖u0
r‖

8/9

2,R3 + ‖u0
r‖

2
2,R3)(‖∇ur‖

2
2,R3 + 1)4. (73)

Let y(t) := 1 + ‖∇ur(t)‖
2
2,R3 . Then, from (73) we have

y′
6 Cy4

with C independent of r. We conclude that

y(t) 6
y(0)

3
√

1− 3y(0)3Ct

as long as t < 1/(3y(0)3C). Let us consider T small enough so that

T <
1

3C(1 + ‖∇u0
r‖

2
2,R3)3

.

Since (u0
r)0<r<r∗ is bounded in H1(R3)3, T can be chosen so that it is independent of r.

We deduce that for all t ∈ [0, T ],

‖∇ur(t)‖
2
2,R3 6 C(1 + ‖∇ur(0)‖

2
2,R3) 6 K̃1

with K̃1 independent of r. Now from (73),

∫ T

0

‖Arur(s)‖
2
Hr

ds 6 K̃2

with K̃2 independent of r, which implies with Theorem 3.1

‖D2ur‖L2(0,T ;L2(Ωr)3×3×3) 6 K̃3

with K̃3 independent of r. We can find constants K̃4 and K̃5 independent of r such that

‖ℓr‖L2(0,T ;R3) 6 K̃4

and
‖∂tur‖L2(0,T ;L2(Ωr)3) 6 K̃5.

5 Passage to the zero limit of the ball radius in (13)–
(19)

The aim of this section is to prove the main result of the paper.
Applying Theorem 4.1 and using a diagonal process, we deduce that for all r0 > 0,

ur ⇀ u in H1(0, T ;L2(R3)3) ∩ L2(0, T ;H2(Ωr0)
3)− weak, (74)

ur ⇀ u in L∞(0, T ;H1(R3)3)− weak*, (75)

ℓr ⇀ ℓ in L2(0, T )− weak. (76)
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In particular for any r0, u ∈ L2(0, T ;H2(Ωr0)
3) and its norm in these spaces is bounded indepen-

dently of r0. Following the proof of [4], we deduce that u ∈ L2(0, T ;H2(R3)3). Applying Aubin-
Lions-Simon Lemma, and using the fact that (ur)0<r<r∗ is bounded in L2(0, T ;H1(BR)

3) ∩
H1(0, T ;L2(BR)

3), we conclude that there exists a subsequence such that

ur → u strongly in L2(0, T ;L2(BR)
3). (77)

In order to pass to the limit as r → 0, we write an integral formulation of (13)–(17). Assume
ϕ ∈ C1(R3)3 is divergence free, with compact support in Bs,R, R > s > 0. Then for r < s, we
multiply (64) by ϕ to obtain

∫

R3

ρr∂tur · ϕ dx+ (Arur, ϕ)Hr
= (Nr(ur), ϕ)Hr

in (0, T ).

By integrating by parts, we deduce from the above equation that
∫

R3

(∂tur − ν∆ur) · ϕ dx−

∫

R3

[(ur − ℓr) · ∇)ϕ] · ur dx = 0 in (0, T ). (78)

Using (74)–(76) and (77), we deduce that for all ϕ ∈ C1(R3)3 divergence free, with compact
support in Bs,R, R > s > 0,

∫

R3

(∂tu− ν∆u+ ((u− ℓ) · ∇)u) · ϕ dx = 0 in (0, T ). (79)

We observe that the functions in C1(R3)3 which are divergence free, with compact support in
Bs,R, R > s > 0 are dense in H . To be complete we give below a proof of this result based on
[20, pp. 165-166]. Consequently, we deduce that (79) holds for all ϕ ∈ L2(0, T ;H). In particular,
(see, for instance, [26, pp. 14-15]), there exists p with ∇p ∈ L2(0, T ;L2(R3)) such that

∂tu− ν∆u+ ((u− ℓ) · ∇)u = −∇p in (0, T )× R
3.

To recover the initial condition, we apply a classical method: using (74) and (77), we deduce
that for any function ϕ ∈ C1([0, T )× R

3)3 with compact support, we have

∫

R3

ur(0) · ϕ(0) dx =

∫

(0,T )×R3

ur · ∂tϕ dt dx−

∫

(0,T )×R3

∂tur · ϕ dt dx

→

∫

(0,T )×R3

u · ∂tϕ dt dx−

∫

(0,T )×R3

∂tu · ϕ dt dx =

∫

R3

u(0) · ϕ(0) dx.

