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1 Introduction

Most of the literature on voting theory is concerned with the theoretical debate between Condorcet
consistent social choice methods on the one hand, and positional (or scoring) systems - voting à

la Borda - on the other hand. There are several arguments in favor of either type of procedures,
discussed in an abundant literature (see Nurmi 1987 and 1999, and Saari 2006 among others).

One of the strongest arguments in favor of Borda’s approach is the reinforcement axiom (RA).
The notion of reinforcement was first introduced by Smith (1973), under the name of separability.
The intuition is as follows: if two different blocks of individuals rank an alternative at least as
high as some other alternative, then so does the combination of the blocks with regard to these
two alternatives.

In the same way - and indeed at the same period - Young (1974, 1975a) proposes a variant of
the notion of separability, which he calls consistency. Following this idea, if two disjoint groups
of individuals separately select two non-disjoint subsets of alternatives, then the union of these
groups should exactly select the intersection of the two subsets. In fact, the difference between
the two contributions lies in the type of social choice mechanisms studied: Young is concerned
with social choice correspondences (selecting possibly more than a single alternative), while Smith
is interested in aggregation functions (selecting a social ranking of alternatives from preferences
reported by individual voters).

And finally, in the special context of social choice functions (correspondences selecting a unique
outcome), which we consider in this paper, Moulin (1988) introduces the phrase reinforcement

axiom (RA).

In order to illustrate this phenomenon, consider the following situation, concerning two french
districts. For several years now, there has been a project of reunification of two northwestern
districts, the “Basse-Normandie” (almost 1 500 000 inhabitants with Caen as the capital) and
the “Haute-Normandie” (almost 1 800 000 inhabitants and Rouen as the capital). Almost all the
inhabitants of these two districts agree with this project, but they disagree on the new capital.
They will have to choose between three cities, Caen, Rouen and Le Havre (which is another big city
in Haute-Normandie). Given the importance of this decision, we assume that the chosen project
must be firstly accepted by each of the two districts separately; and secondly, if both districts
choose the same city, then there is a further step, in which all inhabitants of both districts will be
asked to cast their votes.1

Now, after the first step of the process, assume that the inhabitants in Basse-Normandie and in
Haute-Normandie have chosen Caen. Further, assume that with the same individual preferences
Le Havre is the winner of the second step. Then Caen wins in each of the two districts separetely,
but not in their union. This is typically an example of violation of the reinforcement axiom.

The main results concerning the violation of RA are summarized in Young’s theorem (1975a).
According to this theorem, all simple positional voting procedures satisfy RA, while on the contrary
there is no Condorcet social choice procedure satisfying that axiom.

There is no doubt about the importance of this proposition, since it provides a clear axiomatic
boundary between Borda’s and Condorcet’s approaches of social choice mechanisms. In this paper,
we examine the violation of RA under the most widely studied Condorcet procedures (see Fishburn
1977 or Rasch 1995, among others). Our goal is to examine precise conditions at which violations

1This process is usual in France, especially for a constitutional revision.
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of RA are susceptible to arise under these rules. We give, among other statements, conditions on
the minimum number of voters at which the phenomenon arises.

Besides, this normative contribution is completed by a measure of the quantitative significance
of the violation of RA. Indeed, if the likelihood of such violation of RA is negligible, then one need
not be unduly worried about the existence of the possibility as such. In fact, although these rules
violate RA, this should not be a serious ground for rejecting them or to discriminate in favor of
Borda’s approach (see Courtin et al. 2010 for a study on the violation of RA under sequential
positional procedures).

The remainder of this work is organized as follows: Section 2 is a presentation of Condorcet
social choice functions with definitions and some preliminary results about these rules. Section
3 provides some general results on the behavior of Condorcet’s rules vis-à-vis the reinforcement
axiom. Then, Section 4 studies the conditions at which a profile may violate the axiom, and
provides the corresponding frequencies. Finally, Section 5 concludes the paper.

2 Condorcet social choice functions

In this section, we begin with formal definitions of Condorcet rules and we investigate some rela-
tionships between them.

2.1 Notations and definitions

Consider a finite set N of n individuals or voters, with n � 2 and a finite set A of m alternatives,
with m � 3. Suppose two disjoint groups (or constituencies) T1 and T2 of individuals, with
T1 [ T2 = N. Let 2A be the set of nonempty subsets of A. Assume that the preference relation
R

i of individual i, i 2 N , is a complete, antisymmetric and transitive binary relation (or simply a
linear order) on A and let L = {R

k

: 1  k  m!} be the set of all linear orders on A.
A profile on A is an n-tuple R

N = (Ri)
i2N of individual preference relations, one for each

individual. The set of all profiles on N will be denoted by L

N . Similarly profiles on T1 and T2 will
be denoted R

T1 and R

T2 , respectively.

Definition 1. Let N be the nonempty set of voters. Then
i) A social choice function (SCF ) is a mapping that associates a single alternative with any

profile over a nonempty subset of N .
ii) A social choice correspondence (SCC ) is a mapping that associates a nonempty subset of

alternatives with any profile over a nonempty subset of N .
Note that F

�
R

N

�
and C

�
R

N

�
, given an SCF F and an SCC C, are the images determined

respectively by F and C for a set of alternatives A and a profile R

N on that set.

