Ana Leonor Silvestre 
  
Takéo Takahashi 
  
The motion of a fluid-rigid ball system at the zero limit of the rigid ball radius

We study the limiting motion of a system of a rigid ball moving in a Navier-Stokes fluid flow in R 3 as the radius of the ball goes to zero. Recently, Dashti and Robinson solved this problem in the 2-D case, in the absence of rotation of the ball [Arch. Rational Mech. Anal. 200 (2011) 285-312]. This restriction was caused by the difficulty in obtaining appropriate uniform bounds on the second order derivatives of the fluid velocity when the rigid body can rotate. In this paper, we show how to obtain the required uniform bounds on the velocity fields in the 3-D case. These estimates then allow to pass to the zero limit of the ball radius and show that the solution of the coupled system converges to the solution of the Navier-Stokes equations describing the motion of only fluid in the whole space. The trajectory of the centre of the ball converges to a fluid particle trajectory, which justifies the use of rigid tracers for finding Lagrangian paths of fluid flow.

Introduction

Suppose that, relatively to an inertial reference frame, a homogeneous three-dimensional rigid body, represented by a closed ball Br(t) := {y ∈ R 3 : |yh(t)| r}, is moving in a Navier-Stokes liquid which occupies the exterior domain Ωr(t) := R 3 \ Br(t). The function h = h(t) describes the trajectory of the center of mass of the rigid body, which is also allowed to rotate, ω = ω(t) being its angular velocity. Denoting by v = v(t, y) the Eulerian velocity of the fluid and q = q(t, y) the corresponding pressure in the same inertial frame, the evolution of the motion of the system body-liquid is described by the initial boundary value problem ∂tv(t, y) + (v(t, y) • ∇y) v(t, y) = ∇y • T (v(t, y), q(t, y)), y ∈ Ωr(t), t ∈ (0, T ), [START_REF] Conca | Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid[END_REF] ∇y • v(t, y) = 0, y ∈ Ωr(t), t ∈ (0, T ),

v(t, y) = h ′ (t) + ω(t) × (yh(t)) y ∈ ∂Br(t), t ∈ (0, T ),

mrh ′′ (t) = -

∂Br (t)
T (v(t, y), q(t, y))n(t, y) dS, t ∈ (0, T ), (4)

Jrω ′ (t) = - ∂Br (t) 
(yh(t)) × T (v(t, y), q(t, y))n(t, y) dS, t ∈ (0, T ), [START_REF] Desjardins | Existence of weak solutions for the motion of rigid bodies in a viscous fluid[END_REF] v(0, y) = v 0 (y), y ∈ Ωr(0), ( 6)

h(0) = h 0 , h ′ (0) = h ′0 , ω(0) = ω 0 . (7) 
In the above system, we have denoted by n(t) = n(t, y) the external unit normal to Ωr(t), and by T (v, q) the stress tensor of the liquid, defined by

T (v, q) = 2νD(v) -q I3, (8) 
D(v)ij = 1 2 ∂vi ∂yj + ∂vj ∂yi i, j = 1, 2, 3, (9) 
where ν is the viscosity coefficient of the liquid and where I3 is the identity matrix of order 3. Finally, mr and Jr are respectively the mass of the body, and the moment or the matrix of inertia of the body. We have assumed that the density of the ball is constant and we denote it by ρ. Then mr and Jr have explicit formulas:

mr = 4 3 πr 3 ρ (10) 
and

Jr = 8 15 πr 5 ρ I3 . (11) 
Note that Jr is independent of time since the structure is a homogeneous ball. By means of the changes of variables

x := yh(t), u(t, x) := v(t, x + h(t)), p(t, x) := q(t, x + h(t)), ℓ(t) := h ′ (t), [START_REF] Grandmont | Existence for an unsteady fluid-structure interaction problem[END_REF] system ( 1)-( 7) can be written in a frame attached to the rigid ball:

∂tu + ((u -ℓ) • ∇) u = ∇ • T (u, p) in (0, T ) × Ωr, (13) 
∇ • u = 0 in (0, T ) × Ωr, (14) 
u(t, x) = ℓ(t) + ω(t) × x for t ∈ (0, T ), x ∈ ∂Br, (15) 
mrℓ ′ = -∂Br T (u, p)n dS in (0, T ), ( 16)

Jrω ′ = - ∂Br
x × T (u, p)n dS in (0, T ), [START_REF] Iftimie | Remarks on the vanishing obstacle limit for a 3D viscous incompressible fluid[END_REF] u(0, x) = u 0 (x), x ∈ Ωr ( 18)

ℓ(0) = ℓ 0 , ω(0) = ω 0 . ( 19 
)
The advantage of this formulation is that now the fluid domain is known and time-independent Ωr = {x ∈ R 3 : |x| > r}. As concerns the well-posedness of the system ( 13)- [START_REF] Lamb | Hydrodynamics[END_REF], we refer to the works of Galdi and Silvestre [START_REF] Galdi | Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques[END_REF], Takahashi and Tucsnak [START_REF] Takahashi | Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid[END_REF]. In particular, for all r, for any