Since u0
r ⇀ u0 weakly in L2(R3)3, then we deduce that u(0) = u0.

Let us now prove the strong convergence of (ℓr)0<r<r∗ . Let us consider a decreasing sequence
rk → 0. Then, for k > m and for any n ∈ ∂B1,

|(ℓrk − ℓrm) · n| = |(urk (rk(−n))− urm(rm(−n))) · n|

6 |(urk (rm(−n))− urm (rm(−n))) · n|+ |(urk(rk(−n))− urk (rm(−n))) · n|

6 ‖urk − urm‖∞,Brm,2rm
+ |rk − rm|1/2 ‖urk‖C0,1/2(Ωrk

) . (80)

Let us note that, with an argument similar to the proof of Lemma 2.1, we can prove that for
w ∈ H2(Ωr) the following inequality holds

‖w‖∞,Br,2r 6 C‖w‖1/42,Br,2r
‖D2w‖3/42,Br,2r

with a constant C > 0 independent of w and r.
Combining (80) with the above result, Lemma 2.2 and with Theorem 4.1, we conclude that

ℓr → ℓ in L2(0, T )3. To obtain the relation between ℓ and u, we consider a similar calculation:
for a fixed e ∈ ∂B1,

|u(t, 0)− ℓ(t)| 6 |u(t, 0)− u(t, re)|+ |u(t, re)− ℓr(t)|+ |ℓr(t)− ℓ(t)| . (81)
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The first term of the right-hand side of (81) can be estimated by ‖u‖C0,1/2(R3), the last term
has just been treated, and the second term can be handle through the following manipulation:
for any n, e ∈ ∂B1,

|(u(t, re)− ℓr(t)) · n| = |(u(t, re)− ur(t,−rn)) · n|

6 |(u(t, re)− u(t,−rn)) · n|+ |(u(t,−rn)− ur(t,−rn)) · n|

6 r1/2 ‖u‖C0,1/2(R3) + ‖u− ur‖∞,Br,2r
,

and we conclude as above.
This concludes the proof of Theorem 1.1.
We give here the proof of the density in H of the subspace of the functions C1(R3)3 which

are divergence free, with compact support in Bs,R, R > s > 0. The proof is based on [20, pp.
165-166].

Lemma 5.1. Given u ∈ H and δ > 0, there exist 0 < s < 1 and us ∈ V with supp us ⊂ Bs,1/s

such that
‖u− us‖2,R3 < δ.

Proof. Given u ∈ H and δ > 0, using the density of V in H , there exists v ∈ V such that

‖u− v‖2,R3 <
δ

2
.

For 0 < ε < 1 and v ∈ V , consider the problem of finding vε ∈ V such that

∆vε − vε −∇pε = ∆v − v in Bε,1/ε,

∇ · vε = 0 in Bε,1/ε.
(82)

This problem has a unique solution (vε, pε) ∈ V × L2(Bε,1/ε)/R such that

‖vε‖2,Bε,1/ε
+ ‖∇vε‖2,Bε,1/ε

6 ‖v‖V (83)

Moreover, pε can be normalized in such a way that

‖pε‖2,Bε,1/ε
6 C‖v‖V (84)

with C independent of ε and v. From (83), extending each vε by zero outside Bε,1/ε, we deduce
the existence of v ∈ V such that

vε ⇀ v weakly in V, as ε → 0,

while (84) implies the existence of p ∈ L2(R3) such that

pε ⇀ p weakly in L2(R3), as ε → 0.

The function v − v ∈ V satisfies

∆(v − v)− (v − v)−∇p = 0 in R
3,

∇ · (v − v) = 0 in R
3

and therefore v = v. Actually, since vε ⇀ v weakly in V and ‖vε‖V 6 ‖v‖V , it follows that

vε → v strongly in V, as ε → 0.

