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According to a given quota q, a candidate a is beaten by another candidate b if at least a proportion of q individuals prefer b to a. The q-Condorcet efficiency of a voting rule is the probability that the rule selects a q-Condorcet winner (q-CW ), that is any candidate who is never beaten under the q-majority. Closed form representations are obtained for the q-Condorcet efficiency of positional rules (simple and sequential) in three-candidate elections. This efficiency is significantly greater for sequential rules than for simple positional rules.

Introduction

In voting theory, the Condorcet winner is any candidate that would be able to defeat each of the other candidates in a series of pairwise majority comparisons. A Condorcet voting rule selects a Condorcet winner (CW ), whenever one exists. While it is very appealing for a voting rule to select a CW when one exists, another famous class of voting rules, the positional rules, lacks to satisfy this requirement (Condorcet, 1785). This is certaintly a failure of the positional approach.

However, this negative point of view can be contrasted. By computing the probability that a voting rule selects the Condorcet winner, one can check whether such a phenomenon is sufficiently rare to be ignored or not. In the context of the majority rule, this approach has been particularly studied by Gehrlein and Lepelley (2006) [START_REF] Courtin | Positional rules and q-Condorcet consistency[END_REF] . Under the majority rule a candidate a is preferred to a candidate b if the total number of voters who prefer a to b is greater than the total number of voters who prefer b to a. In this paper, we aim to extend Gehrlein and Lepelley analysis to qualified majorities. Although a simple majority is the rule most often used, qualified majorities are also common in actual parliaments on important constitutional issues.

According to a given quota q, a candidate a is beaten by a candidate b if at least a proportion of q individuals prefer b to a. Following the terminology of Baharad and Nitzan (2003) et al. (2012), the q-Condorcet winner (q-CW ) is the candidate who is never beaten under the q-majority. For a set of positional rules, Courtin et al. (2012) provide a necessary and sufficient condition on the quota for the winner of the election not to be beaten under the q-majority. For each voting rule considered2 , they provide the lower bound of the quota (q ⇤ ) which guarantees that a q-CW is always selected, whenever one exists. Indeed, the threshold q ⇤ is such that: a) for any quota q less than or equal to q ⇤ , there always exists a profile of individual preferences for which the winner of the positional rule is beaten under the q-majority; and b) for any quota q greater than q ⇤ , the winner of the positional rule is never beaten under the q-majority.

In this paper, along the line of Gehrlein and Lepelley (2006), we evaluate the propensity of positional rules to select the q-CW when the quota is not achieved. This entails computing the probability (hereafter called q-Condorcet efficiency) that a voting rule selects the q-CW . We know from Courtin et al. (2012) that given a positional rule, the q-Condorcet efficiency is equal to one for any quota q greater than q ⇤ , whereas the pioneering work of Gehrlein and Lepelley (2006) summarizes the result for simple majority. Our purpose is then to fill the gap for [START_REF] Courtin | Positional rules and q-Condorcet consistency[END_REF] 2 < q < q ⇤ . For three-candidate elections, the q-Condorcet efficiency is evaluated for a wide class of positional rules (simple and sequential). We observe that the q-Condorcet efficiency is sometimes very low for some simple positional rules. This efficiency is significantly greater for sequential rules than for simple positional rules.

The remainder of the paper is organized as follows: Section 2 is a presentation of the general framework with notation and definitions. Section 3 and 4 provide computations for the simple positional rules (PR) and the sequential positional rules (SPR) respectively. Section 5 concludes the paper.

Notation and definitions

We consider an election with three candidates (a, b, c) and n voters who have preferences represented by linear orders (indifference is not allowed). The six possible preference rankings are given by In the present paper, we focus our attention on the simple positional rules (PR) and the sequential positional rules (SPR). We assume that each individual gives 1 point to the candidate ranked first in his preferences, a weight of ↵ points (0  ↵  1) to the candidate ranked second and 0 points to the last candidate.