(u 0 , ℓ 0 , ω 0 ) ∈ H 1 (Ωr) × R 3 × R 3 such that u 0 (x) = ℓ 0 + ω 0 × x on ∂Br,
the system ( 13)-( 19) admits a unique local strong solution

ur ∈ H 1 (0, T ; L 2 (Ωr) 3 ) ∩ L ∞ (0, T ; H 1 (Ωr) 3 ) ∩ L 2 (0, T ; H 2 (Ωr) 3 ), ℓr ∈ H 1 (0, T ) 3 , ωr ∈ H 1 (0, T ) 3 .
Note that the maximal time of existence may be finite and may depend on r. In the last years, fluid-structure systems such as system ( 13)-( 19) have been extensively studied. After the pioneer results of Judakov [START_REF] Judakov | The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid[END_REF], Serre [START_REF] Serre | Chute libre d'un solide dans un fluide visqueux incompressible[END_REF], and Weinberger [START_REF] Weinberger | On the steady fall of a body in a Navier-Stokes fluid[END_REF], many results have been published in the case of exterior domain (see, for instance, [START_REF] Leonor | On the slow motion of a self-propelled rigid body in a viscous incompressible fluid[END_REF][START_REF] Cumsille | Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid[END_REF][START_REF] Galdi | On the steady self-propelled motion of a body in a viscous incompressible fluid[END_REF][START_REF] Galdi | Slow motion of a body in a viscous incompressible fluid with application to particle sedimentation[END_REF][START_REF] Galdi | On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications[END_REF]) or in the case of bounded domain (see, for instance, [START_REF] Conca | Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid[END_REF][START_REF] Desjardins | Existence of weak solutions for the motion of rigid bodies in a viscous fluid[END_REF][START_REF] Desjardins | On weak solutions for fluid-rigid structure interaction: compressible and incompressible models[END_REF][START_REF] Feireisl | On the motion of rigid bodies in a viscous fluid[END_REF][START_REF] Grandmont | Existence for an unsteady fluid-structure interaction problem[END_REF][START_REF] Gunzburger | Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions[END_REF][START_REF] Hoffmann | On a motion of a solid body in a viscous fluid. Two-dimensional case[END_REF]).

As in the work of Dashti and Robinson [START_REF] Dashti | The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius[END_REF], our aim is to investigate the limit of system ( 13)- [START_REF] Lamb | Hydrodynamics[END_REF] when the radius r of the ball goes to 0. We show that the limiting system is the following Navier-Stokes system in R 3 :

∂tu + ((u -ℓ) • ∇) u = ∇ • T (u, p) in (0, T ) × R 3 , (20) 
∇ • u = 0 in (0, T ) × R 3 , (21) 
u(0, x) = u 0 (x), x ∈ R 3 . ( 22 
)
The function ℓ is such that u(t, 0) = ℓ(t).

(23) In particular, using the change of variables [START_REF] Grandmont | Existence for an unsteady fluid-structure interaction problem[END_REF] we conclude that

∂tv + (v • ∇) v = ∇ • T (v, q) in (0, T ) × R 3 , (24) 
∇ • v = 0 in (0, T ) × R 3 , (25) 
v(0, x) = v 0 (x), x ∈ R 3 , (26) 
and h ′ (t) = v(t, h(t)) in (0, T ). ( 27) Dashti and Robinson [START_REF] Dashti | The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius[END_REF] have solved this problem in R 2 , in the absence of rotation, considering ω = 0 by imposing an external torque and zero initial angular velocity of the disc. This last restriction has been made because of the difficulty in obtaining L 2 -estimates independent of r for D 2 ur when the particle can rotate, see Lemma 4 of [START_REF] Dashti | The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius[END_REF]. Such estimates are crucial to pass to the limit of the ball radius in the equations of motion of the fluid and show that the solution of the coupled system converges to the solution of the Navier-Stokes equations describing the motion of only fluid in the whole space.

The study of this type of asymptotic analysis problems is also considered in [START_REF] Iftimie | Two-dimensional incompressible viscous flow around a small obstacle[END_REF], [START_REF] Iftimie | Remarks on the vanishing obstacle limit for a 3D viscous incompressible fluid[END_REF] for the case of a fixed obstacle. In [START_REF] Robinson | A coupled particle-continuum model: well-posedness and the limit of zero radius[END_REF], a simplified model of combustion is analyzed with this approach.

In this paper we extend the results of Dashti and Robinson, considering the three-dimensional fluid-ball interaction problem (13)- [START_REF] Lamb | Hydrodynamics[END_REF]. We show that the required uniform bounds on the velocity fields can be obtained by a careful analysis of a steady Stokes-type problem associated with the problem ( 13)- [START_REF] Lamb | Hydrodynamics[END_REF]. Dashti and Robinson derived the estimates for D 2 ur based on the classical exterior steady Stokes problem with a rigid velocity on the boundary. Here, we decompose the solution of the Stokes problem associated with the fluid-structure interaction problem in such a way that the explicit solutions for Stokes flow past a translating ball and around a rotating ball can be used to obtain a precise information about the dependence in r when combined with the Newton's laws-type equations of the modified Stokes problem (see Theorem 3.1).

To state our main result more precisely, we extend the fluid velocities ur in Br by the rigid velocities:

ur(x) = ℓr + ωr × x in Br. This convention is used in all that follows. We also use some classical notation for functional spaces of divergence-free velocities H and V . We define them in Section 2 (see (28), (29)).

Theorem 1.1. Assume (u 0 r )0<r<r * is a bounded sequence of V with u 0 r (x) = ℓ 0 r + ω 0 r × x in Br, for all r and assume that there exists u 0 ∈ V such that u 0 r ⇀ u 0 in H as r → 0. Then there exists T independent of r such that for all r, the strong solution (ur, ℓr, ωr) of (13)- [START_REF] Lamb | Hydrodynamics[END_REF] associated to (u 0 r , ℓ 0 r , ω 0 r ) exists on (0, T ). Moreover, for all r0, R > 0,

