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Abstract

According to a given quota q, a candidate a is beaten by another candidate b if at least

a proportion of q individuals prefer b to a. The q-Condorcet efficiency of a voting rule is

the probability that the rule selects a q-Condorcet winner (q-CW ), that is any candidate

who is never beaten under the q-majority. Closed form representations are obtained for the

q-Condorcet efficiency of positional rules (simple and sequential) in three-candidate elections.

This efficiency is significantly greater for sequential rules than for simple positional rules.

Keywords Positional rules (Simple and Sequential) • Condorcet efficiency • q-majority
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1 Introduction

In voting theory, the Condorcet winner is any candidate that would be able to defeat each of the
other candidates in a series of pairwise majority comparisons. A Condorcet voting rule selects a
Condorcet winner (CW ), whenever one exists. While it is very appealing for a voting rule to select
a CW when one exists, another famous class of voting rules, the positional rules, lacks to satisfy
this requirement (Condorcet, 1785). This is certaintly a failure of the positional approach.

However, this negative point of view can be contrasted. By computing the probability that a
voting rule selects the Condorcet winner, one can check whether such a phenomenon is sufficiently
rare to be ignored or not. In the context of the majority rule, this approach has been particularly
studied by Gehrlein and Lepelley (2006)1. Under the majority rule a candidate a is preferred to
a candidate b if the total number of voters who prefer a to b is greater than the total number
of voters who prefer b to a. In this paper, we aim to extend Gehrlein and Lepelley analysis to
qualified majorities. Although a simple majority is the rule most often used, qualified majorities
are also common in actual parliaments on important constitutional issues.

According to a given quota q, a candidate a is beaten by a candidate b if at least a proportion of
q individuals prefer b to a. Following the terminology of Baharad and Nitzan (2003) and Courtin

⇤Corresponding author. University of Cergy-Pontoise, THEMA, UMR CNRS 8184, France. Email:
sebastien.courtin@u-cergy.fr
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1Their book "voting paradoxes and group coherence: The Condorcet efficiency of voting rules" summarizes many

of the existing papers on that topics.
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et al. (2012), the q-Condorcet winner (q-CW ) is the candidate who is never beaten under the
q-majority. For a set of positional rules, Courtin et al. (2012) provide a necessary and sufficient
condition on the quota for the winner of the election not to be beaten under the q-majority. For
each voting rule considered2, they provide the lower bound of the quota (q⇤) which guarantees that
a q-CW is always selected, whenever one exists. Indeed, the threshold q

⇤ is such that: a) for any
quota q less than or equal to q

⇤, there always exists a profile of individual preferences for which
the winner of the positional rule is beaten under the q-majority; and b) for any quota q greater
than q

⇤, the winner of the positional rule is never beaten under the q-majority.
In this paper, along the line of Gehrlein and Lepelley (2006), we evaluate the propensity of

positional rules to select the q-CW when the quota is not achieved. This entails computing the
probability (hereafter called q-Condorcet efficiency) that a voting rule selects the q-CW . We know
from Courtin et al. (2012) that given a positional rule, the q-Condorcet efficiency is equal to one
for any quota q greater than q

⇤, whereas the pioneering work of Gehrlein and Lepelley (2006)
summarizes the result for simple majority. Our purpose is then to fill the gap for 1

2 < q < q

⇤.
For three-candidate elections, the q-Condorcet efficiency is evaluated for a wide class of positional
rules (simple and sequential). We observe that the q-Condorcet efficiency is sometimes very low
for some simple positional rules. This efficiency is significantly greater for sequential rules than
for simple positional rules.

The remainder of the paper is organized as follows: Section 2 is a presentation of the general
framework with notation and definitions. Section 3 and 4 provide computations for the simple
positional rules (PR) and the sequential positional rules (SPR) respectively. Section 5 concludes
the paper.

2 Notation and definitions

We consider an election with three candidates (a, b, c) and n voters who have preferences repre-
sented by linear orders (indifference is not allowed). The six possible preference rankings are given
by

n1 n2 n3 n4 n5 n6

a a b b c c

b c a c a b

c b c a b a

where for instance, n1 individuals prefer the candidate a to the candidate b and the candidate b

to the candidate c. Obviously n =
P6

i=1 ni. A specific combination of ni’s that sum to n is
referred to as an anonymous profile or a voting situation.

