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Abstract

This work provides necessary and sufficient conditions for the dominance

solvability of approval voting games. Our conditions are very simple since they

are based on the approval relation, a binary relation between the alternatives.

We distinguish between two sorts of dominance solvability and prove that the

most stringent one leads to the election of the set of Condorcet Winners whereas

this need not be the case for the weak version.

KEYWORDS: Approval voting, Strategic voting, Dominance-solvability, Condorcet

Winner

JEL Classification Numbers: C72 ;D71; D72.

1 Introduction

What would be the outcome of an election if each voter was allowed to vote for as

many candidates as she wanted rather than just for one as it is the case now? This is

one of the main questions that the recent literature on voting theory has been con-

cerned with, both in political science and economics. This idea of switching from
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the “One man, One vote” principle (i.e. Plurality Voting) to the “One Man, Many

Votes” one is indeed the focus of the theoretical debate over Approval Voting (AV)1.

Our paper contributes this debate by considering the strategic analysis of the pref-

erence aggregation games. Rather than focusing on some normative criteria such as

the Condorcet consistency2, we evaluate the merits of this rule by considering the

equilibria of the following game. The voters’ preferences are common knowledge

and the voters play according to the Approval voting method: they can approve

of as many candidates as they want. Voters are instrumental so that they only get

utility from the outcome of the election. Ties are broken by a fair lottery.

As this game typically has (too) many equilibria, we focus on the situations in

which most of the game-theoretical tools give a sharp and unique prediction. In-

deed, we just consider which consider equilibria that survive to the iterated elimina-

tion of weakly dominated strategies (i.e. sophisticated voting à la Farquharson [10]).

The games in which sophisticated voting leads to a unique outcome are dominance-

solvable. Note that, as we consider generic games, this outcome satisfies a list of

desiderata: this outcome is perfect and proper and moreover is the unique stable

one à la Mertens [13]. In a recent contribution, Buenrostro et al. [6] underline the

importance of the conditions for dominance solvability of approval games. They

state some sufficient conditions for the solvability of scoring rule games and hence

prove that whenever the conditions are satisfied for a scoring rule, so are the ones

for AV . This is important since, whenever the conditions they describe hold, the

outcome coincides with the set of Condorcet Winners and so, in a sense, these con-

ditions are some sort of normative criteria for voting rules.

We distinguish two sorts of dominance solvability: cardinal (CS) and ordinal

solvability (OS). Typically, the cardinal utilities of the voters are defined as the

primitives of the game. Hence, for us, a game is CS if it is dominance solvable (i.e.

there is some order of deletion that isolates a unique outcome). However, following

the Arrovian tradition, one might consider that interpersonal comparable utilities

1AV is the method of election according to which a voter can vote for as many candidates as she
wishes and the candidate with the highest number of approval votes wins the election. The reader
can refer to Brams [3], Weber [14] and the recent handbook of approval voting (Laslier and Sanver
[12]) for an account of this literature. The literature of information aggregation under AV contains
many interesting contributions such as the ones by Ahn and Oliveros [1], Bouton and Castanheira
[2] and Goertz and Maniquet [11].

2A Condorcet Winner is a candidate that beats every other candidate in pair wises comparison. A
rule is Condorcet consistent if it selects the Condorcet Winner whenever it exists.

2



should not be taken into account so that only the voters’ ordinal preferences might

have an impact on the outcome of the game. As will be shown, this need not be the

case as the outcome by iterated removal of weakly dominated strategies might de-

pend on the voters’ cardinal preferences. In other words, given a ordinal preference

ordering, different specifications of the utilities might have an impact on the pre-

diction of dominance-solvability. Hence, we define a stronger notion of dominance

solvability, OS, just based on the ordinal preferences. We say that a game is OS if

every game with the same ordinal preference ordering is CS and the same outcome

is reached. It follows that any OS game is CS whereas the contrary need not be true

(see Example 1).

We answer two main questions: (i) when is a game OS and CS? and (ii) does the

surviving outcome satisfy Condorcet Consistency?

As far as the first question is concerned, our answer is rather simple. Our con-

ditions are based on the social preferences of the voters, and more precisely the

approval relation (A) and the weak approval relation (ωA). We say that a candidate

x is (weakly) A−preferred to a candidate y if the number of voters who rank x first

and y last in their individual preference is (weakly) higher than the number of vot-

ers who strictly prefer y to x minus the number of voters who rank y above x, none

of them being either first or last. Note that with just three candidates, the definition

of the relation is much simpler since the number of voters who rank y above x, none

of them being either first or last equals zero. A candidate y belongs to the (weak) Ap-
proval domain if there exists a candidate who is A-preferred to him. We first prove

that the A-relation fully characterizes the set of winners under AV provided that

the voters use weakly undominated strategies. In other words, a candidate belongs

to the Approval domain if and only if he cannot win the election since its maximal

score is strictly lower than the minimal score of some other candidate.

Building on this result, we provide a characterization of dominance-solvability.

With just three candidates, we first prove that if the Approval domain is non-

empty, then the game is OS. Moreover, we show that if the Approval domain is

empty but the weak Approval domain is non-empty, a game might be CS but not

OS. Moreover, we prove that for such games, there is always a non-empty set of

utilities for which the game is CS. In other words, the conditions for a game to be

CS without being OS do not simply hinge on the number of the voters but also on

their cardinal utilities. Finally, we prove that if the weak Approval domain is empty,

then the game is not CS. Therefore, in a scenario with three alternatives, a game is
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OS if and only the Approval Domain is non-empty. More generally, if k candidates

are present in the election, the requirements for OS are still based on the Approval

Domain. If at least k−2 candidates belong to the Approval domain, the game is OS.

Again, if the weak Approval domain is empty then the game cannot be CS. Note

that if less than k −2 candidates belong to the Approval domain, the game need not

be CS. Finally, it seems important to remark that our condition for OS implies the

previous sufficient condition recently stated by Buenrostro et al. [6]. Indeed, they

prove that if the largest fraction of players that agree on the best or on the worst

candidate is high enough, the game is CS.

Regarding the second question, we prove that the difference between OS and

CS is key. Indeed, the literature was rather ambiguous on this precise point. On the

one hand, Buenrostro et al. [6] prove that under their sufficient conditions for dom-

inance solvability, the set of Condorcet Winners was elected. On the other hand,

the nice examples in De Sinopoli et al. [7, 8] emphasize that this need not be the

case. Our work gives a clear-cut answer to this controversy. We first prove that if a

game is OS, then the outcome of dominance solvability equals the set of Condorcet

Winners. On the contrary, if the game is CS but not OS it need not be the case that

the outcome satisfies Condorcet Consistency. If one considers the whole set of CS

games, this violation occurs under very precise conditions which can be stated with

just three candidates as follows: it must be the case that the number of voters that

rank some candidate x first and some candidate y must be equal to the number of

voters who prefer y to x.

Intuitively, the main rationale behind the selection in Condorcet winners in OS

games is as follows. In these games the procedure of dominance-solvability takes a

very natural structure described by the following three steps:

1. Voters agree that every voter should only use weakly undominated strategies

(voting for your top-candidate and never voting for your least-preferred one).

2. Given the previous agreement, at least k − 2 candidates cannot be in the win-

ning set since their maximal score is lower than the minimal score of some

other candidate. Hence, it is irrelevant for the outcome of the election whether

the voters vote for any of these candidates.