ur ⇀ u in H 1 (0, T ; L 2 (R 3 ) 3 ) ∩ L 2 (0, T ; H 2 (Ωr 0 ) 3 ) -weak, ur ⇀ u in L ∞ (0, T ; H 1 (R 3 ) 3 ) -weak*, ur → u strongly in L 2 (0, T ; L 2 (BR) 3 ), ℓr → ℓ strongly in L 2 (0, T ) 3 ,
where (u, ℓ) is the solution of (20)-( 22), [START_REF] Leonor | On the slow motion of a self-propelled rigid body in a viscous incompressible fluid[END_REF] associated to u 0 . The plan of the paper is the following. In Section 2, we introduce some notation and prove some auxiliary interpolation inequalities. Section 3 is devoted to the analysis of the above mentioned steady Stokes-type problem, where we obtain an uniform estimate in r for the second derivatives of the solution of such a problem in terms of a norm of the associated Stokestype operator. In Section 4, we obtain a number of uniform estimates for the fluid-structure interaction problem (13)- [START_REF] Lamb | Hydrodynamics[END_REF] and, finally, in Section 5, we pass to the zero limit of the ball radius to obtain the Navier-Stokes flow ( 20)- [START_REF] Serre | Chute libre d'un solide dans un fluide visqueux incompressible[END_REF]. For the reader's convenience, we include in an Appendix (Section A) some calculations for the explicit Stokes solutions that have been used in Section 3.

Notation and auxiliary results

For a sufficiently regular vector field v : R 3 → R 3 , we denote by ∇v the second order tensor field whose components (∇v) jk are given by ∂v k ∂x j , and by D(v) we denote the symmetric part of ∇v (see [START_REF] Galdi | Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques[END_REF]). The second order derivatives of v will be indicated by D 2 v, more precisely, for each j ∈ {1, 2, 3}, D 2 vj is the Hessian matrix of vj .

We shall use standard notation for function spaces. So, for instance, L s (D) and H m (D) will denote the usual Lebesgue and Sobolev spaces on the domain D, with norms • s,D and

• m,2,D , respectively. Notations like L s (D)

3 (resp. L s (D) 3×3 ), H m (D) 3 (resp. H m (D) 3×3
), etc. will be used to denote analogous spaces of vector-valued functions (resp. tensor-valued functions).

We also use the following classical notation

H := {φ ∈ L 2 (R 3 ) 3 : ∇ • φ = 0 in R 3 }, (28) 
V := H ∩ H 1 (R 3 ) 3 . ( 29 
)
Finally, we consider in this paper the following subsets of R 3 :

Ωr = {x ∈ R 3 : |x| > r}, Br = {x ∈ R 3 : |x| r}, Br,R = {x ∈ R 3 : R |x| > r},
where 0 < r < R.

In the next lemma, we establish a useful interpolation inequality in the exterior domain Ωr, where the embedding constant is independent of r. with a constant C independent of u and r.

Proof. Let D ⊆ R 3 be an exterior domain. In [START_REF] Crispo | An interpolation inequality in exterior domains[END_REF], Crispo and Maremonti proved, in particular, that any function

u ∈ L 2 (D) with D 2 u ∈ L 2 (D) 3×3 satisfies u ∞,D C D 2 u 3 4 2,D u 1 4 2,D , (30) 
where C is a constant independent of u. Let u ∈ L 2 (Ωr). Then, by a simple change of variables, we find the relation

u 2,Ωr = r 3 2 u r 2,Ω 1 where u r (x) := u(rx) (x ∈ Ω1). Analogously, if the second derivatives of u belong to L 2 (Ωr), we have D 2 u 2,Ωr = r -1 2 D 2 u r 2,Ω 1 . Hence, applying (30) to u r and Ω1 yields u ∞,Ωr = u r ∞,Ω 1 C D 2 u r 3 4 2,Ω 1 u r 1 4 2,Ω 1 with C independent of r. But D 2 u r 3 4 2,Ω 1 = r 3 4 (-1 2 ) D 2 u 3 4 2,Ωr = r -3 8 D 2 u 3 4 2,Ωr and u r 1 4 2,Ω 1 = r 1 4 3 2 u 1 4 2,Ωr = r 3 8 u 1 4 2,Ωr so that u ∞,Ω C D 2 u 3 4 2,Ωr u 1 4

2,Ωr

with a constant C independent of r.

We have also the following estimate.

Lemma 2.2. Let u ∈ H 2 (Ωr). Then the following inequality holds

u C 0,1/2 (Ωr ) C D 2 u 2,Ωr
with a constant C independent of u and r.

Proof. We proceed as in the proof of Lemma 2.1. More precisely, using [START_REF] Crispo | An interpolation inequality in exterior domains[END_REF] again, we know that for an exterior domain

D ⊆ R 3 , a function u ∈ L 2 (D) with D 2 u ∈ L 2 (D) 3×3 satisfies u C 0,1/2 (D) C D 2 u 2,D (31) 
where C is a constant independent of u. Then for u ∈ L 2 (Ωr) with D 2 u ∈ L 2 (Ωr) 3×3 , we set u r (x) := u(rx) (x ∈ Ω1), and we recall

D 2 u 2,Ωr = r -1 2 D 2 u r 2,Ω 1 .
We can also prove

u C 0,1/2 (Ωr ) = r -1/2 u r C 0,1/2 (Ω 1 )
. Hence, applying (31) to u r and Ω1 yields the result.

As in Lemma 2 in [START_REF] Dashti | The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius[END_REF], we can prove a useful result which shows how the trace inequality for the domain Ωr depends on r in the three-dimensional case.

Lemma 2.3. Let w ∈ L 1 loc (Ωr) be such that ∇w ∈ L 2 (Ωr) 3 . Then there exist constants w0 and

C such that w -w0 L 2 (∂Br ) Cr 1/2 ∇w L 2 (Ωr ) 3
where the constant C is independent of w and r. If w ∈ L 6 (Ωr) then w0 = 0.