This results allows us to take vs ∈ V with support in Bs,1/s such that

‖v − vs‖2,R3 <
δ

2
.
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A Computations involving the auxiliary Stokes solu-

tions

Stokes derived in 1851 [24] (see also [19]) an explicit solution for tridimensional Stokes flow past
a translating sphere. Specifically, the solution to the Stokes problem

∇ · T (u, p) = 0, in Ωr,

∇ · u = 0, in Ωr,

u(x) = ξ for x ∈ ∂Br,

lim
|x|→∞

u(x) = 0

where ξ ∈ R
3, is given by

u(x) =
3r

4

[

ξ

|x|
+

(ξ · x)x

|x|3

]

+
r3

4

[

ξ

|x|3
− 3

(ξ · x)x

|x|5

]

p(x) =
3νr

2

ξ · x

|x|3
+ c

where c is a constant. By direct calculations, we find that the gradient of u is

∇u(x) =
3r

4

[

ξ ⊗ x− x⊗ ξ

|x|3
+

(ξ · x)

|x|3
I3 −

3(ξ · x)

|x|5
x⊗ x

]

+
r3

4

[

−3
(ξ · x)I3 + ξ ⊗ x+ x⊗ ξ

|x|5
+

15(ξ · x)x⊗ x

|x|7

]

and its symmetric part is

Du(x) =
3r

4

[

(ξ · x)

|x|3
I3 −

3(ξ · x)

|x|5
x⊗ x

]

+
r3

4

[

−3
(ξ · x)I3 + ξ ⊗ x+ x⊗ ξ

|x|5
+

15(ξ · x)x⊗ x

|x|7

]

.

Therefore, since the external unit normal to Ωr is given by n(x) = −x
r
and

(ξ ⊗ x)n(x) = −rξ, (x⊗ ξ)n(x) = (ξ · x)n(x), (x⊗ x)n(x) = r2n(x) (x ∈ ∂Br)

we have

T (u, p)n =
3

2r
ξ on ∂Br

∫

∂Br

T (u, p)ndS =
3

2r
ξ

∫

∂Br

dS = 6πrξ

∫

∂Br

x× T (u, p)ndS = −
3

2r
ξ ×

∫

∂Br

xdS = 0.

As concerns the summability properties of u and its derivatives, we have

u ∈ Lq(Ωr)
3, ∀q > 3, with ‖u‖q,Ωr 6 C(q)|ξ|r3/q ,

∇u ∈ Lq(Ωr)
3×3, ∀q > 3/2, with ‖∇u‖q,Ωr 6 C(q)|ξ|r3/q−1

D2u ∈ Lq(Ωr)
3×3×3, ∀q > 1, with ‖D2u‖q,Ωr 6 C(q)|ξ|r3/q−2.

In particular, ‖∇u‖2,Ωr 6 C|ξ|r1/2 and ‖D2u‖2,Ωr 6 C|ξ|r−1/2.
Now we consider the Stokes flow around a rotating ball. The solution to the Stokes problem

∇ · T (u, p) = 0, in Ωr,

∇ · u = 0, in Ωr,

u(x) = ω × x for x ∈ ∂Br,

lim
|x|→∞

u(x) = 0
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where ω ∈ R
3, is (see [24, 19])

u(x) = r3
ω × x

|x|3

p(x) = c

where c is a constant. The gradient of u and its symmetric part are given by

∇u(x) =
r3

|x|3
W −

3r3(ω × x)⊗ x

|x|5
with W =





0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0





and

Du(x) = −
3r3

2|x|5
[x⊗ (ω × x) + (ω × x)⊗ x]

We have

Du(x)n(x) =
3ω × x

2r
,

x×Du(x)n(x) =
3x× (ω × x)

2r
(x ∈ ∂Br)

and then, due to the symmetry of the domain Ωr,
∫

∂Br

T (u, p)n dS = 0,

∫

∂Br

x× T (u, p)n dS = 2ν

∫

∂Br

x× (Du(x)n(x)) dS =
3ν

r

∫

∂Br

x× (ω × x) dS = 8πνr3ω.

We have u ∈ Lq(Ωr)
3 for all q > 3/2 and

‖u‖q,Ωr 6 C(q)|ω|r1+3/q.

In particular, u has finite kinetic energy with ‖u‖2,Ωr 6 C|ω|r5/2. For the derivatives of u, we
have

∇u ∈ Lq(Ωr)
3×3,∀q > 1, with ‖∇u‖q,Ωr 6 C(q)|ω|r3/q,

D2u ∈ Lq(Ωr)
3×3×3

,∀q ∈ [1,∞[, with ‖D2u‖q,Ωr 6 C(q)|ω|r3/q−1.
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