3. Finally, the majority winner among the (at most) two remaining candidates,

wins the election.
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Given that, when there is least k − 2 candidates in the Approval domain there must

exist a CW , the procedure of dominance-solvability correctly selects the CW . In

games which are CS but notOS, the procedure does not follow the same steps since

there are some candidates which maximal score coincides with the minimal score of

some other candidates. This explains why a CS game fails to select the Condorcet

winner.

The remainder of this paper is organized as follows. Section 2 introduces the

model and defines concepts and notation that will be used in the rest of the article.

As far as the scenario with three alternatives is concerned, Section 3 presents the

sufficient conditions for an AV game to be OS and CS and Section 4 shows the nec-

essary conditions. Finally, Section 5 discusses the Condorcet consistency, extends

the results to the many alternatives case and concludes the paper.

2 Model

The voting game

There is a setN = {1, ...,n} of voters with n ≥ 4 and a set X = {a,b, ..., k} of alternatives.

With just three alternatives, we let X = {a,b,c}. The voting game is as follows. All

voters vote simultaneously. A voter can approve as many candidates as she wishes

by choosing a vector vi from the set of pure strategy vectors Vi . With just three

alternatives, we have:

Vi =
{
(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (0,0,0), (1,1,1)

}
.

The profile of vote vectors is v ∈ V =
∏
i Vi . The profile v−i ∈ V−i denotes the

vote profile excluding voter i. Let sj(v) be the number of votes for candidate j if the

profile is v and sj(v−i) the total score for candidate j when the vote of i is excluded.

The vector s(v) = (sa(v), . . . , sk(v)) stands for the total score vector. s(v−i) records the

total votes for each candidate in X given a profile v−i ; we write s−i for short. The

winning set of candidates, that is, the outcome corresponding to profile v, is denoted

by W (v) and consists of those candidates that get the maximum total score:

W (v) = {x ∈ X | sx(v) = max
y∈X

sy(v)}.
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Voter i ∈ N has strict preferences on the set of candidates X, which are strict or-

derings of X. a �i b means that a is strictly preferred to b by voter i. The preference

orderings of the voters are summarized by �= (�i)i∈N .

We assume that preferences can be represented by a von Neumann–Morgenstern

(vN-M) utility function ui : X→R over lotteries on the set of candidates. Given that

ties are broken by a fair lottery, the expected utility of a voter i is a function of the

profile v given by :

Ui(v) =
1

#W (v)

∑
x∈W (v)

ui(x).

We will impose the following regularity condition (Dhillon and Lockwood [9])

to ensure that the order of deletion of weakly dominated strategies is irrelevant3:

∀i,v,v′ with

W (v) ,W (v′) =⇒Ui(W (v)) ,Ui(W (v′)). (1)

This condition implies that no voter is indifferent between any pair of candidates

and moreover no voter is indifferent between any pair of winning sets.

Letting u = (ui)i∈N , the strategic form voting game Γ is then defined by Γ = (u,V ).

Given a preference ordering �, we define the ordinal game as the class of games

represented by the following set:

Γ� = {Γ = (u,V ) |u is a vN-M representation of �}.

Iterated weak dominance

Let ∅ , V ′i ⊆ Vi and V ′ =
∏
i∈N V

′
i be a restriction of V . Γ ′ denotes the reduced game

of V with strategy space V ′ ⊆ V and winning set W ′ = {W (v) | v ∈ V ′} the restriction

of W to V ′. Γm, m = 1,2, . . . denotes the sequence of reduced games of V with Vm ⊆
Vm−1 and Wm denotes the restriction of W to Vm. Let V 0 = V , limm→∞V

m = V∞

and limm→∞W
m =W∞. Γ∞ denotes the fully reduced game with Γ∞ = (u,V∞).

Definition 1. A pure strategy vi ∈ Vi very weakly dominates pure strategy ωi ∈ Vi in Γ

iff ∀v−i ∈ V−i , ui(vi ,v−i) ≥ ui(ωi ,v−i). vi weakly dominates pure strategy ωi in Γ iff vi
very weakly dominates ωi in Γ and ∃v′−i ∈ V−i such that ui(vi ,v′−i) > ui(ωi ,v

′
−i).

3It is irrelevant in the sense that two full reductions of a game through iterated weak dominance
lead to the same winning set when condition 1 holds.
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Fact 1: An AV strategy is not weakly dominated in V 0 if and only if the voter

approves her most preferred candidate and never approves of her worst preferred

one (see Brams and Fishburn [4]).

V∞ stands for the full reduction of V through the sequence of restrictions Vm in

which there is no weakly dominated strategy.

A full reduction by pure weak dominance is achieved by maximal simultaneous

deletion (msd) if at each step all the weakly dominated strategies of all players are

deleted.

Definition 2. A pure strategy vi ∈ V is redundant in Γ = (u,V ) if there is some pure
strategy ωi ∈ V such that ui(vi ,v−i) = ui(ωi ,v−i), ∀v−i ∈ V−i and ∀ i ∈N .

We define two notions of dominance solvability.

Definition 3. The game Γ = (u,V ) is cardinally solvable (CS) if there is a full reduction
by pure weak dominance such that W∞ is a singleton.

The outcome of a CS game Γ = (u,V ) is denoted W∞
Γ

.

The first notion is a standard one in the literature. It just requires that a unique

winning set is reached through one order of deletion of weakly dominated strate-

gies.

Definition 4. Given a preference ordering � , the game Γ� is ordinally solvable (OS) if :

1. any game Γ in Γ� is CS and

2. W∞
Γ

=W∞
Γ ′ for any pair Γ , Γ ′ in Γ�.

The second notion of dominance solvability is stronger. Indeed, as will be shown

by the next example, the usual definition CS is not fully satisfactory in voting games

since it does not simply hinge on the voters’ ordinal utilities: it might lead to a

different outcome as a function of the preferences’ intensities of the voters. This

second notion precludes this property of dominance solvability by requiring that

the same outcome is reached in all the games that represent the same preference

ordering.

Example 1: A non OS ordinal game.
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Let n = 4 and X = {a,b,c} and consider the preference ordering � given by

i = 1,2 : a �i b �i c

i = 3,4 : c �i b �i a.

Due to Fact 1, the only weakly undominated strategies in V are {a} and {a,b} for

i = 1,2 and {c} and {c,b} for i = 3,4. Take the game Γ 1 = (u,V 1) after one step of

msd. Note that for any profile in this game, sa(v) = sc(v) = 2. Hence, any voter i with

i = 1,2 is indifferent between her two pure strategies when s−i ∈ {(1,0,2), (1,3,2)}.
However, her decision when s−i ∈ {(1,1,2), (1,2,2)} depends on her cardinal utility.

If ui(b) < ui(a)+ui(c)
2 , she weakly prefers to vote {a}. If ui(b) > ui(a)+ui(c)

2 , she weakly

prefers to vote {a,b}.
A similar claim applies to a voter i with i = 3,4. If ui(b) < ui(a)+ui(c)

2 , she weakly

prefers to vote {c}. If ui(b) > ui(a)+ui(c)
2 , she weakly prefers to vote {b,c}. As we have

assumed that no voter is indifferent between two winning sets, it follows that each

voter has a unique weakly undominated strategy in V 1 that depends on her cardinal

utilities. Therefore each game Γ in Γ� is CS.