In the present paper, we focus our attention on the simple positional rules (PR) and the
sequential positional rules (SPR). We assume that each individual gives 1 point to the candidate
ranked first in his preferences, a weight of ↵ points (0  ↵  1) to the candidate ranked second
and 0 points to the last candidate.

In a PR, a winner is any candidate who receives the largest number of points3. For instance,
the candidate a is a winner if n1+n2+↵(n3+n5) � n3+n4+↵(n1+n6) and n1+n2+↵(n3+n5) �

2A complete solution is given for the classical positional rules (plurality rule, negative plurality rule, Borda rule,
Hare’s rule, Coombs rule and Nanson’s rule).

3If more than one candidate have the same score, then they all belong to the “winning set”.
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n5+n6+↵(n2+n4). Three particular PRs are well-known in the literature: plurality rule (↵ = 0),
negative plurality rule (↵ = 1) and Borda rule (↵ = 1

2). The PR that corresponds to the weight ↵
is denoted F↵.

In a SPR, there are two steps. The candidate who obtains the smallest number of points
is first eliminated4. The preferences concerning the two other candidates are not changed. A
majority comparison gives the winner at the second step. For instance, if n1 + n2 + ↵(n3 + n5) <
n3 + n4 + ↵(n1 + n6) and n1 + n2 + ↵(n3 + n5) < n5 + n6 + ↵(n2 + n4), then a is eliminated at the
first step. If n1 + n3 + n4 > n2 + n5 + n6, then b is the winner. Once again, three usual SPRs are
well-known in the literature: Hare’s rule (↵ = 0), Coombs rule (↵ = 1) and Nanson’s rule (↵ = 1

2).
The SPR that corresponds to the weight ↵ is denoted F ↵.

A candidate x is beaten under a q-majority by a candidate y if the number of individuals who
prefer y to x is greater than or equal to qn, with 1

2 < q  15. Given a PR or a SPR, Courtin et al.
(2012) determine the smallest values q⇤ for which no candidate in the winning set is beaten under
the q-majority. They show that there always exists a profile of individual preferences at which a
candidate in the winning set is q-majority beaten whenever 1/2 < q < q

⇤.

In order to compute the q-Condorcet efficiency, some probabilistic assumptions must be made
regarding the likelihood that various profiles are observed. The impartial anonymous culture (IAC )
is one of the most used probabilistic models in the literature6. Under the IAC assumption, all
anonymous profiles are equally likely to be observed. The q-Condorcet efficiency under IAC is
then the ratio

number of all anonymous profiles at which no candidate in the winning set is beaten under the q�majority
total number of all possible anonymous profiles

It is worth noting that the q-Condorcet efficiency considered in this paper is slightly different
from the one used by Gehrlein and Lepelley (2006). In fact, the (conditional) Condorcet efficiency
by Gehrlein and Lepelley is the conditional probability that a positional rule will elect the CW ,
when one exists. We compute the probability that a positional rule selects a q-CW . By so
doing we aim to highlight the concordance of the two main social choice approaches, namely the
positional approach and the Condorcet approach. Note that to obtain the conditional version of
our q-Condorcet efficiency, one only needs to divide our results by the probability that a q-CW

exists.
To evaluate the q-Condorcet efficiency of each positional rule under study, we first have a

typology of various voting situations for which no candidate in the winning set is beaten under
the q-majority. These voting situations are completely described by a set of linear inequalities
(technicalities are available from the authors upon simple request). From this typology, by the
use of computerized evaluation processes, we obtain various results measuring the q-Condorcet
efficiency of each voting rule under consideration. The computer evaluation process is based on
the same technique whose origins are in Gehrlein and Fishburn (1976) but are more recently based
on Ehrhart polynomials (see Lepelley et al. 2008).

4Note that if two candidates have the same score, they are eliminated at the first step and then there is no
second step. If all the three candidates have the same score, then they all belong to the winning set.