In a PR, a winner is any candidate who receives the largest number of points3 . For instance, the candidate a is a winner if

n 1 + n 2 + ↵(n 3 + n 5 ) n 3 + n 4 + ↵(n 1 + n 6 ) and n 1 + n 2 + ↵(n 3 + n 5 ) n 5 + n 6 + ↵(n 2 + n 4 )
. Three particular PRs are well-known in the literature: plurality rule (↵ = 0), negative plurality rule (↵ = 1) and Borda rule (↵ = [START_REF] Courtin | Positional rules and q-Condorcet consistency[END_REF] 2 ). The PR that corresponds to the weight ↵ is denoted F ↵ .

In a SPR, there are two steps. The candidate who obtains the smallest number of points is first eliminated [START_REF] Gehrlein | Voting paradoxes and group coherence: the Condorcet efficiency of voting rules[END_REF] . The preferences concerning the two other candidates are not changed. A majority comparison gives the winner at the second step. For instance, if 2 ). The SPR that corresponds to the weight ↵ is denoted F ↵ .

n 1 + n 2 + ↵(n 3 + n 5 ) < n 3 + n 4 + ↵(n 1 + n 6 ) and n 1 + n 2 + ↵(n 3 + n 5 ) < n 5 + n 6 + ↵(n 2 + n 4 ), then a is eliminated at the first step. If n 1 + n 3 + n 4 > n 2 + n 5 + n 6 ,
A candidate x is beaten under a q-majority by a candidate y if the number of individuals who prefer y to x is greater than or equal to qn, with 1 2 < q  15 . Given a PR or a SPR, Courtin et al. (2012) determine the smallest values q ⇤ for which no candidate in the winning set is beaten under the q-majority. They show that there always exists a profile of individual preferences at which a candidate in the winning set is q-majority beaten whenever 1/2 < q < q ⇤ . In order to compute the q-Condorcet efficiency, some probabilistic assumptions must be made regarding the likelihood that various profiles are observed. The impartial anonymous culture (IAC ) is one of the most used probabilistic models in the literature [START_REF] Regenwetter | Behavioral social choice[END_REF] . Under the IAC assumption, all anonymous profiles are equally likely to be observed. The q-Condorcet efficiency under IAC is then the ratio number of all anonymous profiles at which no candidate in the winning set is beaten under the q majority total number of all possible anonymous profiles It is worth noting that the q-Condorcet efficiency considered in this paper is slightly different from the one used by Gehrlein and Lepelley (2006). In fact, the (conditional) Condorcet efficiency by Gehrlein and Lepelley is the conditional probability that a positional rule will elect the CW , when one exists. We compute the probability that a positional rule selects a q-CW . By so doing we aim to highlight the concordance of the two main social choice approaches, namely the positional approach and the Condorcet approach. Note that to obtain the conditional version of our q-Condorcet efficiency, one only needs to divide our results by the probability that a q-CW exists.

To evaluate the q-Condorcet efficiency of each positional rule under study, we first have a typology of various voting situations for which no candidate in the winning set is beaten under the q-majority. These voting situations are completely described by a set of linear inequalities (technicalities are available from the authors upon simple request). From this typology, by the use of computerized evaluation processes, we obtain various results measuring the q-Condorcet efficiency of each voting rule under consideration. The computer evaluation process is based on the same technique whose origins are in Gehrlein and Fishburn (1976) but are more recently based on Ehrhart polynomials (see Lepelley et al. 2008).

Also note that in order to derive exact representations for a fixed size n of the electorate, computations will be performed only on integer variables. Thus we have to rewrite all the initial constraints that involve the term qn which may not be integer. Then given the size n of the electorate and the parameter q of the majority, a new parameter p has been introduced to allow integer computerized evaluation; that is p = dqne 1 where dye is the smallest integer greater than or equal to y.

The q-Condorcet efficiency for a given simple positional rule ↵, a given n and a given q, will be denoted CE(F ↵ , n, q), while the q-Condorcet efficiency for a given sequential positional rule ↵, n and q, will be denoted CE(F ↵ , n, q).

Simple Positional rules

Three usual PRs are under consideration here: plurality (↵ = 0), negative plurality (↵ = 1) and Borda (↵ = [START_REF] Courtin | Positional rules and q-Condorcet consistency[END_REF] 2 ). For each of the three rules, two series of results are provided: (i) the q-Condorcet efficiency in terms of n and q; and (ii) the q-Condorcet efficiency in terms of q as the size of the electorate tends to infinity 7 . More precisely, results for a finite number of voters will be given in terms of p instead of q; recall that p = dqne 1 and that

n 1 2  p  n 1 for 1 2 < q  1.