However, the outcome W∞
Γ

depends on the cardinal utilities. For instance, as-

sume that ui(b) < ui(a)+ui(c)
2 holds for every voter. ThenW∞

Γ
={a,c} . If, on the contrary,

ui(b) > ui(a)+ui(c)
2 is satisfied for every voter, it follows that W∞

Γ
={b} . Therefore, the

ordinal game Γ� is not OS since the outcome W∞
Γ

might differ across the different

games in Γ�.

3 The Approval Domain: a Sufficient Condition

Prior to stating the sufficient conditions for dominance solvability, we define some

binary relations that will be necessary throughout.

We let N (x,y) denote the number of voters who prefer candidate x to candidate

y: N (x,y) = #{i ∈N | x �i y}.
x is M-preferred to y, denoted xMy, if and only if N (x,y) > N (y,x). The weak

version of the relation M denoted xωMy, is such that xωMy if and only if N (x,y) ≥
N (y,x). The set of Condorcet Winners (CW ) are the candidate(s) who are preferred

by a majority of voters to any other candidate in the election.

XCW = {x ∈ X |xωMy ∀y , x ∈ X}.
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We now define the approval relation A. We say that candidate x is A-preferred

to y if the number of voters who rank x first and y last is higher than the number

of voters who strictly prefer y to x plus the number of voters who prefer x to y but

do not rank x first or y last (denoted N (·,x,y, ·)). Formally, letting N (x, . . . ,y) = #{i ∈
N | x �i . . . �i y},

xAy if and only ifN (x, . . . , y) > N (y,x) +N (·,x,y, ·).

Since with three alternatives N (·,x,y, ·) = 0 given that at least one of the two

candidates is ranked first or last in a voter’s preference ordering, it follows that

xAy if and only ifN (x, . . . , y) > N (y,x) when k = 3.

Note that the A relation is asymmetric and that A need not be complete. More-

over, note that if xAy then xMy. Indeed, if xAy thenN (x, . . . , y) > N (y,x)+N (·,x,y, ·).
Given that N (x,y) ≥N (x, . . . , y), it follows that

N (x,y) > N (y,x) +N (·,x,y, ·) ≥N (y,x)⇒ xMy.

The set XA (the Approval domain) stands for the candidates for which there

exists a candidate who is A-preferred to them with

XA = {x ∈ X | ∃y s.t. yAx}.

Note that this set might be empty. Similarly the weak version of the relation A,

denoted xωAy, is such that xωAy if and only if N (x, . . . , y) ≥N (y,x)+N (·,x,y, ·), and

with associated set XωA = {x ∈ X | ∃y s.t. y ωAx}.
We can state some simple claims concerning the properties of relation A.

Lemma 1. XA , X.

Proof. Assume, by contradiction, that XA = X. Hence, for any candidate x, there

exists a y for which yAx, so that N (y, . . . ,x) > N (x,y) +N (·, y,x, ·) (1). Since XA = X,

there must exist a z with zAy which implies that N (z, . . . , y) > N (y,z) +N (·, z,y, ·) (2).

However, note that N (x,y) ≥ N (z, . . . , y) as N (z, . . . , y) stands for the share of voters

who rank z first and y last so that x is preferred to y in these profiles. Moreover,

remark that N (y,z) ≥ N (y, . . . ,x) by an analogous reasoning. Combining these two
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inequalities with (1) leads to the following inequality,

N (y,z) ≥N (y, . . . ,x) > N (x,y) +N (·, y,x, ·) ≥N (z, . . . , y) +N (·, y,x, ·),

a contradiction with (2).

The following lemma will be useful throughout:

Lemma 2. If the voters use weakly undominated strategies, then:

xAy ⇐⇒ sx(v) > sy(v) for any v.

Proof. Take a pair of alternatives x and y. Assume that sx(v) > sy(v) for any v when

voters use weakly undominated strategies. This is equivalent to assume that the

minimal score of x is higher than the maximal score of y (denoted sx > sy). Under

AV , it is weakly undominated for a voter to approve of her top preferred candidate

and never vote her worst preferred one.

Therefore, using weakly undominated strategies, the minimal score for a can-

didate x equals the number of voters who have x as their top-preferred candidate

(denoted N (x, . . .)). Note that these voters can be divided between those who rank

y last (N (x, . . . , y)) and those who do not (N (x, . . . , yc), so that N (x, . . .) = N (x, . . . , y) +

N (x, . . . , yc).

Similarly, the maximal score of a candidate y equals the total number of voters

minus the number of voters who rank this candidate last (n −N (. . . , y)). Again, all

the voters who rank y over x (N (y,x)) are in this group. The rest of the voters in

this group so are the ones who rank x over y without the voters who rank y last

(N (x,y, ·)) so that n−N (. . . , y)) =N (y,x) +N (x,y, ·).
Hence, we can write that:

sx > sy ⇐⇒N (x, · · · ) > n−N (· · · , y))

⇐⇒N (x, . . . , y) +N (x, . . . , yc) > N (y,x) +N (x,y, ·).

Removing the voters who rank x first and y not last from both sides of the inequality

(in other words, N (x, . . . , yc) =N (x,y, ·)) leads to

sx > sy ⇐⇒N (x, . . . , y) > N (y,x) +N (·,x,y, ·).

Since this is the precise definition of xAy, this concludes the proof.
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More formally, the previous lemma can be restated as follows:

y ∈ XA⇐⇒ X
′
<W 1 for any X ′ ⊆ Xwith y ∈ X ′. (2)

In other words, any set of candidates in which y ∈ XA is included can not be in

the winning set W 1, which corresponds to the possible winning sets in the game

Γ 1 obtained after one step of msd. Our condition coincides with the one given by

Brams and Sanver [5] when k = 3. This is not surprising since they prove a charac-

terization of a candidate being an AV winner, provided that the voters use sincere

and undominated strategies (which is the case in our setting with just three alter-

rnatives).

3.1 The Approval Domain

Our analysis first focuses on a three candidates scenario which helps to present the

main intuition for the many-alternatives case.

Voters’ preferences are strict so that we divide the voters into six groups as fol-

lows:

N1 N2 N3 N4 N5 N6

a a b b c c

b c a c a b

c b c a b a

n1 n2 n3 n4 n5 n6

with for example N1 be the set of voters i with preference ordering a �i b �i c,
with #N1 = n1.

As condition (1) holds, we apply first one step of msd and so w.l.o.g. we focus

on Γ 1 = (u,V 1) the game in which every voter chooses among her undominated

strategies in Γ . As we focus on three candidates, each voter i has only two weakly

undominated strategies under AV : either simple-voting for her top-ranked candi-

date (ti) or double-voting for her first two top-ranked candidates (di). Note that W 1

is the winning set associated to Γ 1 with

W 1 ∈ {{a} ; {b} ; {c} ; {a,b} ; {a,c} ; {b,c} ; {a,b,c}} .

Hence, the scores of the candidates under undominatedAV voting strategies (i.e.
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any vote distribution in V 1) can be written for any vote distribution v as follows with

sa(v) = n1 +n2 + η3(v) + η5(v)

sb(v) = n3 +n4 + η1(v) + η6(v)

sc(v) = n5 +n6 + η2(v) + η4(v),

with ηj(v) ∈ {0, . . . ,nj} with j = 1, ...,6. Note that for a given candidate the sum of the

nj accounts for the votes he gets from simple-voting whereas the sum of ηj stands

for the votes which stem from double-voting. For a given Γ 1 the nj are constant

whereas the ηj depend on the vote profile.