Given a profile RN and alternatives x, y 2 A, we denote by n(x, y, RN) the number of individuals
in R

N who prefer x to y (or simply n(x, y) when there is no ambiguity). Hence n(x, y)+n(y, x) = n.
Then the simple majority relation M on A determined by profile R

N is defined by

xMy iff n(x, y) > n(y, x).

There is a tie between x and y under simple majority if

3



n(x, y) = n(y, x).

Definition 2. An SCF F is a Condorcet SCF if and only if it satisfies the Condorcet Principle,

that is for all profile R

N and all x 2 A, xMy for all y 2 A implies F

�
R

N

�
= x.

We now define the rules under study in this paper. In order to do this, we follow Fishburn’s
1977 terminology2. For each SCC (C

j

), we obtain an SCF (F
j

) by breaking ties in favor of the
alternative coming first in the lexicographic order. For example, if two alternatives x and y are
tied, then F

�
R

N

�
= x.

C1. Black’s function: C1

�
R

N

�
= {x if yMx for no y 2 A}. Otherwise C1

�
R

N

�
=
�
x if b(x,RN)

� b(y, RN) for all y 2 A

 
, where b(x,RN) =

P
y2A n(x, y) is the Borda score of x given R

N .
According to this function, if no candidate beats or ties every other candidate on the basis of

simple majority, then the SCF should be determined by the Borda scores.
C2. Copeland’s function: C2

�
R

N

�
=
�
x 2 A : c(x,RN) � c(y, RN)for all y 2 A

 
, where c(x,RN)

= |y 2 A : xMy| � |y 2 A : yMx| is the Copeland score of x, that is the number of alternatives
beaten by x minus the number of alternatives that beat x.

C3. Dodgson’s function: C3

�
R

N

�
=
�
x 2 A : d(x,RN)  d(y, RN)for all y 2 A

 
, where d(x,RN)

is the number of binary preference reversals needed in R

N to make x tie or beat every other can-
didate in A on the basis of simple majority. A reversal occurs when xR

i

y is changed into yR

i

x.
In other words d(x,RN) is a measure of how little R

N needs to be changed to make x tie or beat
every other candidate.

C4. Young’s function: C4

�
R

N

�
=
�
x 2 A : e(x,RN) � e(y, RN)for all y 2 A

 
, where e(x,RN)

is the number of voters in the largest sublist from R

N for which x ties or beats every other candidate
in A on the basis of simple majority with respect to this sublist. If there is no such sublist then
e(x,RN) = 0. This means that E(x,RN) = n � e(x,RN) gives the fewest number of voters that
must be deleted from R

N for x to tie or beat every other candidate.
In contrast to Dodgson’s function, Young’s function deletes voters rather than reversing pref-

erences to obtain a majority winner.
C5. Condorcet’s function : C5

�
R

N

�
=

�
x 2 A : f(x,RN) � f(y, RN)for all y 2 A

 
, where

f(x,RN) = min
y2A\x n(x, y) . That is f(x,RN) measures the worst that x does against any

other candidate.
Condorcet’s function selects the alternative with the largest minimum support in all pairwise

comparisons. It sometimes goes under the names of minimax rule (Young 1975b) or maximin rule
(see for example Nurmi 2002).

C 6. Kemeny’s function: Given R

N with A = {a1, a2, ..., am}, let L

⇤ be a subset of linear or-
ders R

k

on A that maximize S(R
k

) =
P

i 6=j

n(a
i

, a

j

)K(a
i

, a

j

), where K(a
i

, a

j

) = 1 if a
i

R

k

a

j

and
K(a

i

, a

j

) = 0 otherwise. Then C6

�
R

N

�
= {x 2 A : there is an R

k

2 L

⇤
such that xR

k

y for all y 2
A \ {x}}. That is C6

�
R

N

�
=

�
x 2 A : k(x,RN) � k(y, RN) for all y 2 A

 
where k(x,RN) =

max {S(R
k

) : R
k

2 L and xR

k

y for all y 2 A} (or simply k(x) when there is no ambiguity).
Kemeny’s function can be viewed as a measure of the closeness of individual preferences in

some profile with the linear order R

k

derived from that profile as indicated above.
C7. Schwartz’s function: C7

�
R

N

�
= {x 2 A : ySx for no y 2 A}, where xSy iff there are x1 =

x, x2, ..., xk

= y in A such that x1Mx2, x2Mx3, ..., xk�1Mx

k

, and there are no z1 = y, z2, ..., zj = x

in A such that z1Mz2, z2Mz3, ..., zj�1Mz

j

.

2
C1 was introduced by Black (1958); C2 by Copeland (1951); C3 by Dodgson (1876); C4 and C5 by Young

(1975b); C6 by Kemeny (1959) and Levenglick (1975); C7 by Schwartz (1972); and C8 by Fishburn (1970).
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Schwartz’s function elects the alternative that is beaten by no other alternative according to
the majority election, directly or indirectly.

C8. Fishburn’s function: C8

�
R

N

�
= {x 2 A : yFx for no y 2 A}, where xFy iff for every a 2 A,

aMx ) aMy; and there is a w 2 A such that wMy and not (wMx).
Fishburn’s function is based on the notion that if every candidate that beats x also beats y

under simple majority, and if there exists some candidate that beats y but not x, then x is “better
than” y under simple majority comparisons.