Proof. Let w ∈ L 1 loc (Ωr) be such that ∇w ∈ L 2 (Ωr) 3 and set w r (y) := w(ry) (y ∈ Ω1). It is well known (see [START_REF] Crispo | An interpolation inequality in exterior domains[END_REF]) that there exist constants w0 and C such that

w r -w0 L 6 (Ω 1 ) C ∇w r L 2 (Ω 1 ) 3 (32)
where the constant C is independent of w and r, and w0 = 0 if w ∈ L 6 (Ωr). Now

∂Br |w -w0| 2 dS = r 2 ∂B 1 |w r -w0| 2 dS Cr 2 B 1,2 |w r -w0| 2 dx + Ω 1 |∇w r | 2 dx
and since

B 1,2 |w r -w0| 2 dx C B 1,2 |w r -w0| 6 dx 1/3 C w r -w0 2 6,Ω 1 , from (32), we get ∂Br |w -w0| 2 dS Cr 2 ∇w r 2 2,Ω 1 .
Finally, by changing variables again,

∂Br |w -w0| 2 dS Cr 2 ∇w r 2 2,Ω 1 Cr ∇w 2 2,Ωr .
Now we recall some function spaces appropriate for studying the system ( 13)- [START_REF] Lamb | Hydrodynamics[END_REF]. The spaces

Hr := {φ ∈ L 2 (R 3 ) 3 : ∇ • φ = 0 in R 3 , D(φ) = 0 in Br} (33) Vr := {φ ∈ H 1 (R 3 ) 3 : ∇ • φ = 0 in R 3 , D(φ) = 0 in Br} (34)
are Hilbert spaces for the inner products of L 2 (R 3 ) 3 and H 1 (R 3 ) 3 , respectively. It is well known that, for each φ ∈ Hr, there exist ξ φ ∈ R 3 and ω φ ∈ R 3 such that

φ |Br (x) = ξ φ + ω φ × x.
We also define a global density by

ρr = 1 in Ωr, ρ in Br,
and the following inner product of

L 2 (R 3 ) 3 (u, v)H r = R 3 ρru • vdx.
The corresponding norm is equivalent to the usual L 2 norm. The notation we choose for this inner product comes from the fact that if u, v ∈ Hr, then

(u, v)H r = Ωr u • vdx + mrξu • ξv + (Jrωu) • ωv.
It is also common (see [START_REF] Galdi | On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications[END_REF]) to consider the space 

{v ∈ C ∞ c (R 3 ) 3 : ∇ • v = 0, D(v) =
∇v 2 2,R 3 = 2 D(v) 2 2,R 3 = 2 D(v) 2 2,Ωr , ∀v ∈ Wr. ( 35 
)
Let us recall (see [START_REF] Galdi | On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications[END_REF]Lemma 4.11])

Wr = {v ∈ L 6 (R 3 ) 3 : ∇v ∈ L 2 (R 3 ) 3×3 , ∇ • v = 0, D(v) = 0 in Br}.
We also recall the useful relations (see [START_REF] Galdi | On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications[END_REF]Lemma 4.9])

r 1/2 |ξv| C ∇v 2,R 3 , ∀v ∈ Wr, (36) 
r 3/2 |ωv| C ∇v 2,R 3 , ∀v ∈ Wr (37) 
for positive constants C independent of v and r. Finally let us give the following result. Proof. We follow an idea of [START_REF] Dashti | The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius[END_REF]. Since the normal to Ωr is given by n(x) = -x r , we have

u • n = ℓ • n on ∂Br.
Now, by taking a point x ∈ ∂Br such that ℓ • n(x) = |ℓ|, we obtain

|ℓ| = |u(x) • n(x)| |u(x)| u ∞,Ωr .
3 The Stokes-type problem and the operator A r

The semigroup approach of [START_REF] Takahashi | Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid[END_REF] for problem ( 13)-( 19) is based on the operator defined by

D(Ar) := {φ ∈ H 1 (R 3 ) 3 : φ |Ωr ∈ H 2 (Ωr) 3 , ∇ • φ = 0 in R 3 , D(φ) = 0 in Br} Ar := PrAr (38)
with Pr the orthogonal projector in L 2 (R 3 ) 3 onto Hr (with respect to the inner product (•, •)H r ) and

Aru :=      -ν∆u in Ωr 2ν mr ∂Br D(u)n dS + 2νJ -1 r ∂Br y × D(u)n dS × x in Br. (39) 
In this section, we analyze the operator Ar. Given u ∈ D(Ar), there exist ℓ ∈ R 3 and ω ∈ R 3 such that

u |Br (x) = ℓ + ω × x.
Let f := Aru. Since f |Ωr ∈ L 2 (Ωr) 3 , there exists (see, for instance, [START_REF] Takahashi | Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid[END_REF]) p ∈ L 2 loc (Ωr) with ∇p ∈ L 2 (Ωr) 3 such that

-∇ • T (u, p) = f |Ωr in Ωr, ( 40 
)
∇ • u = 0 in Ωr, (41) 
u(x) = ℓ + ω × x for x ∈ ∂Br, (42) 
lim |x|→∞ u(x) = 0, (43) 
mrℓ f = - ∂Br T (u, p)n dS, (44) 
Jrω f = - ∂Br x × T (u, p)n dS. ( 45 
)
Our aim is to show that

D 2 u 2,Ωr C ∇u 2,R 3 + ( f |Ωr 2 2,Ωr + mr|ℓ f | 2 + Jrω f • ω f ) 1 2
with C independent of u, f and r. Recall that mr = O(r 3 ) and Jr = O(r 5 ).