We can now state a simple sufficient condition for an ordinal game to be OS.

Theorem 1. If XA , ∅, then the ordinal game Γ� is ordinally solvable.

Proof. Take a game Γ = (u,V ). After one step of msd, the set of winners in the game

Γ 1 = (u,V 1) equals the set of AV winners under sincere and undominated strategies.

If XA , ∅, then there is some candidate which is not present in any winning set W 1

by (2).

If two candidates are in XA, then there is a unique winning set that coincides

with X \XA. The claim is proved as then the game is CS, as wanted. Moreover, the

argument does not hinge on the voters’ cardinal utilities proving that the game is

OS.

If there is just one candidate in XA, then let XA = {c} w.l.o.g. Therefore W 1 =

{{a}, {b}, {a,b}}. Any strategy that assigns one point to c is redundant to any strategy

vi ∈ V 1 that assigns no point to it. We remove all the strategies in which voters assign

one point to c as their second-ranked candidate4. Note that this has no impact of

iterated removal of weakly dominated strategies due to condition (1). The game

after removal of redundant strategies is denoted Γ 2 = (u,V 2).

Consider two vote profiles v and v′ with v = (ti ,v−i) and v′ = (di ,v−i). Note that

the only difference between both profiles is that voter i switches from simple to

double voting. Hence, as we are in Γ 2, this change might only add one point to the

voter’s second ranked candidate, that is either a or b. The proof is now divided in

two cases:
4If we remove all the strategies that assign a score of 1 to c, we might modify the game as some

voters vote for c and for some other candidate. Indeed, voters of groupsN5 andN6 always assign one
point to c and maybe one point to either a or b in Γ 1. Hence, one cannot ensure that removing their
strategies from the game does not affect the winning set since they might assign a positive score to
both a and b.
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Case I. Suppose first that for some voter i, there exists v−i ∈ V 2
−i for which Ui(v) ,

Ui(v′). Then it must be the case that W (v) , W (v′). Consider first that a �i b �i c.
As ti = (1,0,0) and di = (1,1,0), switching from ti to di adds one point to b.

If W (v) = {a}, then it can only be the case that W (v′) = {a,b}.
If W (v) = {b}, this is a contradiction since adding one point to b cannot change the

winning set.

If W (v) = {a,b}, then it follows that W (v′) = {b}.
As voter i prefers a over b, she weakly prefers to choose ti .

The same argument applies to each possible preference ordering implying that

no voter is indifferent between ti and di so that the game is CS.

Case II. Suppose now that there is some voter i for which Ui(v) = Ui(v′) for any

v,v′ ∈ V 2. Then it must be the case that W (v) =W (v′).

II.1 If W (v) is the same one for any v ∈ V 2, then W 2 is a singleton so that the game

is CS by definition.

II.2 Suppose now that there exist v−i and v′−i with W (ti ,v−i) =W (di ,v−i), W (ti ,v′−i) =

W (di ,v′−i) and W (ti ,v−i) ,W (ti ,v′−i).

Note that in Γ 2, switching from ti to di can only alter the score of a and b.

a. Assume first that W (ti ,v−i) = {a,b} for some v−i in V 2
−i . If a is the second-ranked

candidate then W (ti ,v−i) = {a,b} =⇒ W (di ,v−i) = {a} entailing a contradiction. The

same contradiction arises if b is the second-ranked candidate.

A similar claim applies when W (ti ,v′−i) = {a,b}.

b. Suppose now that W (ti ,v−i) , {a,b} for any v−i in V 2
−i .

IfW (ti ,v−i) = {a} andW (ti ,v′−i) = {b}, then sa(ti ,v−i) > sb(ti ,v−i) and sa(ti ,v′−i) < sb(ti ,v
′
−i).

By Lemma 7 in the appendix, there must exist some distribution v”−i withW (ti ,v”−i) =

{a,b}. However, as previously, one can prove that there is a contradiction since

adding an extra-point for a or b breaks the tie.

The same logic applies if W (ti ,v−i) = {b} and W (ti ,v′−i) = {a}.

In all the previous cases, either the game is DS or there is a contradiction, prov-

ing the claim. Finally, as the only driving force of the proof is the voters’ ordinal

preferences, we can conclude that the game Γ� is OS.

13



3.2 Comparison to the previous sufficient conditions.

Buenrostro et al. [6] provide sufficient conditions for the dominance solvability of

AV games with just three candidates. Indeed, they focus on conditions in terms of

one statistic of the game: sufficient agreement on the best candidate or on the worst

candidate. We now prove that our condition (i.e. XA , ∅) is strictly weaker than

theirs. Indeed, any game satisfying conditions on the agreement on the best or on

the worst candidate satisfy ours (Lemmata 3 and 4) whereas the contrary need not

be true (Example 2).

We now summarize their two conditions and prove how they relate to ours.

Condition on the best candidate:

Their first condition states that if more than 2/3 of the voters have the same

top-ranked candidate, the game is dominance solvable. So if a is this candidate, the

condition can be written as follows:

Ifn1 +n2 >
2
3
n, then the game is dominance solvable (CBest).

Lemma 3. If CBest holds, then XA , ∅.

Proof. Take a game in which CBest holds for a so that n1 + n2 >
2
3n. It follows that∑6

i=3ni <
1
3n as

∑6
i=1ni = n by definition. Moreover, it must be the case that either

n1 >
1
3n or n2 >

1
3n in order to ensure that n1 + n2 >

2
3n. Assume first that n1 >

1
3n.

Then, n1 >
1
3n >

∑6
i=4ni . However, n1 = N (a,b,c) and

∑6
i=4ni = N (c,a) so that the

previous inequality is equivalent to N (a,b,c) > N (c,a). Therefore, aAc so that XA , ∅
as wanted. A similar claim holds if n2 >

1
3n, finishing the proof.

Condition on the worst candidate:

Their second condition states that if more than 2/3 of the voters have the same

worst-ranked candidate, the game is dominance solvable. So if c is this candidate,

the condition can be written as follows:

Ifn1 +n3 >
2
3
n, then the game is dominance solvable. (CWorst)

Lemma 4. If CWorst holds, then XA , ∅.

Proof. Take a game in which CWorst holds for c so that n1 +n3 >
2
3n. It follows that

n2 +n4 +n5 +n6 <
1
3n as

∑6
i=1ni = n by definition. Moreover, it must be the case that
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either n1 >
1
3n or n3 >

1
3n in order to ensure that n1 + n3 >

2
3n. Assume first that

n1 >
1
3n. Then, n1 >

1
3n > n4 +n5 +n6, so that the previous inequality is equivalent to

N (a,b,c) > N (c,a). Therefore, aAc so that XA , ∅ as wanted. A similar claim holds if

n3 >
1
3n, concluding the proof.

The next example proves that XA , ∅ does not imply CBest and CWorst.

Example 2: XA , ∅ need not imply neither CBest nor CWorst.

Let n = 5 and X = {a,b,c} and consider the preference ordering � given by

i = 1,2,3 : a �i b �i c

i = 4,5 : c �i b �i a

This example is discussed by Buenrostro et al. [6] in order to prove that their

sufficient conditions are not necessary. Indeed, only 3/5 of the voters agree on the

best and on the worst candidate and, nevertheless, the game is dominance solvable.