We now introduce another Condorcet SCF, not defined by Fishburn (1977), the Amendment’s

function (see Farquharson 1969) denoted C9.
C9. Amendment function: With A = {a1, a2, ..., am}, the outcome of C9 is the alternative

C9

�
R

N

�
defined as follows:

i) Let C9

�
R

N

�
1
= a1.

ii) For any 2  j  m, the winner C9

�
R

N

�
j

of the majority pairwise contest between

C9

�
R

N

�
j�1

and a

j

is defined by C9

�
R

N

�
j

=

(
a

j

if a

j

MC9

�
R

N

�
j�1

C9

�
R

N

�
j�1

otherwise

.

iii) C9

�
R

N

�
= C9

�
R

N

�
m

, the winner of the last majority contest against a

m

.
The intuition of this procedure is as follows: any motion C9

�
R

N

�
j�1

is saved as long as a strict
majority does not reject it in favor of some other motion a

j

given the agenda A = {a1, a2, ..., am}.

2.2 The special case of three alternatives

Some additional notations will be necessary to present some results in the three-alternative case.
With A = {a1, a2, a3}, the six possible linear orders on A are: R1 : a1a2a3, R2 : a1a3a2, R3 : a2a1a3,
R4 : a2a3a1, R5 : a3a1a2, R6 : a3a2a1. And in the sequel, n

k

will be the total number of individuals
in N with preference relation R

k

.
Further, in the three-alternative case, a Condorcet cycle arises when every alternative is beaten

(on the basis of simple majority) by only one other alternative. Two possible cycles can arise:

1. Condorcet cycle 1 : a2Ma1 , a1Ma3 and a3Ma2

2. Condorcet cycle 2 : a1Ma2 , a2Ma3 and a3Ma1.

We shall distinguish two cases : (i) when there is a Condorcet cycle, and (ii) when there is none.

2.2.1 Condorcet Cycle

We first show how to compute the score of each alternative a

j

, a

k

, a

l

2 {a1, a2, a3}, when there is
a Condorcet cycle, according to Dodgson’s, Young’s, Condorcet’s and Kemeny’s procedures.

We begin with Dodgson.

Dodgson’s procedure

Proposition 1. If a

k

Ma

j

in some profile R

N

, then the minimum number of binary preference

reversals needed in R

N

to make a

j

tie or beat a

k

is

⌅
n+1
2

⇧
� n(a

j

, a

k

), where bxc is the floor

function of x.

5



Proof. Consider two profiles RN and R

N such that a
k

Ma

j

in R

N but not in R

N . Then n(a
j

, a

k

, R

N) <
n

2 and n(a
j

, a

k

, R

N

) � n

2 . Let d(a
j

, a

k

) be the number of binary preference reversals a

k

to a

j

be-
tween R

N and R

N . Then n(a
j

, a

k

, R

N

) = n(a
j

, a

k

, R

N) + d(a
j

, a

k

) � n

2 . Hence

d(a
j

, a

k

) � n

2
� n(a

j

, a

k

, R

N) (1)

Since d(a
j

, a

k

) is the minimum number of reversals needed to have a
j

Ma

k

in R

N , then n(a
j

, a

k

, R

N)+
d(a

j

, a

k

) � 1 <

n

2 , which can be rewritten as 2n(a
j

, a

k

, R

N) + 2d(a
j

, a

k

) � 2 < n, and since every
term of this inequality is an integer, this can also be rewritten as 2n(a

j

, a

k

, R

N)+2d(a
j

, a

k

)�1  n,
which gives

d(a
j

, a

k

)  n+ 1

2
� n(a

j

, a

k

, R

N) (2)

It then follows from (1) and (2) that n

2 � n(a
j

, a

k

, R

N)  d(a
j

, a

k

)  n+1
2 � n(a

j

, a

k

, R

N), and
finally, d(a

j

, a

k

) =
⌅
n+1
2

⇧
� n(a

j

, a

k

), which completes the proof.

Proposition 2. If there exists a Condorcet cycle at some profile R

N

, then the Dodgson score of

an alternative a

j

is given by d(a
j

, R

N) = d(a
j

, a

k

) =
⌅
n+1
2

⇧
� n(a

j

, a

k

), where a

k

is the unique

alternative such that a

k

Ma

j

.

Proof. Consider some profile R

N and some alternative a

j

and suppose there is a Condorcet cycle;
then a

j

is beaten by only one other alternative, say a

k

. Since a

j

is beaten only by a

k

, the number
of binary preference reversals needed in R

N to make a

j

tie or beat every other candidate in A

on the basis of simple majority, d(a
j

, R

N), is equal to the number of binary preference reversals
needed in R

N to make a

j

tie or beat a

k

, that is d(a
j

, a

k

) =
⌅
n+1
2

⇧
� n(a

j

, a

k

).