5Note that for q  1
2 , one may find some configurations of individual preferences where for some candidates a

and b, a is beaten by b and b is beaten by a. Therefore those quotas are omitted to avoid ambiguous situations.
6For a detailed discussion of this hypothese and some others, see Regenwetter et al. (2006).
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Also note that in order to derive exact representations for a fixed size n of the electorate,
computations will be performed only on integer variables. Thus we have to rewrite all the initial
constraints that involve the term qn which may not be integer. Then given the size n of the
electorate and the parameter q of the majority, a new parameter p has been introduced to allow
integer computerized evaluation; that is p = dqne � 1 where dye is the smallest integer greater
than or equal to y.

The q-Condorcet efficiency for a given simple positional rule ↵, a given n and a given q, will
be denoted CE(F↵, n, q), while the q-Condorcet efficiency for a given sequential positional rule ↵,
n and q, will be denoted CE(F ↵, n, q).

3 Simple Positional rules

Three usual PRs are under consideration here: plurality (↵ = 0), negative plurality (↵ = 1) and
Borda (↵ = 1

2). For each of the three rules, two series of results are provided: (i) the q-Condorcet
efficiency in terms of n and q; and (ii) the q-Condorcet efficiency in terms of q as the size of the
electorate tends to infinity7. More precisely, results for a finite number of voters will be given in
terms of p instead of q; recall that p = dqne � 1 and that

n�1

2
 p  n� 1 for 1

2 < q  1.

3.1 Plurality

Proposition 1 below provides exact representation of the q-Condorcet efficiency for the plurality
rule.

Proposition 1. Let F0 be the PR. If n is a multiple of 6,8 and p � 1
2n with p = dqne � 1, then

CE (F0, n, p) =8
>>>><

>>>>:

9n5+(�320p�505)n4+(1680p2+2960p�915)n3+(�3240p3�5040p2+7560p+3105)n2

9(n+1)(n+2)(n+3)(n+4)(n+5)

+
(2700p4+3780p3�11 340p2�2340p+4266)n�810p5�1080p4+5670p3+1080p2�2700p+1080

9(n+1)(n+2)(n+3)(n+4)(n+5)

if
1

2
n  p  2

3
n

1 if
2

3
n < p  n� 1

For large electorates, that is when the total number of voters tends to infinity, p
n tends to q.

We then deduce the following result.

Proposition 2. Let F0 be the PR. Then for large electorates,

CE (F0,1, q) =

8
><

>:

�90q5 + 300q4 � 360q3 + 560
3 q

2 � 320
9 q + 1 if

1

2
< q  2

3

1 if
2

3
 q  1

We present in Table 1 some numerical values of the q-Condorcet efficiency of the plurality rule9

with illustrations in Figure 1.
7The same technique can be applied to derive more results in terms of the quota q given some other value of the

weight ↵; or conversely other results in terms of the weight ↵ given some value of the quota q.
8Data for other values of n are available from the authors upon simple request.
9Note that for each table provided in this paper, 1� means that frequencies are almost 1, but not 1; and ✏ = 0.001.
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Table 1 q-Condorcet efficiency of the plurality rule
n

q 1
2 + ✏ 0, 54 0, 57 0, 6 0, 63 2

3 >

2
3

12 0.8932 0.8932 0.8932 0.9842 0.9842 0.9842 1
24 0.8623 0.8623 0.9376 0.9794 0.9967 0.9967 1
30 0.8555 0.9221 0.9648 0.9648 0.9884 0.9981 1
42 0.8476 0.9009 0.9405 0.9856 0.9952 0.9992 1
60 0.8414 0.9154 0.9625 0.9776 0.9946 0.9997 1
66 0.8401 0.9092 0.9555 0.9828 0.9959 0.9998 1
78 0.8381 0.9230 0.9593 0.9820 0.9974 0.9999 1
96 0.8359 0.9090 0.9571 0.9846 0.9968 0.9999 1
102 0.8354 0.9233 0.9639 0.9870 0.9973 0.9999 1
114 0.8344 0.9156 0.9556 0.9862 0.9964 1� 1
126 0.8337 0.9235 0.9580 0.9855 0.9973 1� 1
144 0.8328 0.9143 0.9645 0.9866 0.9969 1� 1
156 0.8323 0.9209 0.9585 0.9860 0.9976 1� 1
1 0.8294 0.9216 0.9646 0.9883 0.9980 1 1