Note that in this game, N (a,b,c) > N (c,a) so that XA , ∅ proving that our sufficient

condition for dominance solvability is weaker than theirs.

4 The weak Approval Domain: a Necessary Condition

In this section, we derive necessary condition for an ordinal game to be ordinally

solvable with just three candidates. Indeed if the game is OS then the Approval

domain can not be empty, as presented by the next result.

Theorem 2. If an ordinal game Γ� is ordinally solvable, then XA , ∅

The proof of this theorem is the purpose of this section. The three main steps of

the proof are the following ones:

Step 1: Proposition 1 shows that if XωA = ∅, then the game is not CS. Therefore

if XωA = ∅ for some game Γ , then the ordinal game Γ� to which Γ belongs is not OS.

Step 2: Consider the games with XA = ∅ and XωA , ∅. These games might be CS

(as shown in Example 1) but need not (see Example 3). Proposition 2 proves that

none of these games is OS.

Step 3: Since the ordinal game is not OS when XωA = ∅ or when XωA , ∅ and

XA = ∅, it follows that if an ordinal game is OS then XA , ∅.
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Proposition 1. If XωA = ∅, then the game is not cardinally solvable.

Proof. Take a game with XωA = ∅ (and hence XA = ∅). By definition, xωAy ⇐⇒
sx(v) ≥ sy(v) for any v ∈ V 1. As there is no candidate in the set XωA, for any pair of

candidates x and y, there exist two vote distributions v and v′ in V 1 with sx(v) > sy(v)

and sx(v′) < sy(v′). Therefore, Lemma 7, included in the appendix, implies that all

the winning sets are possible in V 1.

We focus on the game Γ 1 after one step of msd. W.l.o.g. take a voter i with

a �i b �i c so that ti = (1,0,0) and di = (1,1,0).

As all the winning sets are possible in V 1, there must exist some v−i ∈ V 1
−i for

which either W (ti ,v−i) = {a,b} or W (di ,v−i) = {a,b}.
IfW (ti ,v−i) = {a,b} then as switching from ti to di adds one point to b, thenW (di ,v−i) =

{b}. Hence, given v−i , the voter i strictly prefers ti .

If W (di ,v−i) = {a,b} then as switching from di to ti removes one point to b, then

W (ti ,v−i) = {a}. Hence, given v−i , the voter i strictly prefers ti .

Similarly, there must exist some v′−i ∈ V
1
−i for which either W (ti ,v′−i) = {b,c} or

W (di ,v′−i) = {b,c}. If W (ti ,v′−i) = {b,c} then W (di ,v′−i) = {b}. Hence, given v′−i , the

voter i strictly prefers di . Again, if W (di ,v′−i) = {b,c}, then W (ti ,v′−i) = {c} so that the

voter prefers di .

Hence, the voter i has no weakly dominated strategy finishing the proof.

Example 3: XA = ∅ and XωA , ∅ need not imply that the game is CS.

As shown by Example 1, a game with XA = ∅ and XωA , ∅ might be cardinally

solvable. To see that this type of games need not be CS take the following game. Let

n = 5 and X = {a,b,c} and consider the preference ordering � given by

i = 1,2 : a �i b �i c

i = 3 : a �i c �i b

i = 4,5 : c �i b �i a.

Note that aωAc as N (a, . . . , c) =N (c,a).

Take first i = 1 and assume that ui = (3,2,0). If s−i = (2,3,2), then the voter

prefers ti to di as Ui(ti ,v−i) = 5/2 > Ui(di ,v−i) = 2. On the contrary, if s−i = (2,3,3),

then the voter prefers di to ti as Ui(ti ,v−i) = 5/3 < Ui(di ,v−i) = 2. The same reasoning

applies to i = 2 proving that neither of these voters has a weakly dominated strategy
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in Γ 1.

Take now i = 3 and assume that ui = (3,0,2). If s−i = (2,2,2), then the voter

prefers ti to di as Ui(ti ,v−i) = 3 > Ui(di ,v−i) = 5/2. If we assume that s−i = (2,3,2),

then the voter prefers di to ti as Ui(ti ,v−i) = 3/2 < Ui(di ,v−i) = 5/3. This proves that

the voter 3 has no weakly undominated strategy.

Finally, take i = 4 with ui = (0,1,3). Note that when s−i = (3,3,1), then the voter

prefers di to ti as Ui(ti ,v−i) = 1/2 < Ui(di ,v−i) = 1. However, when the score s−i =

(3,3,2), then it follows that Ui(ti ,v−i) = 4/3 > Ui(di ,v−i) = 1 proving that this voter

has no weakly undominated strategy in this game. The same claim applies to i = 5

by symmetry provided that she has the same utility profile.

Therefore, no voter has weakly dominated strategies after one step of msd prov-

ing that the game is not CS.

Note that in the game Γ 1, the minimal score for a candidate x equals the number

of voters who have x as their top-preferred candidate. Similarly, the maximal score

of a candidate x equals the total number of voters minus the number of voters who

rank this candidate last. Let us recall that sj and sj respectively denote minV 1 sj(v)

and maxV 1 sj(v).

Using the previous notation, the set of possible score vectors S = {s = (sj(v))j∈X |v ∈
V 1} can be characterized as follows:

s ∈ S⇐⇒ sj(v) ∈ {sj , . . . , sj}. (3)

While the sufficient condition (=⇒) holds by definition, the necessary condition

(⇐=) is slightly more technical. Indeed, note under AV whether a voter approves of

a candidate does not imply any restriction on the scores of the rest of the candidates

(unlike under plurality voting). Hence it follows that any score for each possible

candidate (between sj and sj) is possible, independently of the scores of the rest of

the candidates. In other words, for any possible vector s ∈N3 with sj ∈ {sj , . . . , sj} for

any j ∈ X, we can find a vote profile v′′ ∈ V 1 with s(v′′) = s.

Building on the previous characterization, the next result describes which games

can be dominance-solvable without being embedded in an ordinally-solvable ordi-

nal game. As will be shown, these conditions are quite stringent.

Proposition 2. If XA = ∅ and XωA , ∅ for some game Γ , then the ordinal game Γ� to
which Γ belongs is not OS.
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Proof. Take a game with XA = ∅ and XωA , ∅.
We focus on the game Γ 1 after one step ofmsd. Assume w.l.o.g. that aωAc so that

sa = sc as XA = ∅. Therefore if c is in the winning set so is a which implies that the

possible winning sets are as follows:

W 1 ⊆ {{a}, {b}, {a,b}, {a,c}, {a,b,c}}.

Note that Lemma 8 ensures that {a,b,c} ∈W 1.

The proof is now structured in three cases. The first two cases analyze the prob-

lem when {a,b} < W 1 and when {a,c} < W 1. Finally, the third case focuses on the

situation in which both {a,b} and {a,c} belong to W 1.

Case I.
We assume in this case that there is not a vote profile v ∈ V 1 for which W (v) =

{a,b}. Given that aωAc, there are three cases: aωAb, bωAa or neither of both.

I.1 If aωAb, then sa = sb so that sa = sb = sc. As there is no v for which W (v) =

{a,b}, then we must have sc = sc. Indeed, if sc < sc, by (3), there must exist a vector v′

for which sa(v′) = sb(v′) > sc(v′), a contradiction.