Theorem 3.1. There exists a positive constant C independent of r such that

D 2 u 2,Ωr C( Aru Hr + ∇u 2,R 3 ) (u ∈ D(Ar)). (46) 
Proof. We use the following decomposition (u, p) = (u (1) , p (1) ) + (u (2) , p (2) ) + (u (3) , p (3) ) (47)

where (u (1) , p (1) ) satisfies

-∇ • T (u (1) , p (1) ) = f |Ωr in Ωr, (48) 
∇ • u (1) = 0 in Ωr, (49) 
u (1) (x) = 0 for x ∈ ∂Br, (50) 
lim |x|→∞ u (1) (x) = 0 (51) and (u (2) (x), p (2) (x)) = 3r 4 ℓ |x| + (ℓ • x)x |x| 3 + r 3 4 ℓ |x| 3 -3 (ℓ • x)x |x| 5 , 3νr 2 
ℓ • x |x| 3 (52) (u (3) (x), p (3) (x)) = r 3 ω × x |x| 3 , 0 . (53) 
Using the results of Section A, we see that (u (2) , p (2) ) and (u (3) , p (3) ) satisfy ∇ • T (u (2) , p (2) ) = 0, in Ωr, 2) , p (2) )ndS = 6πνrℓ, ∂Br

∇ • u (2) = 0, in Ωr, u (2) (x) = ℓ, x ∈ ∂Br, lim |x|→∞ u (2) (x) = 0, ∂Br T (u ( 
x × T (u (2) , p (2) )ndS = 0 (54) and ∇ • T (u (3) , p (3) ) = 0, in Ωr, 3) , p (3) )ndS = 0, ∂Br x × T (u (3) , p (3) )ndS = 8πνr 3 ω .

∇ • u (3) = 0, in Ωr, u (3) (x) = ω × x, x ∈ ∂Br, lim |x|→∞ u (3) (x) = 0, ∂Br T (u ( 
(55)

From ( 52), (53) and the results of Section A, we deduce the existence of a positive constant C independent of r such that

D 2 u (2)

2,Ωr

C|ℓ|r -1/2 (56)

D 2 u (3) 2,Ωr C|ω|r 1/2 . ( 57 
)
Writing ( 44) and (45) in terms of the decomposition (47) of (u, p) yields 6πνrℓ = -mrℓ f -∂Br T (u (1) , p (1) )n dS 1) , p (1) )n dS.

8πνr 3 ω = -Jrω f - ∂Br x × T (u ( 
This implies

ℓ = - 2r 2 9ν ℓ f - 1 6πνr ∂Br
T (u (1) , p (1) )n dS (58) (1) , p (1) )n dS .

ω = - r 2 15ν ω f - 1 8πνr 3 ∂Br x × T (u
(59)

By Lemma 1 of [START_REF] Heywood | The Navier-Stokes equations: on the existence, regularity and decay of solutions[END_REF],

D 2 u (1) 2,Ωr C( f |Ωr 2,Ωr + ∇u (1) 2,Ωr ), (60) 
with a constant C independent of r. Moreover, we have ∇u (1) 2,Ωr ∇u 2,Ωr + ∇u (2) 2,Ωr + ∇u (3) 2,Ωr ∇u 2,Ωr + C|ℓ|r 1/2 + C|ω|r 3/2 and from (36) and (37) it follows

∇u (1) 2,Ωr C ∇u 2,R 3 so that D 2 u (1) 2,Ωr C( f |Ωr 2,Ωr + ∇u 2,R 3 ). ( 61 
)
In order to appropriatly bound ℓ and ω from (58) and (59), we begin by showing that the inequality ∂Br x × T (u (1) , p (1) )n dS Cr 5/2 f |Ωr 2,Ωr ,

holds with C independent of r. Indeed, if we consider the functions Hi(x) := r 3 e i ×x |x| 3 , which belong to L 2 (Ωr) 3 , and note that for each i = 1, 2, 3, ei • ∂Br x × T (u (1) , p (1) )n dS = ∂Br ei × x • T (u (1) , p (1) )n dS = ∂Br Hi • T (u (1) , p (1) )n dS, by Green's formula for the Stokes equations, we have ei • ∂Br x × T (u (1) , p (1) )n dS = ∂Br Hi • T (u (1) , p (1) )n dS = -

Ωr f • Hi dx .
Then (62) follows from the fact that Hi 2 Cr 5/2 (see Section A). It remains to show that ∂Br T (u (1) , p (1) )n dS

Cr 3/2 ( f |Ωr 2,Ωr + ∇u 2,Ωr ), ( 63 
)
where, again, C is independent of r. Since ∂Br T (u (1) , p (1) )n dS = ∂Br T (u (1) , p (1) -p0)n dS Cr( ∇u (1) 2,∂Br + p (1) -p0 2,∂Br )

for any p0 ∈ R, we can modify the pressure p (1) in such a way that, according to Lemma 2.3,

p (1) -p0 2,∂Br Cr 1/2 ∇p (1) 2,Ωr .
Also by Lemma 2.3, ∇u

2,∂Br

Cr 1/2 D 2 u (1) 2,Ωr . Now, we only have to note that ∇p (1) 2,Ωr C( f 2,Ωr + D 2 u (1) 2,Ωr )

and use (61) to bound D 2 u (1) 2,Ωr . Finally, (58) and (59) combined with (63) and (62) yield

|ℓ| Cr 2 |ℓ f | + Cr 1/2 ( f |Ωr 2,Ωr + ∇u 2,Ωr ), |ω| Cr 2 |ω f | + C 1 r 1/2 f |Ωr 2,Ωr ,
for constants C independent of r. Coming back to (56) and (57) with the above estimates for |ℓ| and |ω|, we get