Plurality

Proposition 1 below provides exact representation of the q-Condorcet efficiency for the plurality rule.

Proposition 1. Let F 0 be the PR. If n is a multiple of 6, 8 and p 1 2 n with p = dqne 1, then

CE (F 0 , n, p) = 8 > > > > < > > > > : 9n 5 +( 320p 505)n 4 +(1680p 2 +2960p 915)n 3 +( 3240p 3 5040p 2 +7560p+3105)n 2 9(n+1)(n+2)(n+3)(n+4)(n+5) + (2700p 4 +3780p 3 11 340p 2 2340p+4266)n 810p 5 1080p 4 +5670p 3 +1080p 2 2700p+1080 9(n+1)(n+2)(n+3)(n+4)(n+5) if 1 2 n  p  2 3 n 1 if 2 3 n < p  n 1
For large electorates, that is when the total number of voters tends to infinity, p n tends to q. We then deduce the following result. Proposition 2. Let F 0 be the PR. Then for large electorates,

CE (F 0 , 1, q) = 8 > < > : 90q 5 + 300q 4 360q 3 + 560 3 q 2 320 9 q + 1 if 1 2 < q  2 3 1 if 2 3  q  1
We present in Table 1 some numerical values of the q-Condorcet efficiency of the plurality rule 9 with illustrations in Figure 1. 7 The same technique can be applied to derive more results in terms of the quota q given some other value of the weight ↵; or conversely other results in terms of the weight ↵ given some value of the quota q.

8 Data for other values of n are available from the authors upon simple request. 9 Note that for each table provided in this paper, 1 means that frequencies are almost 1, but not 1; and ✏ = 0.001. Fig. 1 q-Condorcet efficiency of the plurality rule

These results illustrate the following facts: (i) For large electorates, with only a probability of 83% the q-Condorcet efficiency of the plurality rule is small as q tends to 1 2 . In other words, for 17% of voting situations, a majority of voters prefer another candidate to the plurality winner.

(ii) The q-Condorcet efficiency increases as q increases and tends quickly to 1. The computed values in Table 1 indicate that the plurality rule always leads to the selection of a q-CW as soon as q > 2/3. This result is consistent with the general bound proposed by Courtin et al. (2012) which is k 1 k , when the total number of candidates is k. (iii) The variations of frequencies are relatively small as n increases.

Negative Plurality

The answer of our main question is given below for the negative plurality rule. Proposition 3. Let F 1 be the PR. If n is a multiple of 6, and p 1 2 n with p = dqne 1, then

CE (F 1 , n, p) = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : 5[ 20n 5 +(200p+60)n 4 +( 816p 2 448p 500)n 3 +(1728p 3 +1440p 2 +2808p+612)n 2 ] 36(n+1)(n+2)(n+3)(n+4)(n+5) + 5[( 1080p 3 1728p 4 2592p 2 +144p+72)n+(648p 5 +81p 4 +1080p 3 +1620p 2 +2592p+864)] 36(n+1)(n+2)(n+3)(n+4)(n+5) if 1 2 n  p  2 3
n and p even

100n 5 +(1000p+300)n 4 ( 4080p 2 2240p 2500)n 3 +(8640p 3 +7200p 2 +14 040p+3060)n 2 36(n+1)(n+2)(n+3)(n+4)(n+5) + ( 8640p 4 5400p 3 12 960p 2 +3960p+6840)n+3240p 5 +405p 4 +5400p 3 +2430p 2 +1485 36(n+1)(n+2)(n+3)(n+4)(n+5) if 1 2 n  p  2 3
n and p odd

17n 5 +(90p 105)n 4 +( 180p 2 +480p 185)n 3 +(180p 3 720p 2 +810p 15)n 2 (n+1)(n+2)(n+3)(n+4)(n+5) + (480p 3 90p 4 810p 2 +480p+202)n+18p 5 120p 4 +270p 3 240p 2 +72p+120 (n+1)(n+2)(n+3)(n+4)(n+5) if 2 3 n < p  n 1
For a large electorates, we have the following results Proposition 4. Let F 1 be the PR. Then for large electorates, Fig. 2 q-Condorcet efficiency of the negative plurality rule