As sc = sc, the candidate c is ranked either first or last by all voters since its

minimal and maximal scores coincide. However, we have assumed that aωAb so

that N (a, . . . ,b) = N (b,a). Since no voter ranks c second, then N (a, . . . ,b) = 0 so that

N (b,a) = 0 in order to satisfy the equality. Hence, there are only two preference

orderings a �i b �i c and c �i a �i b with the same number of voters (say m) for

each ordering as aωAc. So the game has 2m voters with the voters i = 1, . . . ,m with

a �i b �i c and the voters i =m+ 1, . . . ,2m with c �i a �i b.

Take a voter with preferences a �i b �i c. The only vote profile v−i in which

she is not indifferent between voting ti = {a} and di = {a,b} is v−i = (m − 1,m − 1,m)

since in the rest either a wins alone or both a and c win. If v−i = (m − 1,m − 1,m),

then Ui(ti ,v−i) > Ui(di ,v−i)⇐⇒
ui(a)+ui(c)

2 > ui(b). By symmetry, the same reasoning

applies to all the voters with these preferences.

Take now a voter with preferences c �i a �i b. For any utility representation, the

voter strictly prefers to vote ti = {c} than di = {c,a} when v−i equals (m,p,m − 1) for

any 0 ≤ p ≤ m − 1. Similarly, she prefers to vote ti to di when v−i = (m,m,m − 1) iff
ui(c)+ui(b)

2 > ui(a). For the rest of the vote profiles, she is indifferent. The same applies

for the voters with identical ordinal preferences.

Assume first that ui(a)+ui(c)
2 > ui(b) for any i = 1, . . . ,m and that ui(c)+ui(b)

2 > ui(a)

for any i = m + 1, . . . ,2m. Hence, the game is CS and the voters i = 1, . . . ,m vote {a}
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whereas the rest of the voters vote {c}, implying that W∞ = {a,c}.
Assume now that ui(a)+ui(c)2 < ui(b) for any i = 1, . . . ,m and that ui(c)+ui(b)

2 < ui(a) for

any i =m+1, . . . ,2m. Hence, the voters i = 1, . . . ,m vote {a,b} as {a} becomes a weakly

dominated strategy whereas the rest of the voters do not have any weakly dominated

strategy. After one new step of msd (i.e assuming that the voters i = 1, . . . ,m vote

{a,b}) then the voters i = m + 1, . . . ,2m vote {c,a} as it becomes weakly dominant.

Hence W∞ = {a} since a gets a score of 2m whereas the rest of the candidates get a

score of m.

This proves that the game cannot belong to an OS ordinal game since we have

proved that W∞ might depend on the utility levels of the voters.

I.2 If bωAa, then sb = sa so that sb = sa ≥ sa = sc as aωAc. It follows that sa = sa.

Indeed, if sa > sa, then sb > sc which is equivalent bAc, a contradiction as XA = ∅.
Moreover, as there is no v for whichW (v) = {a,b}, then we must have sc = sc. Indeed,

if sc < sc, by (3), there must exist a vector v′ for which sa(v′) = sb(v′) > sc(v′), a

contradiction.

Therefore, we have sb = sa = sa = sc = sc. As the minimal and maximal scores of

both candidates a and c coincide, a and c can only be ranked either first or last. This

implies that b is never ranked first so that sb = 0. However, in order to satisfy the

inequality we must have that sa = sc = 0, a contradiction as by definition all voters

always approve of their preferred candidate.

I.3 Suppose finally that neither aωAb nor b ωAa. Therefore, we have sa < sb and

sb < sa. Hence, due to (4), it follows that sb ≤ sa < sb. Moreover, sa = sc as aωAc.

First suppose that sb = sa. Notice that we must have sa = sc and sb < sa by as-

sumption. Hence, combining the previous expressions, it follows that

sa = sc = sb < sa.

Hence, due to (3), there must exist some v for which W (v) = {a,b}, a contradiction.

Now if sb < sa, there are two possibilities: either sa = sa or sa < sa. If the latter

holds, then again by (3), there must exist some v for whichW (v) = {a,b}, a contradic-

tion. On the contrary, assume that sa = sa. Then a cannot be ranked second so that

sa = sa = n1 +n2 and sc = n2 +n4 +n6. Since sa = sc as aωAc, then n1 +n2 = n2 +n4 +n6

so that n1 = n4 + n6. However, note that n1 = n4 + n6 is equivalent to aωAb in this

case, which does not hold by assumption.

This concludes the case I.

Case II.
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We assume in this case that there is not a vote profile v ∈ V 1 for which W (v) =

{a,c}. Given that aωAc, there are three cases: aωAb, bωAa or neither of both.

II.1 If aωAb, then sa = sb so that sa = sb = sc. As there is no v for which W (v) =

{a,c}, then we must have sb = sb. Indeed, if sb < sb, by (3), there must exist a vector

v′ for which sa(v′) = sc(v′) > sb(v′), a contradiction.

As sb = sb, the candidate b is ranked either first or last by all voters. However, we

have assumed that aωAc so thatN (a, . . . , c) =N (c,a). Since there is no voter without b

ranked either first or last thenN (a, . . . , c) = 0 so thatN (c,a) = 0 in order to satisfy the

equality. Hence, there are only two preference orderings a �i c �i b and b �i a �i c
with the same number of voters (say m) for each ordering as aωAb.

The same argument as the one in case I.A proves that the game cannot belong to

an OS ordinal game.

II.2 If bωAa, then sb = sa so that sb = sa ≥ sa = sc as aωAc. It follows that sa = sa.

Indeed, if sa > sa, then sb > sc which is equivalent bAc, a contradiction as XA = ∅.
Therefore, we have sb = sa = sa = sc ≥ sc. As the minimal and maximal scores

of candidate a coincides, a is ranked either first or last. Therefore, there only four

possible preferences orderings a �i b �i c (n1 voters), a �i c �i b (n2 voters), b �i
c �i a (n4 voters) and c �i b �i a (n6 voters). Since N (a, . . . , c) = N (c,a) it follows

that n1 = n4 + n6. Similarly, as N (b, . . . , a) = N (a,b), we must have n4 = n1 + n2.

However, both equalities together imply that n1 = n1 + n2 + n6 so that n2 + n6 = 0,

which implies that both n2 and n6 equal zero. Hence there are only two preference

orderings a �i b �i c (n1 voters) and c �i b �i a (n6 voters). Again, since aωAc,

n1 = n6 = m. However, this game does not belong to an OS ordinal game since the

only pivotal event involves the three-way tie (as in Example 1).

II.3 Suppose finally that neither aωAb nor bωAa. Therefore, we have sa < sb and

sb < sa. Hence, due to (4), it follows that sb ≤ sa < sb. Moreover, sa = sc as aωAc.

If sb < sa, then due to (3), there must exist a vote profile v for which W (v) = {a,c},
a contradiction.

If, on the contrary, sb = sa, then sc = sb = sa. Note that it must be the case that

sa < sa.

We must have {a,b} ∈W 1 as otherwise there is a contradiction as proved by case

I. As by assumption {a,c} < W 1, the voters in the groups N2 and N4 have always

a weakly dominated strategy. Indeed, they are indifferent between ti and di if the

pivot event equals {a,b} as the only difference between both ballots is adding one

point to candidate c. Moreover, if the pivot event involves the three candidates,

they vote for di if and only if ui(a)+ui(b)
2 < ui(c). We assume that this is the case.
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Hence, we can remove the strategies ti for both N2 and N4 voters which leads to the

game Γ 2 = (u,V 2).