D 2 u (2) 2,Ωr Cr 3/2 |ℓ f | + C( f |Ωr 2,Ωr + ∇u 2,R 3 ) D 2 u (3) 2,Ωr Cr 5/2 |ω f | + C f |Ωr 2,Ωr
which together with (61) and (47) yields

D 2 u 2,Ωr Cr 3/2 |ℓ f | + Cr 5/2 |ω f | + C f |Ωr 2,Ωr + C ∇u 2,R 3 C( Aru Hr + ∇u 2,R 3 ).
4 Estimates independent of r for the solution of ( 13)- [START_REF] Lamb | Hydrodynamics[END_REF] Assume that u 0 r ∈ Vr for some r > 0. Then, writing u 0 r = ℓ 0 r + ω 0 r × x in Br, and taking (u 0 r , ℓ 0 r , ω 0 r ) for the initial conditions of ( 13)-( 19), we obtain (see, for instance, [START_REF] Takahashi | Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid[END_REF]) the existence and uniqueness of a strong solution

ur ∈ H 1 (0, T ; L 2 (R 3 ) 3 ) ∩ L ∞ (0, T ; H 1 (R 3 ) 3 ) ∩ L 2 (0, T ; H 2 (Ωr) 3 ).
Here and in what follows, we extend ur to Br by ℓr + ωr × x. Let us note that the maximal time of existence T may be finite and may depend on r.

We can write ( 13)-( 17) in an abstract way by using the operator Ar defined by ( 38)-( 39) and the following nonlinear operator:

Nr(u) = -((u -ℓ) • ∇) u in Ωr 0 in Br (u ∈ Vr),
and its projection in Hr Nr(u) := PrNr(u).

With this notation, we can write ( 13)-( 17) as

∂tur + Arur = Nr(ur). ( 64 
) Theorem 4.1. Assume (u 0 r )0<r<r * is bounded in H 1 (R 3 ) 3 , u 0 r ∈ Vr for all r.
Then there exists T independent of r such that

(i) (ur)0<r<r * is bounded in H 1 (0, T ; L 2 (R 3 ) 3 ) ∩ L ∞ (0, T ; H 1 (R 3 ) 3 ) ∩ L 2 (0, T ; H 2 (Ωr) 3 ), (ii) (ℓr)0<r<r * is bounded in L 2 (0, T ) 3 .
Proof. Let us multiply (64) by ur and integrate over Ωr. We obtain 

ur(t) 2 2,R 3 + ν T 0 ∇ur 2 2,R 3 dt C u 0 r 2 2,R 3 . (66) 
+ u 0 r 8/9 2,R 3 + u 0 r 2 2,R 3 )( ∇ur 2 2,R 3 + 1) 4 . (73) 
Let y(t) := 1 + ∇ur(t) 2 2,R 3 . Then, from (73) we have

y ′ Cy 4
with C independent of r. We conclude that y(t) y(0) 3 1 -3y(0) 3 Ct as long as t < 1/(3y(0) 3 C). Let us consider T small enough so that

T < 1 3C(1 + ∇u 0 r 2 2,R 3 ) 3 . Since (u 0 r )0<r<r * is bounded in H 1 (R 3 ) 3 ,
T can be chosen so that it is independent of r. We deduce that for all t ∈ [0, T ],

∇ur(t) 2 2,R 3 C(1 + ∇ur(0) 2 2,R 3 ) K1
with K1 independent of r. Now from (73), T 0 Arur(s) 2 Hr ds K2 with K2 independent of r, which implies with Theorem 3.1

D 2 ur L 2 (0,T ;L 2 (Ωr ) 3×3×3 ) K3
with K3 independent of r. We can find constants K4 and K5 independent of r such that ℓr L 2 (0,T ;R 3 ) K4 and ∂tur L 2 (0,T ;L 2 (Ωr ) 3 ) K5.

5 Passage to the zero limit of the ball radius in (13)-

The aim of this section is to prove the main result of the paper. Applying Theorem 4.1 and using a diagonal process, we deduce that for all r0 > 0,

ur ⇀ u in H 1 (0, T ; L 2 (R 3 ) 3 ) ∩ L 2 (0, T ; H 2 (Ωr 0 ) 3 ) -weak, ( 74 
) ur ⇀ u in L ∞ (0, T ; H 1 (R 3 ) 3 ) -weak*, ( 75 
) ℓr ⇀ ℓ in L 2 (0, T ) -weak. ( 76 
)
In particular for any r0, u ∈ L 2 (0, T ; H 2 (Ωr 0 ) 3 ) and its norm in these spaces is bounded independently of r0. Following the proof of [START_REF] Dashti | The motion of a fluid-rigid disc system at the zero limit of the rigid disc radius[END_REF], we deduce that u ∈ L 2 (0, T ; H 2 (R 3 ) 3 ). Applying Aubin-Lions-Simon Lemma, and using the fact that (ur)0<r<r * is bounded in L 2 (0, T ; H 1 (BR) 3 ) ∩ H 1 (0, T ; L 2 (BR) 3 ), we conclude that there exists a subsequence such that ur → u strongly in L 2 (0, T ; L 2 (BR) 3 ).