As a consequence, we have the following Dodgson scores for the two Condorcet cycles, with
A = {a1, a2, a3}:

Cycle 1 : a2Ma1 , a1Ma3 and a3Ma2

d(a1, RN) =
⌅
n+1
2

⇧
� n(a1, a2) =

⌅
n+1
2

⇧
� (n1 + n2 + n5)

d(a2, RN) =
⌅
n+1
2

⇧
� n(a2, a3) =

⌅
n+1
2

⇧
� (n1 + n3 + n4)

d(a3, RN) =
⌅
n+1
2

⇧
� n(a3, a1) =

⌅
n+1
2

⇧
� (n4 + n5 + n6)

and

Cycle 2 : a1Ma2 , a2Ma3 and a3Ma1

d(a1, RN) =
⌅
n+1
2

⇧
� n(a1, a3) =

⌅
n+1
2

⇧
� (n1 + n2 + n3)

d(a2, RN) =
⌅
n+1
2

⇧
� n(a2, a1) =

⌅
n+1
2

⇧
� (n3 + n4 + n6)

d(a3, RN) =
⌅
n+1
2

⇧
� n(a3, a2) =

⌅
n+1
2

⇧
� (n2 + n5 + n6)
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Young’s procedure

Proposition 3. If for each alternative a

j

2 A there exists only one a

k

2 A such that a

k

Ma

j

in

some profile R

N

, then E(a
j

, R

N) = n� 2n(a
j

, a

k

).

Proof. Let A = {a
j

, a

k

, a

l

} and consider a profile R

N such that a
k

Ma

j

in R

N and not (a
k

Ma

j

) for
some profile R

N

0 obtained from R

N by removing some voters that strictly prefer a

k

to a

j

.
Suppose that RN

0 is obtained using a minimal number of cancellations E(a
j

, R

N). Let us prove
that E(a

j

, R

N) = n� 2n(a
j

, a

k

, R

N).
A) We first prove that E(a

j

, R

N) � n� 2(a
j

, a

k

, R

N).
By hypothesis on R

N and R

N

0 , it follows that

n(a
j

, a

k

, R

N) < n

2 , n(a
j

, a

k

, R

N

0
) � n

0

2 and n(a
j

, a

k

, R

N

0
) = n(a

j

, a

k

, R

N)

with n

0 = |N 0|. Therefore
n

0

2  n(a
j

, a

k

, R

N) < n

2 .

Since E(a
j

, R

N) = n� n

0,

n�E(aj ,RN )
2  n(a

j

, a

k

, R

N) < n

2

Therefore

E(a
j

, R

N) � n� 2n(a
j

, a

k

, R

N) > 0 (1)

B) We now prove that E(a
j

, R

N)  n� 2n(a
j

, a

k

, R

N).
Note that n(a

k

, a

j

, R

N) + n(a
j

, a

k

, R

N) = n. Then relation (1) can be rewritten as follows:

E(a
j

, R

N) � n(a
k

, a

j

, R

N)� n(a
j

, a

k

, R

N) > 0

Consider q = n(a
k

, a

j

, R

N)� n(a
j

, a

k

, R

N). Two cases arise.
a) q  n(a

k

a

l

a

j

, R

N) + n(a
l

a

k

a

j

, R

N) where n(a
u

a

v

a

w

, R

N) is the total number of voters with
preference relation of type a

u

a

v

a

w

.
In that case by deleting exactly q voters in R

N with preference relation a

k

a

l

a

j

or a

l

a

k

a

j

, we
have in R

N

0 :

n(a
j

, a

k

, R

N

0
)� n(a

k

, a

j

, R

N

0
) = n(a

j

, a

k

, R

N)� (n(a
k

, a

j

, R

N)� q) = 0

Then n(a
j

, a

k

, R

N

0
) = n(a

k

, a

j

, R

N

0
) (2).

Moreover deleted voters all prefer a

l

to a

j

. Then,

n(a
j

, a

l

, R

N

0
) = n(a

j

, a

l

, R

N) and n(a
l

, a

j

, R

N

0
) < n(a

l

, a

j

, R

N).

Since not (a
l

Ma

j

) holds, then

n(a
j

, a

l

, R

N) � n(a
l

, a

j

, R

N)

Therefore

n(a
j

, a

l

, R

N

0
) � n(a

l

, a

j

, R

N) > n(a
l

, a

j

, R

N

0
) (3)

Hence from (2) and (3) a

j

ties a

k

and defeats a

l

in R

N

0 . Thus

E(a
j

, R

N)  q = n� 2n(a
j

, a

k

, R

N)

7



b) q > n(a
k

a

l

a

j

, R

N) + n(a
l

a

k

a

j

, R

N) . Then let q = n(a
k

a

l

a

j

, R

N) + n(a
l

a

k

a

j

, R

N) + r.
In that case we delete all the voters in R

N with preference relation a

k

a

l

a

j

or a
l

a

k

a

j

and exactly
r voters with preference relation a

k

a

j

a

l

.
At R

N

0 ,

n(a
j

, a

k

, R

N

0
)� n(a

k

, a

j

, R

N

0
) = 0 and n(a

j

, a

k

, R

N

0
) = n(a

k

, a

j

, R

N

0
) (5).