Hence it must be the case that sc(v) = sc for any v ∈ V 2. As sa = sb = sc, there must

exist a v ∈ V 2 for which sa(v) = sb(v) = sc(v). Moreover, as sc < sa, sb, we must also

have some v′ ∈ V 2 for which sa(v′) = sb(v′) > sc(v′).

Take a voter in the N1 group with preferences a �i b �i c. She prefers ti to di
whenever W (ti ,v−i) = {a,b} or W (di ,v−i) = {a,b}. Note that one of these two vote

profiles must exist in V 2. On the contrary, she prefers di to ti when W (ti ,v−i) =

{a,b,c} if and only if ui(a)+ui(c)
2 < ui(b). Hence, this voter has no weakly dominated

strategy. We assume that this is the case for all the voters in N1.

Moreover, for any i ∈N3, we let ui(b)+ui(c)
2 < ui(a).

For any i ∈N5, we let ui(b)+ui(c)
2 > ui(a).

For any i ∈N6, we let ui(a)+ui(c)2 > ui(b).

The previous inequalities imply that none of these voters have a weakly dominated

strategy. This proves that the game Γ is not CS and hence the ordinal game Γ� to

which Γ belongs cannot be OS.

Case III.
We assume in this case that {{a,b}, {a,c}, {a,b,c}} ⊆ W 1. Hence, all voters face an

unambiguous pivot event which is independent of their utility levels (the two way

ties) and an ambiguous one which involves the three way tie. Hence, for some utility

level, each voter does not have a weakly dominated strategy, proving that the game

cannot belong to an OS ordinal game.

For any preference ordering �, let Γ� be an ordinal game. The set U� represents

the set of cardinal utilities that represent �.

Corollary 1. Let Γ� be an ordinal game with XA = ∅ and XωA , ∅. Then there is a
non-empty set of utilities Û ⊆U� for which any Γ = (V ,u) with u ∈ Û is CS.

Proof. The proof of Theorem 2 analyzes the different games for which XA = ∅ and

XωA , ∅. In each of the different cases, either the game does not exist or the game is

CS for some utility levels proving the claim.

5 Concluding discussion

This section comments on the main remaining aspects of dominance solvability that

have not been addressed so far: the extension of our results to a many-alternatives
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scenario and the Condorcet consistency of dominance solvability.

5.1 The general case

We now extend our results to the games with any number of candidates. The main

difference is that it is not anymore the case that sincerity is weakly undominated.

Hence, the voters might approve of some candidate without approving of a most

preferred candidate.

Theorem 3. If #XA ≥ k − 2, then the ordinal game Γ� is ordinally solvable.

Proof. Take a game Γ = (u,V ) with #XA ≥ k − 2. After one step of msd, the set of

winners in the game Γ 1 = (u,V 1) equals the set of AV winners under undominated

strategies. Note that due to (2), any set of candidates which includes some candidate

in XA does not belong to the winning set W 1.

Since XA , X (Lemma 1), there are just two cases.

If k − 1 candidates are in XA, then the unique winning set corresponds to the

victory of the unique candidate not present in XA proving that the game is CS.

If, on the contrary, there are k − 2 candidates are in XA, then there are only two

candidates (denoted x and y) who can win the election. Due to Lemma 7 (see the

appendix), there must exist some vote profile v in which both x and y are tied.

Moreover, this the only possible pivot event. Hence, since each voter has strict pref-

erences over x and y, each voter approves of the one she prefers among both (and

her top preferred alternative). Therefore, there is a unique winning set proving that

the game is CS, as wanted. Moreover, the argument does not hinge on the voters’

cardinal utilities proving that the game is OS.

Theorem 4. If XωA = ∅, then the game is not dominance solvable.

Proof. The proof is analogous to the one of Proposition 1. Indeed, since XωA =

∅, there is a vote profile in which each candidate can win alone. Hence, due to

Lemma 7 (see the appendix), for each pair of candidates x and y, there is a vote

profile in which both candidates are tied. Moreover, due to (3), there must exist

a vote profile in which both candidates are tied and with a score strictly above of

the one corresponding to the rest of the candidates. Hence, no voter has a weakly

undominated strategy since approving of a candidate might be pivotal against a

most preferred candidate or a less preferred one. This proves that the game is not

dominance solvable and concludes the proof.
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We conjecture that if XA = ∅ and XωA , ∅, then the game cannot be OS but

might be CS some non-empty set of utilities. In other words, Proposition 2 holds for

any number of candidates. However, the proof seems to be technically challenging.

Moreover, the boundary of the number of candidates in Theorem 3 is tight: that is,

if #XA < k − 2, the game need not be CS and hence the ordinal game in which it is

embedded is not OS. To see why, consider the next example.

Example 4: If #XA < k − 2, then the game need not be CS. Consider the elec-

tion depicted in Example 3 in which one extra-candidate is added at the bottom

of the voters’ preferences; this candidate is unanimously disliked. Let n = 5 and

X = {a,b,c,d} and consider the preference ordering � given by

i = 1,2 : a �i b �i c �i d

i = 3 : a �i c �i b �i d

i = 4,5 : c �i b �i a �i d.

We set u1 = u2 = (4,3,1,0), u3 = (4,1,3,0) and u4 = u5 = (1,2,4,0).

In this game, XA = {d} so that #XA = 1 = k−3 < k−2. Moreover, after one step ofmsd,

each voter can approve of each of their three preferred candidates. Note that all the

possible strategy combinations depicted in the analysis of Example 3 are present in

our game, whereas the contrary need not be true. Indeed, in our game the voters can

approve of their three preferred candidates whereas in Example 3 they could only

approve their two preferred candidates after one step of msd. Therefore, no voter

has a weakly undominated strategy proving that the game is not CS as wanted.

5.2 Welfare Analysis

In Sections 3 and 4, a simple condition on the (weak) Approval domain is given in

order to ensure OS. The next two lemmata (Lemma 5 and 6) prove that ordinally

solvability satisfies Condorcet consistency. In other words, if a game is OS, then the

outcome of dominance solvability equals the set of Condorcet Winners. To prove

this claim, Lemma 5 proves that whenever the sufficient conditions for OS hold,

then the voters’ preference profile admits a CW . Building on this result, Lemma 6

proves it must be the Condorcet winner(s) that is to be selected by the procedure of

dominance solvability.

We can also notice that (non-ordinal) solvability need not imply the selection of

the CW as already proved by Example 1. Indeed, in this example, b might be the
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unique outcome whereas a and c are the CW .

Lemma 5. If #XA ≥ k − 2, then the game has a CW .

Proof. Take a game with #XA ≥ k−2. Note that as XA , X (Lemma 1), there are only

two possibilities: #XA = k − 1 or #XA = k − 2. Assume by contradiction that there is

not a CW .

Assume first that #XA = k − 2. W.l.o.g. we let X = {x1,x2, . . . ,xk} and XA =

{x3, . . . ,xk}. It follows that for every xi with i = 3, . . . , k, there exists some xj ∈ X with

xjAxi . We denote the set ofA-dominating candidates byXA = {x ∈ X |xAyfor somey ∈
X}. As previously stated, xjAxi ⇐⇒ sj > si . Take a candidate xj∗ with the maximal

minimal score among the candidates in XA: formally,

xj∗ = arg max
xj∈XA

sj .