Fig. 1 q-Condorcet efficiency of the plurality rule

These results illustrate the following facts:
(i) For large electorates, with only a probability of 83% the q-Condorcet efficiency of the

plurality rule is small as q tends to 1
2 . In other words, for 17% of voting situations, a majority of

voters prefer another candidate to the plurality winner.
(ii) The q-Condorcet efficiency increases as q increases and tends quickly to 1. The computed

values in Table 1 indicate that the plurality rule always leads to the selection of a q-CW as soon
as q > 2/3. This result is consistent with the general bound proposed by Courtin et al. (2012)
which is k�1

k , when the total number of candidates is k.
(iii) The variations of frequencies are relatively small as n increases.

3.2 Negative Plurality

The answer of our main question is given below for the negative plurality rule.
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Proposition 3. Let F1 be the PR. If n is a multiple of 6, and p � 1
2n with p = dqne � 1, then

CE (F1, n, p) =8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

5[�20n5+(200p+60)n4+(�816p2�448p�500)n3+(1728p3+1440p2+2808p+612)n2]
36(n+1)(n+2)(n+3)(n+4)(n+5)

+
5[(�1080p3�1728p4�2592p2+144p+72)n+(648p5+81p4+1080p3+1620p2+2592p+864)]

36(n+1)(n+2)(n+3)(n+4)(n+5)

if
1

2
n  p  2

3
n and p even

�100n5+(1000p+300)n4(�4080p2�2240p�2500)n3+(8640p3+7200p2+14 040p+3060)n2

36(n+1)(n+2)(n+3)(n+4)(n+5)

+
(�8640p4�5400p3�12 960p2+3960p+6840)n+3240p5+405p4+5400p3+2430p2+1485

36(n+1)(n+2)(n+3)(n+4)(n+5)

if
1

2
n  p  2

3
n and p odd

�17n5+(90p�105)n4+(�180p2+480p�185)n3+(180p3�720p2+810p�15)n2

(n+1)(n+2)(n+3)(n+4)(n+5)

+
(480p3�90p4�810p2+480p+202)n+18p5�120p4+270p3�240p2+72p+120

(n+1)(n+2)(n+3)(n+4)(n+5)

if
2

3
n < p  n� 1

For a large electorates, we have the following results

Proposition 4. Let F1 be the PR. Then for large electorates,

CE (F1,1, q) =

8
><

>:

90q5 � 240q4 + 240q3 � 340

3
q

2 +
250

9
q � 25

9
if

1

2
< q  2

3

18q5 � 90q4 + 180q3 � 180q2 + 90q � 17 if
2

3
 q  1

Table 2 q-Condorcet efficiency of the negative-plurality rule
n

q 1
2 + ✏ 0, 54 0, 57 0, 6 0, 63 2

3 0, 69 0, 75 0, 84 0, 96 1

12 0.6130 0.6734 0.6734 0.7776 0.7776 0.7776 0.9050 0.9050 0.9922 0.9990 0.9990
24 0.6026 0.6370 0.6965 0.8091 0.8558 0.8558 0.9133 0.9512 0.9950 0.9999 0.9999
30 0.6004 0.7038 0.7498 0.7498 0.8352 0.8709 0.9154 0.9683 0.9956 0.9999 0.9999
42 0.5976 0.6743 0.7090 0.8083 0.8639 0.8876 0.9181 0.9726 0.9962 1� 1�

60 0.5954 0.6899 0.7639 0.7862 0.8488 0.8997 0.9373 0.9718 0.9967 1� 1�

66 0.5950 0.6685 0.7382 0.8017 0.8570 0.9022 0.9363 0.9763 0.9968 1� 1�

78 0.5943 0.6985 0.7560 0.8087 0.8691 0.9060 0.9348 0.9773 0.9969 1� 1�

96 0.5936 0.6703 0.7510 0.8084 0.8704 0.9099 0.9430 0.9761 0.9972 1� 1�

102 0.5934 0.6892 0.7639 0.8168 0.8741 0.9108 0.9421 0.9786 0.9971 1� 1�

114 0.5930 0.6793 0.7475 0.8200 0.8616 0.9125 0.9406 0.9790 0.9972 1� 1�

126 0.5928 0.6971 0.7452 0.8119 0.8687 0.9138 0.9393 0.9793 0.9972 1� 1�

144 0.5925 0.6783 0.7639 0.8207 0.8697 0.9154 0.9441 0.9783 0.9973 1� 1�

156 0.5923 0.6873 0.7467 0.8140 0.8712 0.9162 0.9428 0.9787 0.9978 1� 1�

1 0.5928 0.6907 0.7607 0.8233 0.8763 0.9259 0.9485 0.9824 0.9981 1� 1
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Fig. 2 q-Condorcet efficiency of the negative plurality rule

Once again, frequencies are relatively constant when n increases and increase as q rises. Table
2 and Figure 2 show that no quota garantees the selection of a q-CW under the negative plurality
rule. Indeed, for large electorate and when q tends to 1

2 , the q-CW is chosen for only 60% of the
voting situations. A quota of at least 3

4 is needed for a q-Condorcet efficiency greater than 95%.

3.3 Borda rule

The following results deal with the Borda rule.

Proposition 5. Let F2 be the PR. If n is a multiple of 1008 and p multiple of 336, with p = dqne�1,
then CE (F2, n, p) =8

>>><

>>>:

105n5+(�1440p�825)n4+(6480p2+5040p�1115)n3+(�12 960p3�9720p2+9360p+3465)n2

9(n+1)(n+2)(n+3)(n+4)(n+5)

+
(12 150p4+8100p3�15 390p2�3780p+3690)n�4374p5�2430p4+8370p3+2430p2�1836p+1080

9(n+1)(n+2)(n+3)(n+4)(n+5)

if
1

2
n  p  2

3
n

1 if
2

3
n < p  n� 1

When the total number of voters tends to infinity, the following results hold.

Proposition 6. Let F2 be the PR. Then for large electorates,

CE (F2,1, q) =

8
><

>:

�486q5 + 1350q4 � 1440q3 + 720q2 � 160q +
35

3
if

1

2
< q  2

3

1 if
2

3
 q  1

Table 3 q-Condorcet efficiency of the Borda rule
n

q 1
2 + ✏ 0, 54 0, 57 0, 6 0, 63 2

3 >

2
3

1 0.8573 0.9463 0.9805 0.9953 0.9995 1 1

With the Borda rule, computations reveal hight periodicity both on n and p. This phenomenon
is frequent with the Borda rule (see Lepelley et al. 2008). In Table 3, we then provide only
results when n tends to infinity. It appears that the Borda rule particularly performs well. The
q-Condorcet efficiency of the Borda rule converges quickly to one as q tends to the threshold 2

3 .
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4 Sequential Positional Rules

We now consider the following three SPRs: Hare’s rule (↵ = 0), Coombs rule (↵ = 1) and Nanson’s
rule (↵ = 1

2).

4.1 Hare’s rule

The following results solve the Hare’s rule.

Proposition 7. Let F 0 be the SPR. If n is a multiple of 24 and p � 1
2n with p = dqne � 1, then

CE

�
F 0, n, p

�
=

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

(12 850p+10 785)n4�1933n5+(�25 920p2�53 160p�93 640)n3+(25 920p3+184 320p2+682 560p+293 040)n2

576(n+1)(n+2)(n+3)(n+4)(n+5)

+
(�12 960p4�224 640p3�1123 200p2�587 520p+119 808)n+(2592p5+90 720p4+630 720p3+518 400p2+62 208p+69 120)

576(n+1)(n+2)(n+3)(n+4)(n+5)

if
1

2
n  p 

2

3
n and p even

(12 850p+10 785)n4�1933n5+(�25 920p2�53 160p�93 640)n3+(25 920p3+184 320p2+682 560p+318 960)n2

576(n+1)(n+2)(n+3)(n+4)(n+5)

+
(�12 960p4�224 640p3�1123 200p2�691 200p+29 088)n+(2592p5+90 720p4+630 720p3+596 160p2+127 008p+4320)