Moreover, we have n(a
j

, a

l

, R

N

0
)

= n(a
j

a

k

a

l

, R

N

0
) + n(a

j

a

l

a

k

, R

N

0
) + n(a

k

a

j

a

l

, R

N

0
)

= n(a
j

a

k

a

l

, R

N) + n(a
j

a

l

a

k

, R

N) + n(a
k

a

j

a

l

, R

N)� r

= n(a
j

a

k

a

l

, R

N) + n(a
j

a

l

a

k

, R

N) + n(a
k

a

j

a

l

, R

N)� q + n(a
k

a

l

a

j

, R

N) + n(a
l

a

k

a

j

, R

N)
= 2n(a

j

a

k

a

l

, R

N) + 2n(a
j

a

l

a

k

, R

N) + n(a
l

a

j

a

k

, R

N).
and
n(a

l

, a

j

, R

N

0
) = n(a

l

a

k

a

j

, R

N

0
) + n(a

l

a

j

a

k

, R

N

0
) + n(a

k

a

l

a

j

, R

N

0
)= n(a

l

a

j

a

k

, R

N)
Then

n(a
j

, a

l

, R

N

0
)� n(a

l

, a

j

, R

N

0
) = 2n(a

j

a

k

a

l

, R

N) + 2n(a
j

a

l

a

k

, R

N) � 0 (6)

Hence from (5) and (6) a

j

ties a

k

and defeats a

l

in R

N

0 . Therefore

E(a
j

, R

N)  q = n� 2n(a
j

, a

k

, R

N) (7)

From (1) and (7) it follows that

E(a
j

, R

N) = n� 2n(a
j

, a

k

, R

N).

Proposition 4. If there exists a Condorcet cycle at some profile R

N

, then the Young’s score of

an alternative a

j

is given by e(a
j

, R

N) = 2n(a
j

, a

k

) where a

k

is the unique alternative such that

a

k

Ma

j

.

Proof. Consider some profile R

N and some alternative a

j

and suppose there is a Condorcet cycle;
then a

j

is beaten by only one other alternative, say a

k

. And by definitition E(a
j

, R

N) is the
fewest number of voters that must be deleted from R

N in order for a

j

to tie or beat every other
candidate. By Proposition 3, E(a

j

, R

N) = n � 2n(a
j

, a

k

). And since E(a
j

, R

N) =n � e(a
j

, R

N),
then e(a

j

, R

N) = n� E(a
j

, R

N) = n� n+ 2n(a
j

, a

k

) = 2n(a
j

, a

k

).

As a consequence, we have the following Young’s scores for the two Condorcet cycles with
A = {a1, a2, a3}:

Cycle 1 : a2Ma1 , a1Ma3 and a3Ma2

e(a1, RN) = 2.n(a1, a2) = 2.(n1 + n2 + n5)

e(a2, RN) = 2.n(a2, a3) = 2.(n1 + n3 + n4)

e(a3, RN) = 2.n(a3, a1) = 2.(n4 + n5 + n6)

and

8



Cycle 2 : a1Ma2 , a2Ma3 and a3Ma1

e(a1, RN) = 2.n(a1, a3) = 2.(n1 + n2 + n3)

e(a2, RN) = 2.n(a2, a1) = 2.(n3 + n4 + n6)

e(a3, RN) = 2.n(a3, a2) = 2.(n2 + n5 + n6)

Condorcet’s procedure

Proposition 5. If for each alternative a

j

2 A there exists only one a

k

2 A such that a

k

Ma

j

at

some profile R

N

, then the Condorcet score of a
j

is given by f(a
j

, R

N) = n(a
j

, a

k

).

Proof. By definition, f(a
j

, R

N) = min
x2A\aj n(aj, x) . Suppose there exists only one alternative,

say a

k

, such that a
k

Ma

j

, in R

N . Then n(a
j

, a

k

) < n(a
k

, a

j

), which means that n(a
j

, a

k

) < n

2 . And
since there is only one alternative such that xMa

j

, this means that n(a
j

, a

l

) � n(a
l

, a

j

) � n

2 . Then,
n(a

j

, a

k

) < n(a
j

, a

l

). Hence, f(a
j

, R

N) = min
x2A\aj n(aj, x) = n(a

j

, a

k

).

Proposition 6. If there exists a Condorcet cycle at some profile R

N

, then the Condorcet score

of an alternative a

j

is given by f(a
j

, R

N) = n(a
j

, a

k

) where a

k

is the unique alternative such that

a

k

Ma

j

.

Proof. Straightforward.

As a consequence, we have the following Condorcet scores for the two Condorcet cycles with
A = {a1, a2, a3}:

Cycle 1 : a2Ma1 , a1Ma3 and a3Ma2

f(a1, RN) = n(a1, a2) = n1 + n2 + n5

f(a2, RN) = n(a2, a3) = n1 + n3 + n4

f(a3, RN) = n(a3, a1) = n4 + n5 + n6

and

Cycle 2 : a1Ma2 , a2Ma3 and a3Ma1

f(a1, RN) = n(a1, a3) = n1 + n2 + n3

f(a2, RN) = n(a2, a1) = n3 + n4 + n6

f(a3, RN) = n(a3, a2) = n2 + n5 + n6

Kemeny’s procedure We start by computing the score of each of the six linear orders, from
R1 to R

6

.
For R1 = a1a2a3, K(a1, a2) = 1, K(a1, a3) = 1, K(a2, a3) = 1 and K(a

j

, a

k

) = 0 otherwise.
Then S(R1) = n(a1a2) + n(a1a3) + n(a2, a3).