(77)

In order to pass to the limit as r → 0, we write an integral formulation of ( 13)- [START_REF] Iftimie | Remarks on the vanishing obstacle limit for a 3D viscous incompressible fluid[END_REF]. Assume ϕ ∈ C 1 (R 3 ) 3 is divergence free, with compact support in Bs,R, R > s > 0. Then for r < s, we multiply (64) by ϕ to obtain By integrating by parts, we deduce from the above equation that

R 3 (∂tur -ν∆ur) • ϕ dx - R 3 [(ur -ℓr) • ∇) ϕ] • ur dx = 0 in (0, T ). ( 78 
)
Using ( 74)-( 76) and (77), we deduce that for all ϕ ∈ C 1 (R 3 ) 3 divergence free, with compact support in Bs,R, R > s > 0,

R 3 (∂tu -ν∆u + ((u -ℓ) • ∇) u) • ϕ dx = 0 in (0, T ). ( 79 
)
We observe that the functions in C 1 (R 3 ) 3 which are divergence free, with compact support in Bs,R, R > s > 0 are dense in H. To be complete we give below a proof of this result based on [20, pp. 165-166]. Consequently, we deduce that (79) holds for all ϕ ∈ L 2 (0, T ; H). In particular, (see, for instance, [26, pp. 14-15]), there exists p with ∇p ∈ L 2 (0, T ; L 2 (R 3 )) such that

∂tu -ν∆u + ((u -ℓ) • ∇) u = -∇p in (0, T ) × R 3 .
To recover the initial condition, we apply a classical method: using (74) and (77), we deduce that for any function ϕ ∈ C 1 ([0, T ) × R 3 ) 3 with compact support, we have

R 3 ur(0) • ϕ(0) dx = (0,T )×R 3 ur • ∂tϕ dt dx - (0,T )×R 3 ∂tur • ϕ dt dx → (0,T )×R 3 u • ∂tϕ dt dx - (0,T )×R 3 ∂tu • ϕ dt dx = R 3 u(0) • ϕ(0) dx.
Since u 0 r ⇀ u 0 weakly in L 2 (R 3 ) 3 , then we deduce that u(0) = u 0 . Let us now prove the strong convergence of (ℓr)0<r<r * . Let us consider a decreasing sequence r k → 0. Then, for k > m and for any n ∈ ∂B1,

|(ℓr k -ℓr m ) • n| = |(ur k (r k (-n)) -ur m (rm(-n))) • n| |(ur k (rm(-n)) -ur m (rm(-n))) • n| + |(ur k (r k (-n)) -ur k (rm(-n))) • n| ur k -ur m ∞,B rm,2rm + |r k -rm| 1/2 ur k C 0,1/2 (Ωr k ) . (80) 
Let us note that, with an argument similar to the proof of Lemma 2.1, we can prove that for w ∈ H 2 (Ωr) the following inequality holds

w ∞,B r,2r C w 1/4 2,B r,2r D 2 w 3/4 2,B r,2r
with a constant C > 0 independent of w and r.

Combining (80) with the above result, Lemma 2.2 and with Theorem 4.1, we conclude that ℓr → ℓ in L 2 (0, T ) 3 . To obtain the relation between ℓ and u, we consider a similar calculation: for a fixed e ∈ ∂B1,

|u(t, 0) -ℓ(t)| |u(t, 0) -u(t, re)| + |u(t, re) -ℓr(t)| + |ℓr(t) -ℓ(t)| . (81) 
The first term of the right-hand side of (81) can be estimated by u C 0,1/2 (R 3 ) , the last term has just been treated, and the second term can be handle through the following manipulation: for any n, e ∈ ∂B1,

|(u(t, re) -ℓr(t)) • n| = |(u(t, re) -ur(t, -rn)) • n| |(u(t, re) -u(t, -rn)) • n| + |(u(t, -rn) -ur(t, -rn)) • n| r 1/2 u C 0,1/2 (R 3 ) + u -ur ∞,B r,2r ,
and we conclude as above. This concludes the proof of Theorem 1.1.

We give here the proof of the density in H of the subspace of the functions C 1 (R 3 ) 3 which are divergence free, with compact support in Bs,R, R > s > 0. The proof is based on [20, pp. 165-166].

Lemma 5.1. Given u ∈ H and δ > 0, there exist 0 < s < 1 and u s ∈ V with supp u s ⊂ B s,1/s such that uu s 2,R 3 < δ.

Proof. Given u ∈ H and δ > 0, using the density of V in H, there exists v ∈ V such that

u -v 2,R 3 < δ 2 . For 0 < ε < 1 and v ∈ V , consider the problem of finding vε ∈ V such that ∆vε -vε -∇pε = ∆v -v in B ε,1/ε , ∇ • vε = 0 in B ε,1/ε . (82) 
This problem has a unique solution (vε, pε)

∈ V × L 2 (B ε,1/ε )/R such that vε 2,B ε,1/ε + ∇vε 2,B ε,1/ε v V (83) 
Moreover, pε can be normalized in such a way that

pε 2,B ε,1/ε C v V (84) 
with C independent of ε and v. From (83), extending each vε by zero outside B ε,1/ε , we deduce the existence of v ∈ V such that vε ⇀ v weakly in V, as ε → 0, while (84) implies the existence of p ∈ L 2 (R 3 ) such that

pε ⇀ p weakly in L 2 (R 3 ), as ε → 0. The function v -v ∈ V satisfies ∆(v -v) -(v -v) -∇p = 0 in R 3 , ∇ • (v -v) = 0 in R 3 and therefore v = v. Actually, since vε ⇀ v weakly in V and vε V v V , it follows that vε → v strongly in V, as ε → 0.
This results allows us to take vs ∈ V with support in B s,1/s such that vvs 2,R 3 < δ 2 .

A Computations involving the auxiliary Stokes solutions

Stokes derived in 1851 [START_REF] Gabriel | On the effect of the internal friction of fluids on the motion of pendulums[END_REF] (see also [START_REF] Lamb | Hydrodynamics[END_REF]) an explicit solution for tridimensional Stokes flow past a translating sphere. Specifically, the solution to the Stokes problem As concerns the summability properties of u and its derivatives, we have u ∈ L q (Ωr) 3 , ∀q > 3, with u q,Ωr C(q)|ξ|r 3/q , ∇u ∈ L q (Ωr) 3×3 , ∀q > 3/2, with ∇u q,Ωr C(q)|ξ|r 3/q-1 D 2 u ∈ L q (Ωr) 3×3×3 , ∀q > 1, with D 2 u q,Ωr C(q)|ξ|r 3/q-2 .