576(n+1)(n+2)(n+3)(n+4)(n+5)

if
1

2
n  p 

2

3
n and p odd

�1637n5+(10 530p�3495)n4+(22 680p�25 920p2+6520)n3+(31 680p3�43 200p2�2880p+22 320)n2

64(n+1)(n+2)(n+3)(n+4)(n+5)

+
(�19 200p4+36 480p3+1920p2�19 200p+20 992)n+(4608p5�11 520p4+11 520p2�4608p+7680)

64(n+1)(n+2)(n+3)(n+4)(n+5)

if
2

3
n < p 

3

4
n

1 if
3

4
n < p  n� 1

For large electorates, we have the following proposition.

Proposition 8. Let F 0 be the SPR. Then for large electorates,

CE

�
F 0,1, q

�
=

8
>>>><

>>>>:

9
2q

5 � 45
2 q

4 + 45q3 � 45q2 + 6425
288 q �

1933
576 if

1

2
< q  2

3

72q5 � 300q4 + 495q3 � 405q2 + 5265
32 q � 1637

64 if
2

3
 q  3

4

1 if
3

4
 q  1

Table 4 and Figure 3 below present some exact frequencies.

Table 4 q-Condorcet efficiency of the Hare’s rule
n

q 1
2 + ✏ 0, 54 0, 57 0, 6 0, 63 2

3 0, 7 � 3
4

24 0.9121 0.9121 0.9486 0.9747 0.9898 0.9898 0.9988 1
48 0.9096 0.9391 0.9636 0.9754 0.9910 0.9955 0.9955 1
72 0.9090 0.9375 0.9681 0.9818 0.9911 0.9967 0.9992 1
96 0.9087 0.9406 0.9641 0.9805 0.9912 0.9972 0.9995 1
120 0.9085 0.9424 0.9667 0.9797 0.9912 0.9974 0.9993 1
144 0.9084 0.9436 0.9684 0.9821 0.9913 0.9976 0.9995 1
168 0.9083 0.9445 0.9661 0.9813 0.9913 0.9977 0.9994 1
1 0.9092 0.9483 0.9691 0.9834 0.9926 0.9983 0.9996 1
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Fig. 3 q-Condorcet efficiency of the Hare’s rule

Once again, it can be observed that the q-Condorcet efficiency of the Hare’s rule increases as
q increases. Moreover, frequencies converge quickly to 1 as q tends to one. For q � 3

4 , the Hare’s
rule always selects the q-CW in accordance with Courtin et al. (2012). Besides it appears in terms
of q-Condorcet efficiency that the Hare’s rule always performs better than the plurality rule.

4.2 Coombs rule

The following results concern Coombs’ procedure.

Proposition 9. Let F 1 be the SPR. If n is a multiple of 6 and and p � 1
2n with p = dqne � 1,

then

CE

�
F 1, n, p

�
=

8
>>>><

>>>>:

57n5+(�560p�185)n4+(2160p2+1320p�1495)n3+(11 700p�1800p2�3780p3+6165)n2

9(n+1)(n+2)(n+3)(n+4)(n+5)

+
(3105p4+810p3�20 385p2�14 850p�342)n+(11 880p3�972p5+12 960p2+4212p+1080)

9(n+1)(n+2)(n+3)(n+4)(n+5)

if
1

2
n  p  2

3
n

1 if
2

3
n < p  n� 1

In a large society, we have:

Proposition 10. Let F 1 be the SPR. Then for large electorates,

CE

�
F 1,1, q

�
=

8
<

:
�108q5 + 345q4 � 420q3 + 240q2 � 560

9 q + 19
3 if

1

2
< q  2

3

1 if
2

3
 q  1

The corresponding table and figure are:
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Table 5 q-Condorcet efficiency of the Coombs rule
n