CE (F 1 , 1, q) = 8 > < > : 90q 5 240q 4 + 240q 3 340 3 q 2 + 250 9 q 25 9 if 1 2 < q  2 3 18q 5 90q 4 + 180q 3 180q 2 + 90q 17 if 2 3  q  1
Once again, frequencies are relatively constant when n increases and increase as q rises. Table 2 and Figure 2 show that no quota garantees the selection of a q-CW under the negative plurality rule. Indeed, for large electorate and when q tends to 1 2 , the q-CW is chosen for only 60% of the voting situations. A quota of at least 3 4 is needed for a q-Condorcet efficiency greater than 95%.

Borda rule

The following results deal with the Borda rule.

Proposition 5. Let F 2 be the PR. If n is a multiple of 1008 and p multiple of 336, with p = dqne 1, then CE (F 2 , n, p) = 8 > > > < > > > :

105n 5 +( 1440p 825)n 4 +(6480p 2 +5040p 1115)n 3 +( 12 960p 3 9720p 2 +9360p+3465)n 2 9(n+1)(n+2)(n+3)(n+4)(n+5) + (12 150p 4 +8100p 3 15 390p 2 3780p+3690)n 4374p 5 2430p 4 +8370p 3 +2430p 2 1836p+1080 9(n+1)(n+2)(n+3)(n+4)(n+5) if 1 2 n  p  2 3 n 1 if 2 3
n < p  n 1 When the total number of voters tends to infinity, the following results hold. Proposition 6. Let F 2 be the PR. Then for large electorates, With the Borda rule, computations reveal hight periodicity both on n and p. This phenomenon is frequent with the Borda rule (see Lepelley et al. 2008). In Table 3, we then provide only results when n tends to infinity. It appears that the Borda rule particularly performs well. The q-Condorcet efficiency of the Borda rule converges quickly to one as q tends to the threshold [START_REF] Baharad | The Borda rule, Condorcet consistency and Condorcet stability[END_REF] 3 . With contrast to the poor performance of the negative plurality rule, its sequential version, the Coombs rule, performs very well in selecting the q-CW . With the Coombs rule, the q-Condorcet efficiency is above 91% as soon as q is greater than [START_REF] Courtin | Positional rules and q-Condorcet consistency[END_REF] 2 . Moreover, the Coombs rule admits a threshold quota of [START_REF] Baharad | The Borda rule, Condorcet consistency and Condorcet stability[END_REF] 3 above which it always selects the q-CW , whereas the negative plurality does not admit any threshold.

CE (F 2 , 1, q) = 8 > < > : 486q 5 + 1350q 4 1440q 3 + 720q 2 160q + 35 3 if 1 2 < q  2 3 1 if 2 3  q  1

Nanson's rule

The following result deals with the Nanson's rule.

Proposition 11. Let F 2 be the SPR. If n is a multiple of 72 and p multiple of 36 with p = dqne 1, then CE F 2 , n, p =

n 1 n

 1 2 n 3 n 4 n 5 n 6 a a b b c c b c a c a b c b c a b a where for instance, n 1 individuals prefer the candidate a to the candidate b and the candidate b to the candidate c. Obviously n = P 6 i=1 n i . A specific combination of n i 's that sum to n is referred to as an anonymous profile or a voting situation.
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Their book "voting paradoxes and group coherence: The Condorcet efficiency of voting rules" summarizes many of the existing papers on that topics.