In the same way, we have :

9



S(R2) = n(a1, a2) + n(a1, a3) + n(a3, a2)
S(R3) = n(a2, a1) + n(a1, a3) + n(a2, a3)
S(R4) = n(a2, a1) + n(a3, a1) + n(a2, a3)
S(R5) = n(a1, a2) + n(a3, a1) + n(a3, a2)
S(R6) = n(a2, a1) + n(a3, a1) + n(a3, a2)

We can now determine when an alternative is elected under Kemeny’s rule. Alternative a1

is chosen when individual preferences in the profile are closest to R1 or R2. This means that
max {S(R1), S(R2)} � max {S(R3), S(R4)} and max {S(R1), S(R2)} � max {S(R5), S(R6)}. In
the same way a2 is the winner if max {S(R3), S(R4)}>max {S(R1), S(R2)} and max {S(R3), S(R4)}
� max {S(R5), S(R6)}. And a3 is the winner if max {S(R5), S(R6)} > max(S(R1), S(R2)) and
max {S(R5), S(R6)} > max {S(R3), S(R4)}.

As a consequence, we have the following proposition.

Proposition 7. Under Kemeny’s rule, if there exists a

1) Condorcet cycle 1, then k(a1, RN) = max {S(R1), S(R2)} = S(R2), k(a2, RN) = max {S(R3),
S(R4)} = S(R3) and k(a3, RN) = max {S(R5), S(R6)} = S(R6).

2) Condorcet cycle 2, then k(a1, RN) = max {S(R1), S(R2)} = S(R1), k(a2, RN) = max {S(R3),
S(R4)} = S(R4) and k(a3, RN) = max {S(R5), S(R6)} = S(R5).

Proof. With a Condorcet cycle 1, a3Ma2, which means that n(a3, a2) > n(a2, a3). Since S(R1)=
n(a1, a2) + n(a1a3) + n(a2, a3) and S(R2) = n(a1, a2) + n(a1, a3) + n(a3, a2), then S(R2) > S(R1)
and k(a1, RN) = max {S(R1), S(R2)} = S(R2). With a Condorcet cycle 2, we have the converse,
a2Ma3, n(a2, a3) > n(a3, a2) and S(R1) > S(R2). Then k(a1, RN) = max {S(R1), S(R2)} = S(R1).

The proof is the same for max {S(R3), S(R4)} and max {S(R5), S(R6)}.

From the previous propositions, we can deduce the following results.

Proposition 8. Suppose there exists a Cycle 1 or a Cycle 2. Then for all {x, y} ✓ {a1, a2, a3},
d(x,RN)� d(y, RN) = f(x,RN)� f(y, RN) = 1

2

⇥
e(x,RN)� e(y, RN)

⇤
= 1

2

⇥
k(x,RN)� k(y, RN)

⇤
.

Proof. Suppose a Cycle 1 occurs.
Consider {x, y} ✓ {a1, a2, a3}. For example x = a1 and y = a2. It follows that d(a1, RN) =⌅

n+1
2

⇧
� (n1 + n2 + n5) and d(a2, RN) =

⌅
n+1
2

⇧
� (n1 + n3 + n4); f(a1, RN) = (n1 + n2 + n5)

and f(a2, RN) = (n1 + n3 + n4); e(a1, RN) = 2(n1 + n2 + n5) and e(a2, RN) = 2(n1 + n3 + n4);
k(a1, RN) = S(R2) = n(a1, a2)+n(a1, a3)+n(a3, a2) = 2n1 +3n2 +n3 +2n5 +n6 and k(a2, RN) =
S(R3) = n(a2, a1) + n(a1, a3) + n(a2, a3) = 2n1 + n2 + 3n3 + 2n4 + n6.

Then d(a1, RN)�d(a2, RN) = (n2+n5)�(n3+n4), f(a1, RN)�f(a2, RN) = (n2+n5)�(n3+n4),
e(a1, RN)�e(a2, RN) = 2 [(n2 + n5)� (n3 + n4)] and k(a1, RN)�k(a2, RN) = 2 [(n2 + n5)� (n3 + n4)].

Consequently, d(a1, RN) � d(a2, RN) = f(a1, RN) � f(a2, RN) = 1
2

⇥
e(a1, RN)� e(a2, RN)

⇤
=

1
2

⇥
k(a1, RN)� k(a2, RN)

⇤
= (n2 + n5)� (n3 + n4).

The same observation can easily be shown for {a1, a3} and {a2, a3}; and even when Cycle 1 is
replaced with Cycle 2.

Corollary 1. Suppose Cycle 1 or Cycle 2 occur. Then F3, F4, F5 and F6 select the same winner.

Proof. Straightforward.

This corollary shows that when we have a cycle, Dodgson, Young, Condorcet and Kemeny’s
procedures always select the same winner. We will next show that this is also true when there is
no Condorcet cycle.
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2.2.2 Other cases

Proposition 9. Suppose there is no Cycle 1 or Cycle 2 at some profile. Then F1, F3, F4, F5, F6,

F7 and F8 select the same winner.