q 1
2 + ✏ 0, 54 0, 57 0, 6 0, 63 2

3 >

2
3

12 0.9349 0.9349 0.9349 0.9842 0.9842 0.9842 1
24 0.9243 0.9243 0.9644 0.9869 0.9967 0.9967 1
30 0.9217 0.9569 0.9798 0.9798 0.9925 0.9981 1
42 0.9185 0.9465 0.9676 0.9917 0.9969 0.9992 1
60 0.9159 0.9548 0.9798 0.9878 0.9969 0.9997 1
66 0.9154 0.9516 0.9761 0.9907 0.9976 0.9998 1
78 0.9145 0.9591 0.9783 0.9903 0.9985 0.9999 1
96 0.9136 0.9518 0.9772 0.9918 0.9983 0.9999 1
102 0.9134 0.9594 0.9808 0.9931 0.9985 0.9999 1
114 0.9130 0.9554 0.9765 0.9927 0.9980 1� 1
126 0.9127 0.9596 0.9778 0.9923 0.9985 1� 1
144 0.9124 0.9548 0.9813 0.9929 0.9984 1� 1
156 0.9122 0.9583 0.9781 0.9926 0.9987 1� 1
1 0.9112 0.9590 0.9815 0.9939 0.9990 1 1

Fig. 4 q-Condorcet efficiency of the Coombs rule

With contrast to the poor performance of the negative plurality rule, its sequential version, the
Coombs rule, performs very well in selecting the q-CW . With the Coombs rule, the q-Condorcet
efficiency is above 91% as soon as q is greater than 1

2 . Moreover, the Coombs rule admits a
threshold quota of 2

3 above which it always selects the q-CW , whereas the negative plurality does
not admit any threshold.

4.3 Nanson’s rule

The following result deals with the Nanson’s rule.

Proposition 11. Let F 2 be the SPR. If n is a multiple of 72 and p multiple of 36 with p = dqne�1,
then

CE

�
F 2, n, p

�
=
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8
>>>><

>>>>:

17n5+(�160p�225)n4+(600p2+1480p+225)n3+(485�3420p2�580p�1080p3)n2

(n+1)(n+2)(n+3)(n+4)(n+5)

+
(945p4+3510p3+795p2�810p+138)n+(630p2�1350p4�360p3�324p5+204p+120)

(n+1)(n+2)(n+3)(n+4)(n+5)

if
1

2
n  p  2

3
n

1 if
2

3
n < p  n� 1

In a large society, we have:

Proposition 12. Let F 2 be the SPR. Then for large electorates,

CE

�
F 2,1, q

�
=

8
<

:
�324q5 + 945q4 � 1080q3 + 600q2 � 160q + 17 if

1

2
< q  2

3

1 if
2

3
 q  1

Table 6 illustrates these results for a large set of voters.

Table 6 q-Condorcet efficiency of the Nanson’s rule
n

q 1
2 + ✏ 0, 54 0, 57 0, 6 0, 63 2

3 >

2
3

1 0.9387 0.9758 0.9909 0.9978 0.9998 1 1

Yet again, the Nanson’s rule performs better than the Borda rule in the selection of a q-CW .
Indeed, the q-Condorcet efficiency of the Nanson’s rule is above 93% as soon as q is greater than
1
2 .

5 Concluding discussion

It seems desirable that the winner of an election should not be beaten under a qualified majority
rule. Unfortunately for three-candidate elections, positional rules (simple or sequential) fail to
satisfy this requirement for any quota of the qualified majority between 1

2 and q

⇤. Our contribution
in the present paper underlines the respective behaviors of six positional rules with respect to their
ability to select the q-CW . Our overall comments of the results obtained are as follows:

(i) for each rule studied, the q-Condorcet efficiency increases as the quota increases up to a
threshold above which the rule always selects a q-CW ;

(ii) among the usual simple positional rules, the Borda rule consistently has significantly greater
q-Condorcet efficiency than both the plurality and the negative plurality rules. The negative
plurality appears to be the worst simple positional rule;

(iii) the Nanson’s rule is the top-performing rule as well among the sequential positional rules
as among the simple positional rules under consideration here;

(iv) the improvement in q-Condorcet efficiency seems greater in moving from a simple positional
rule to its corresponding sequential form.

In a different but similar investigation, our results are in accordance with earlier observations
by Gehrlein and Lepelley (2006). With three candidates, the use of a sequential positionnal rule
in combination with a larger quota will significantly improve the stability of the winner.
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