Table 1 q

 1 -Condorcet efficiency of the plurality rule

	n 12	q	1 2 + ✏ 0, 54 0, 57 0.8932 0.8932 0.8932 0.9842 0.9842 0.9842 0, 6 0, 63 2 3	> 2 3 1
	24		0.8623 0.8623 0.9376 0.9794 0.9967 0.9967	1
	30		0.8555 0.9221 0.9648 0.9648 0.9884 0.9981	1
	42		0.8476 0.9009 0.9405 0.9856 0.9952 0.9992	1
	60		0.8414 0.9154 0.9625 0.9776 0.9946 0.9997	1
	66		0.8401 0.9092 0.9555 0.9828 0.9959 0.9998	1
	78		0.8381 0.9230 0.9593 0.9820 0.9974 0.9999	1
	96		0.8359 0.9090 0.9571 0.9846 0.9968 0.9999	1
	102	0.8354 0.9233 0.9639 0.9870 0.9973 0.9999	1
	114	0.8344 0.9156 0.9556 0.9862 0.9964	1	1
	126	0.8337 0.9235 0.9580 0.9855 0.9973	1	1
	144	0.8328 0.9143 0.9645 0.9866 0.9969	1	1
	156	0.8323 0.9209 0.9585 0.9860 0.9976	1	1
	1		0.8294 0.9216 0.9646 0.9883 0.9980	1	1

Table 2 q

 2 -Condorcet efficiency of the negative-plurality rule

	n 12	q	1 2 + ✏ 0, 54 0.6130 0.6734 0.6734 0.7776 0.7776 0.7776 0.9050 0.9050 0.9922 0.9990 0.9990 0, 57 0, 6 0, 63 2 3 0, 69 0, 75 0, 84 0, 96 1
	24		0.6026 0.6370 0.6965 0.8091 0.8558 0.8558 0.9133 0.9512 0.9950 0.9999 0.9999
	30		0.6004 0.7038 0.7498 0.7498 0.8352 0.8709 0.9154 0.9683 0.9956 0.9999 0.9999
	42		0.5976 0.6743 0.7090 0.8083 0.8639 0.8876 0.9181 0.9726 0.9962	1	1
	60		0.5954 0.6899 0.7639 0.7862 0.8488 0.8997 0.9373 0.9718 0.9967	1	1
	66		0.5950 0.6685 0.7382 0.8017 0.8570 0.9022 0.9363 0.9763 0.9968	1	1
	78		0.5943 0.6985 0.7560 0.8087 0.8691 0.9060 0.9348 0.9773 0.9969	1	1
	96		0.5936 0.6703 0.7510 0.8084 0.8704 0.9099 0.9430 0.9761 0.9972	1	1
	102	0.5934 0.6892 0.7639 0.8168 0.8741 0.9108 0.9421 0.9786 0.9971	1	1
	114	0.5930 0.6793 0.7475 0.8200 0.8616 0.9125 0.9406 0.9790 0.9972	1	1
	126	0.5928 0.6971 0.7452 0.8119 0.8687 0.9138 0.9393 0.9793 0.9972	1	1
	144	0.5925 0.6783 0.7639 0.8207 0.8697 0.9154 0.9441 0.9783 0.9973	1	1
	156	0.5923 0.6873 0.7467 0.8140 0.8712 0.9162 0.9428 0.9787 0.9978	1	1
	1		0.5928 0.6907 0.7607 0.8233 0.8763 0.9259 0.9485 0.9824 0.9981	1	1

Table 3 q

 3 -Condorcet efficiency of the Borda rule

	n 1 0.8573 0.9463 0.9805 0.9953 0.9995 1 q 1 2 + ✏ 0, 54 0, 57 0, 6 0, 63 2 3	> 2 3 1

Table 5 q

 5 -Condorcet efficiency of the Coombs rule

	n 12	q	1 2 + ✏ 0, 54 0, 57 0.9349 0.9349 0.9349 0.9842 0.9842 0.9842 0, 6 0, 63 2 3	> 2 3 1
	24		0.9243 0.9243 0.9644 0.9869 0.9967 0.9967	1
	30		0.9217 0.9569 0.9798 0.9798 0.9925 0.9981	1
	42		0.9185 0.9465 0.9676 0.9917 0.9969 0.9992	1
	60		0.9159 0.9548 0.9798 0.9878 0.9969 0.9997	1
	66		0.9154 0.9516 0.9761 0.9907 0.9976 0.9998	1
	78		0.9145 0.9591 0.9783 0.9903 0.9985 0.9999	1
	96		0.9136 0.9518 0.9772 0.9918 0.9983 0.9999	1
	102	0.9134 0.9594 0.9808 0.9931 0.9985 0.9999	1
	114	0.9130 0.9554 0.9765 0.9927 0.9980	1	1
	126	0.9127 0.9596 0.9778 0.9923 0.9985	1	1
	144	0.9124 0.9548 0.9813 0.9929 0.9984	1	1
	156	0.9122 0.9583 0.9781 0.9926 0.9987	1	1
	1 0.9112 0.9590 0.9815 0.9939 0.9990	1	1

A complete solution is given for the classical positional rules (plurality rule, negative plurality rule, Borda rule, Hare's rule, Coombs rule and Nanson's rule).