Proof. We examine all possible cases and observe that the result holds.
(i) Not (a2Ma1) and not (a3Ma1). Then a1 belongs to the choice set of C

j

, j = 1, 3, 4, 5, 6, 7, 8.
Using the tie-breaking rule, a1 is selected by F

j

, j = 1, 3, 4, 5, 6, 7, 8.
(ii) a2Ma1

Two subcases are distinguished.
If not (a3Ma2) occurs, then a2 but not a1 belongs to the choice set of C

j

, j = 1, 3, 4, 5, 6, 7, 8.
Therefore a2 is selected by F

j

, j = 1, 3, 4, 5, 6, 7, 8.
Otherwise a3Ma2. Then a2Ma1 and a3Ma2 occur simultaneously. Since there is no cycle, not

(a1Ma3) stands. Therefore a3 is the unique candidate in the choice set of C
j

, j = 1, 3, 4, 5, 6, 7, 8.
Then F

j

, j = 1, 3, 4, 5, 6, 7, 8 selects a3.
(iii) a3Ma1 and not (a2Ma1)
Three cases are in consideration.
If a3Ma2, then a3 is the unique Condorcet winner and is selected by F

j

, j = 1, 3, 4, 5, 6, 7, 8.
If a2Ma3, then not (a1Ma2) occurs since there is no cycle. Moreover since not (a2Ma1) holds,

a2 ties a1. Therefore a2 is the unique candidate in the choice set of C
j

, j = 1, 3, 4, 5, 6, 7, 8. Thus
F

j

, j = 1, 3, 4, 5, 6, 7, 8 all select a2.
Otherwise a2 ties a3. Since not (a2Ma1) holds, there are two possibilities: either a1 ties a2, or

a1Ma2.
If a1Ma2, then a3 is the unique outcome in the choice set of C

j

, j = 1, 3, 4, 5, 6, 7, 8 and is then
selected by F

j

, j = 1, 3, 4, 5, 6, 7, 8.
If a1 ties a2, then a2 but not a1 is in the choice set of C

j

, j = 1, 3, 4, 5, 6, 7, 8 and is then selected
by F

j

, j = 1, 3, 4, 5, 6, 7, 8.

The theorem below follows from Corollary 1 and Proposition 9.

Theorem 1. With three alternatives and for all profile, Dodgson’s rule, Young’s rule, Condorcet’s

rule and Kemeny’s rule always select the same winner.

Proof. The proof is straighforward from the previous propositions.

Theorem 2. With three alternatives and for all profile, Fishburn’s rule and Schwartz’s rule always

select the same winner.

Proof. The proof is straighforward from Proposition 9. In fact the two procedures coincide when
there is no cycle. Moreover by definition, the choice set from the two procedures contains the
three alternatives when there is a cycle and by the tie-breaking rule, a1 is selected by F

j

, j = 7, 8.
Therefore F7 = F8.

It can easily be checked that with more than three alternatives, the above theorems are no
longer valid.

In summary, in a three-candidate context, the nine procedures can be reorganized into five
classes, three of which are singletons.

Indeed, the criterion we use to distinguish those classes is the specific way they select the
outcome of the election when there is no Condorcet winner.

- Whenever there is a cycle, Copeland’s function directly relies on the tie-breaking device.

11



- Under amendment function, a1 and a2 can be elected if and only if they are Condorcet winners;
in all other cases, the winner is a3.

All other functions are equivalent when there is no cycle (see Proposition 9). However,
- Black’s function systematically chooses the Borda winner and, if necessary, uses the tie-

breaking mechanism.
- Each of Dodgson’s, Young’s, Condorcet’s and Kemeny’s rules uses a different way to determine

the outcome when there is no Condorcet winner, but all these ways are equivalent.
- Finally, Schwartz’s and Fishburn’s rules, though based on different majority mechanisms when

there is no Condorcet winner, are trivially equivalent in the three-election case.

3 Reinforcement axiom

We first present the reinforcement axiom property more formally.

Definition 3. Given T1 and T2, an SCF F satisfies RA if for any R

T1 2 L

T1 and R

T2 2 L

T2 and
for all x 2 A, ⇥

F (RT1) = x and F (RT2) = x

⇤
=) F (RN) = x.

Alternatively,

Definition 4. Given T1 and T2, an SCF F violates RA if there exist R

T1 2 L

T1 , RT2 2 L

T2 and
{x, y} ✓ A, x 6= y, such that

F (RT1) = x, F (RT2) = x and F (RN) = y.

Smith (1973) and Young (1975a) show that all Condorcet social procedures violate the RA. In
Example 1, we present a case of violation of RA by a Condorcet rule.

Example 1. Consider the Copeland procedure, and assume that RT1 2 L

T1 and R

T2 2 L

T2 are as
below:

Profiles R

T1
R

T2

Voters 4 1 1 5 4 5
w y y w z y

y z x z x w

x w z x y x

z x w y w z

Then the scores are as follows

Separate groups

C
op

el
an

d
sc

or
es

T1 T2

c(w,RT1) = 3 c(w,RT2) = 1
c(x,RT1) = �1 c(x,RT2) = �1
c(y, RT1) = 1 c(y, RT2) = �1
c(z, RT1) = �3 c(z, RT2) = 1
Winner : w Winner : w

The whole electorate

C
op

el
an

d
sc

or
es

N = T1 [ T2

c(w,RT1) = 1
c(x,RT1) = �2
c(y, RT1) = 3
c(z, RT1) = �2
Winner : y

12



This shows that the Copeland procedure violates RA: F (RT1) = w, F (RT2) = w, but F (RN) =
y.