In particular, ∇u where ω ∈ R 3 , is (see [START_REF] Gabriel | On the effect of the internal friction of fluids on the motion of pendulums[END_REF][START_REF] Lamb | Hydrodynamics[END_REF])

u(x) = r 3 ω × x |x| 3 p(x) = c
where c is a constant. The gradient of u and its symmetric part are given by ∇u(x) = r 3 |x| 3 W - We have u ∈ L q (Ωr) 3 for all q > 3/2 and u q,Ωr C(q)|ω|r 1+3/q .

In particular, u has finite kinetic energy with u 2,Ωr C|ω|r 5/2 . For the derivatives of u, we have ∇u ∈ L q (Ωr) 3×3 , ∀q > 1, with ∇u q,Ωr C(q)|ω|r 3/q , D 2 u ∈ L q (Ωr)

3×3×3

, ∀q ∈ [1, ∞[, with D 2 u q,Ωr C(q)|ω|r 3/q-1 .

Lemma 2 . 1 .

 21 Let u ∈ H 2 (Ωr). Then the following inequality holds u

  0 in Br} and its completion Wr with respect to the seminorm D(v) 2,R 3 . In what follows, we use several times the following classical relation

Lemma 2 . 4 .

 24 Let u ∈ Vr be such that u |Ωr ∈ H 2 (Ωr) 3 and u |Br (x) = ℓ + ω × x. Then |ℓ| u ∞,Ωr .

R 3 ρr∂tur

 3 • ϕ dx + (Arur, ϕ) Hr = (Nr(ur), ϕ) Hr in (0, T ).

∇ 4 ξ ⊗ x -x ⊗ ξ |x| 3 + 7 and 7 .

 4377 • T (u, p) = 0, in Ωr,∇ • u = 0, in Ωr, u(x) = ξ for x ∈ ∂Br, |x| 3 + cwhere c is a constant. By direct calculations, we find that the gradient of u is∇u(x) = 3r x)I3 + ξ ⊗ x + x ⊗ ξ |x| 5 + 15(ξ • x)x ⊗ x |x| x)I3 + ξ ⊗ x + x ⊗ ξ |x| 5 + 15(ξ • x)x ⊗ x |x|Therefore, since the external unit normal to Ωr is given by n(x) = -x r and(ξ ⊗ x)n(x) = -rξ, (x ⊗ ξ)n(x) = (ξ • x)n(x), (x ⊗ x)n(x) = r 2 n(x) (x ∈ ∂Br)

  2,Ωr C|ξ|r 1/2 and D 2 u 2,Ωr C|ξ|r -1/2 . Now we consider the Stokes flow around a rotating ball. The solution to the Stokes problem ∇ • T (u, p) = 0, in Ωr, ∇ • u = 0, in Ωr, u(x) = ω × x for x ∈ ∂Br, lim |x|→∞ u(x) = 0

3r 3 (ω × x) ⊗ x |x| 5 5

 355 [x ⊗ (ω × x) + (ω × x) ⊗ x] We have Du(x)n(x) = 3ω × x 2r , x × Du(x)n(x) = 3x × (ω × x) 2r (x ∈ ∂Br)and then, due to the symmetry of the domain Ωr, ∂Br T (u, p)n dS = 0, ∂Br x × T (u, p)n dS = 2ν ∂Br x × (Du(x)n(x)) dS = 3ν r ∂Br x × (ω × x) dS = 8πνr 3 ω.

  Hr Arur Hr ((urℓr) • ∇) ur 2,Ωr Arur Hr .

	Now, using Theorem 3.1, and (35) implies
	ν 2	d dt	∇ur 2 2,R 3 + Arur 2 Hr	C ur	1/4 2,Ωr ∇ur 2,Ωr Arur	7/4 Hr + C ur	1/4 2,Ωr ∇ur	7/4 2,Ωr Arur Hr .
	Applying Young's inequality to the above estimate yields
				ν	d dt	∇ur 2 2,R 3 + Arur 2 Hr	C( ur 2 2,Ωr + 1) ∇ur 8 2,Ωr + C ur	8/9 2,Ωr
	with C independent of r. Using the estimate (66) we get
			ν	d dt	∇ur 2 2,R 3 + Arur 2 Hr	C(1
		Now we multiply (64) by Arur and integrate by parts over Ωr to get
						ν	d dt	D(ur) 2 2,Ωr + Arur 2 Hr = (Nr(ur), Arur)H r ,	(67)
	where					
			(Nr(ur), Arur)H r		Nr(ur) (68)
	By Hölder's inequality,		
								(ur • ∇)ur 2,Ωr	ur ∞,Ωr ∇ur 2,Ωr	(69)
	and by Lemma 2.4		
								(ℓr • ∇)ur 2,Ωr	ur ∞,Ωr ∇ur 2,Ωr .	(70)
		Again we use (69), (70) and Lemma 2.1 to get
						((ur -ℓr) • ∇) ur 2,Ωr	2 ur ∞,Ωr ∇ur 2,Ωr
									C ur	1/4 2,Ωr D 2 ur	3/4 2,Ωr ∇ur 2,Ωr	(71)
			ν	d dt	D(ur) 2 2,Ωr + Arur 2 Hr	C ur	1/4 2,Ωr D 2 ur	3/4 2,Ωr ∇ur 2,Ωr Arur Hr .	(72)

with a constant C independent of r. By combining (71) with (

67

) and (68), we deduce that