Note that this candidate exists since there is a finite number of candidates in XA.

Since sj∗ ≥ sj and sj > si for any xj ∈ XA and any i = 3, . . . , k, it follows that

sj∗ > si ,

which is equivalent to xj∗Axi for any i = 3, . . . , k.

Assume that xj∗ ∈ {x3, . . . ,xk}. Then, xj∗Axj∗ , a contradiction. Hence, xj∗ ∈ {x1,x2}.
W.l.o.g we let xj∗ = x1. It follows that x1Axi for any i = 3, . . . , k. If moreover x1Mx2,

then x1 is the CW , a contradiction. Assume, on the contrary, that x2ωMx1. Since

x2ωMx1 and x1Axi for any i = 3, . . . , k, Lemma 9 (included in the appendix) entails

that x2Mxi for any i = 3, . . . , k. In other words, x2 is the CW , a contradiction.

A similar claim applies when #XA = k − 1, finishing the proof.

Lemma 6. If #XA ≥ k − 2, then the outcome W∞ is a CW .

Proof. Take a game with #XA ≥ k−2. Then the game is cardinally solvable as shown

by Theorem 3. Moreover, the game admits a CW as proved by Lemma 5. The

candidate which is in the outcome W∞ is not in XA. Note that the CW cannot be in

XA since every alternative in this set is M-dominated.

If #XA = k − 1, then there is a unique winning set after one step of msd. Hence, this

candidate coincides with the CW of the election.

If #XA = k − 2, then assume w.l.o.g. X \XA = {a,b} and aAc. By Theorem 1, the game

is CS. Moreover, there are three possible winning sets {a},{b} and {a,b} after one step

of msd.
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Hence, all the voters approve of either a or b (the one they prefer) and they

approve their most preferred candidate. Hence the winning set coincides with the

set of CW . Indeed, if aMb, then a wins and conversely if bMa then b wins alone.

Finally, if aωMb and bωMa then both candidates are weak CW and are tied for

victory.

Note that with k = 3, this simply implies that if #XA , ∅, then dominance solv-

ability implies Condorcet consistency.

As a conclusion, the outcome of a dominance solvable game need not be a CW .

This is a consequence of the game being CS but the ordinal game Γ� in which the

game is embedded not being OS. Therefore, if one considers the whole set of CS

games, Condorcet consistency is violated when the weak Approval domain is non

empty and the Approval domain is empty. However, when one focuses on the most

stringent condition of dominance solvability, the surviving outcome must coincide

with the set of CW .
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A Appendix: Proofs

Lemma 7. Let k = 3. Let Γ 1 = (u,V 1). If there exists two vote profiles v and v′ for
which sx(v) > sy(v) and sx(v′) < sy(v′), then there must exist a vote profile v” for which
sx(v”) = sy(v”)

Proof. W.l.o.g. we prove the claim for x = a and y = b. Denote by ∆(w) = sa(w) −
sb(w) = (n1 + n2 − n3 − n4) − (η3 + η5 − η1 − η6) the difference between the scores of

candidates a and b for any vote profile w. As (n1 + n2 − n3 − n4) is constant for a

given game, it follows that ∆(w) can be rewritten as ∆(w) = c + f (w) with f (w) ∈{
−η1 − η6, ...,η3 + η5

}
and c ∈R. Hence ∆(w) ∈

{
c − η1 − η6, ..., c+ η3 + η5

}
.

Take two vote profiles v and v′ with ∆(v) > 0 and ∆(v′) < 0. It must be the case

that c − η1 − η6 < 0 and c + η3 + η5 > 0 in order to satisfy the definition of ∆(w).

Therefore there must exist some vote distribution v” for which ∆(v”) = 0, which

concludes the proof.

Lemma 8. If XA = ∅ and XωA , ∅, then there is some vote profile in V 1 for which the
three candidates are tied, i.e. some v ∈ V 1 with sa(v) = sb(v) = sc(v).
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Proof. Take a game with XA = ∅ and XωA , ∅. Assume w.l.o.g. that c ∈ XωA with

a ωAc. Then, it follows that sa ≥ sc. Since XA = ∅, there does not exist a pair of

candidates x,y with sx > sy . Hence, it must be the case that sa = sc.

Consider now the pair of candidates a and b. There are three possible cases:

either a ωAb (Case I.), or b ωAa (Case II.) or finally that neither of the previous

relations hold (Case III.).
Case I. Suppose first aωAb which is equivalent to sa ≥ sb. Once again since XA = ∅,
it must be the case sa = sb. Therefore, we have sa = sb = sc so that there exists a vote

profile v with sa(v) = sb(v) = sc(v) as wanted.

Case II. Suppose now that bωAa. This relation is equivalent to sb = sa as XA , ∅. As

sa = sc holds, we can write that sb = sa ≥ sa = sc since by definition sa ≥ sa. If sa = sa,

then sb = sa = sc, so that there exists a vote profile for which the three candidates

are tied. If, on the contrary, sa > sa, it follows that sb > sc so that aAc a contradiction

with XA = ∅.
Case III. Suppose finally that neither aωAb nor bωAa. Then as XA = ∅, we can write

that

sa < sb and sb < sa.

Given that sa = sc, there must be the case that sb ≤ sa. Indeed, suppose that sb > sa.

The previous inequality jointly with sa = sc implies that sb > sc implying that bAc,

which contradicts XA = ∅.
Hence we have that

sb ≤ sa < sb. (4)

Let V̂ be the set of vote distributions for which sa(v) = sc(v). Note that this set

is non-empty as sa = sc. We assume that sa(v) = p. Due to (4), we know that p ∈
{sb, . . . , sb−1}. Moreover, due to (3), for any possible score vector s with sj ∈ {sj , . . . , sj},
we can find a vote profile v′′ ∈ V 1 with s(v′′) = s. Therefore, there exists a vote profile

v′′ ∈ V̂ for which sa(v′′) = sb(v′′) = sc(v′′) as wanted, concluding the proof.

Lemma 9. For any triple of candidates x, y,z ∈ X:

1. if xωMy and yAz then xMz.

2. if xAy and yωMz then xMz.

Proof. 1. Take a triple of candidates x, y,z with xωMy and yAz.

Assume by contradiction that zMx so that N (z,x) > N (x,z). The previous in-
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equality is equivalent to :

N (z,x,y) +N (z,y,x) +N (y,z,x) > N (x,z,y) +N (x,y,z) +N (y,x,z). (1)

However, by assumption yAz, so that N (y,x,z) ≥ N (y, ·, z) > N (z,y) ≥ N (z,x,y) +

N (z,y,x) so that for (1) to hold, we need N (y,z,x) > N (x,y,z) +N (x,z,y) (2).

Moreover, we have assumed that xωMy so that N (x,y) ≥N (y,x), which is equiv-

alent to:

N (x,y,z) +N (x,z,y) +N (z,x,y) ≥N (y,x,z) +N (y,z,x) +N (z,y,x). (3)

Again, as yAz, it follows that N (y,x,z) ≥ N (y, ·, z) > N (z,y) ≥ N (x,z,y) +N (z,x,y).

Hence, in order to ensure that (3) holds, we must haveN (x,y,z) > N (y,z,x)+N (z,y,x)

(4).

However, there is a contradiction between (2) and (4) proving the claim.

2. The proof of this claim is analogous to the one of 1. and hence is omitted.
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