If more than one candidate have the same score, then they all belong to the "winning set".

Note that if two candidates have the same score, they are eliminated at the first step and then there is no second step. If all the three candidates have the same score, then they all belong to the winning set.

Note that for q  1 2 , one may find some configurations of individual preferences where for some candidates a and b, a is beaten by b and b is beaten by a. Therefore those quotas are omitted to avoid ambiguous situations.

For a detailed discussion of this hypothese and some others, see[START_REF] Regenwetter | Behavioral social choice[END_REF].

Sequential Positional Rules

We now consider the following three SPRs: Hare's rule (↵ = 0), Coombs rule (↵ = 1) and Nanson's rule (↵ = [START_REF] Courtin | Positional rules and q-Condorcet consistency[END_REF] 2 ).

Hare's rule

The following results solve the Hare's rule.

Proposition 7. Let F 0 be the SPR. If n is a multiple of 24 and p 1 2 n with p = dqne 1, then CE F 0 , n, p =

(12 850p+10 785)n 4 1933n 5 +( 25 920p 2 53 160p 93 640)n 3 +(25

n and p even

n and p odd

For large electorates, we have the following proposition.

Proposition 8. Let F 0 be the SPR. Then for large electorates,

Table 4 and Figure 3 below present some exact frequencies. Once again, it can be observed that the q-Condorcet efficiency of the Hare's rule increases as q increases. Moreover, frequencies converge quickly to 1 as q tends to one. For q 3 4 , the Hare's rule always selects the q-CW in accordance with Courtin et al. (2012). Besides it appears in terms of q-Condorcet efficiency that the Hare's rule always performs better than the plurality rule.

Coombs rule

The following results concern Coombs' procedure.

Proposition 9. Let F 1 be the SPR. If n is a multiple of 6 and and p 1 2 n with p = dqne 1, then

In a large society, we have:

Proposition 10. Let F 1 be the SPR. Then for large electorates,

The corresponding table and figure are:

In a large society, we have:

Proposition 12. Let F 2 be the SPR. Then for large electorates, CE F 2 , 1, q = 8 < :

Table 6 illustrates these results for a large set of voters. Yet again, the Nanson's rule performs better than the Borda rule in the selection of a q-CW . Indeed, the q-Condorcet efficiency of the Nanson's rule is above 93% as soon as q is greater than 

Concluding discussion

It seems desirable that the winner of an election should not be beaten under a qualified majority rule. Unfortunately for three-candidate elections, positional rules (simple or sequential) fail to satisfy this requirement for any quota of the qualified majority between [START_REF] Courtin | Positional rules and q-Condorcet consistency[END_REF] 2 and q ⇤ . Our contribution in the present paper underlines the respective behaviors of six positional rules with respect to their ability to select the q-CW . Our overall comments of the results obtained are as follows:

(i) for each rule studied, the q-Condorcet efficiency increases as the quota increases up to a threshold above which the rule always selects a q-CW ;

(ii) among the usual simple positional rules, the Borda rule consistently has significantly greater q-Condorcet efficiency than both the plurality and the negative plurality rules. The negative plurality appears to be the worst simple positional rule;

(iii) the Nanson's rule is the top-performing rule as well among the sequential positional rules as among the simple positional rules under consideration here;

(iv) the improvement in q-Condorcet efficiency seems greater in moving from a simple positional rule to its corresponding sequential form.

In a different but similar investigation, our results are in accordance with earlier observations by Gehrlein and Lepelley (2006). With three candidates, the use of a sequential positionnal rule in combination with a larger quota will significantly improve the stability of the winner.