Next, we identify conditions on the number of voters, under which the violation of RA is
susceptible to occur for all the Condorcet procedures introduced above - and it appears that this
is the case roughly as soon as the number of voters is equal to 7.

This is reminiscent of Young’s (1975a) result on all Condorcet procedures.

Proposition 10. With at least 13 voters and at least three candidates, all Condorcet procedures

violate the reinforcement axiom.

Proof. See Moulin (1988), Theorem 9.2, page 237.

The above result covers all Condorcet voting procedures. However, for the procedures under
study in this paper, we obtain slightly different versions of Proposition 10.

Proposition 11. In three-candidate elections with 7 voters, all Condorcet procedures F

j

with

j = 1, 2, ..., 9 violate the reinforcement axiom.

Proof. Let F

j

be a Condorcet procedure with j = 1, 2, ..., 8;
Case 1: Suppose that n is odd. By assumption on n, there exists a non negative integer p

such that n = 7 + 2p. Consider the following profiles:

R

T1
R

T2

1 + p 0 1 0 0 p 1 1 1 0 0 2
x x y y z z x x y y z z

y z x z x y y z x z x y

z y z x y x z y z x y x

In profile R

T1 , 2 + p individuals prefer x to z, versus p individuals who prefer z to x. Since
p � 0, by definition xMz . Likewise yMz since 2+ p prefer y to z. And x is tied with y since 1+ p

individuals prefer x to y and 1 + p prefer y to x. By definition, for each C

j

with j = 1, 2, ..., 8,
C

j

(RT1) = {x, y}. By the lexicographic order, F
j

(RT1) = x, for j = 1, 2, ..., 8.
In R

T2 , with 3 favorable votes versus 2, x is preferred to z, y to x and z to y, then xMz,
zMy and yMx. Then we have a Condorcet cycle 2. By definition of C1, b(x,RT2) = 2 + 3 = 5,
b(y, RT2) = 3 + 2 = 5 and b(z, RT2) = 2 + 3 = 5, then C1(RT2) = {x, y, z} and F1(RT2) = x.
We have also c(x,RT2) = 1 � 1 = 0, c(y, RT2) = 1 � 1 = 0 and c(z, RT2) = 1 � 1 = 0, then
C2(RT2) = {x, y, z} and F2(RT2) = x. From proposition 5, we know that f(x,RT2) = n(x, y) = 2 ,
f(y, RT2) = n(y, z) = 2 and f(z, RT2) = n(z, x) = 2, then C5(RT2) = {x, y, z} and F5(RT2) = x. By
theorem 1, F

j

(RT2) = x for j = 3, 4, 5, 6. And finally, C7(RT2) = C8(RT2) = {x, y, z}, since there
are clearly no Schwartz and no Fishburn relations over {x, y, z}. Then, F7(RT2) = F8(RT2) = x.
We can then conclude that F

j

(RT2) = x, for j = 1, 2, ..., 8.
In R

N , y is a Condorcet winner, since yMx and yMz. Indeed, 4 + p versus 3 + p individuals
prefer y to x and 4+ p versus 3+ p individuals prefer y to z. That is F

j

(RN) = y for j = 1, 2, ..., 8.
Case 2: Suppose that n is even. By assumption on n, there exists a non negative integer p

such that n = 8 + 2p. Consider the following profiles:

R

T1
R

T2

1 + p 0 1 0 0 p 0 2 2 0 0 2
x x y y z z x x y y z z

y z x z x y y z x z x y

z y y x y x z y y x y x

13



Using very similar arguments as in the previous case one can easily check that F

j

�
R

T1
�
= x,

F

j

�
R

T2
�
= x and F

j

�
R

N

�
= y for j = 1, 2, ..., 8.

It then appears that in all cases considered above, all Condorcet procedures violate Young
reinforcement axiom; and this concludes the proof for j = 1, 2, ..., 8. For j = 9, with the same
reasoning as above, we reach the same conclusion, from the two following situations:

R

T1
R

T2

p 0 0 0 2 + p 0 0 2 2 0 0 1
x x y y z z x x y y z z

y z x z x y y z x z x y

z y z x y x z y z x y x

if n is odd, and

R

T1
R

T2

p 0 0 0 1 + p 0 2 1 1 0 0 3
x x y y z z x x y y z z

y z x z x y y z x z x y

z y z x y x z y z x y x

if n is even. And this ends the proof.

As a direct consequence of the preceding proposition, the following holds:

Proposition 12. With at least seven voters and at least three candidates, all Condorcet procedure

F

j

with j = 1, 2, ..., 9 violate the reinforcement axiom.

Proof. Suppose A = {x, y, z, a4, a5, ..., am} and let F

j

be a Condorcet procedure. Consider the
distinct cases in the proof of Proposition 11 and the corresponding profiles R

T1 and R

T2 . Now,
construct two new profiles R

T1 and R

T2 from R

T1 and R

T2 respectively, in such a way that alter-
native a4 appears at the fourth position in each individual preference relation, a5 appears at the
fifth position, and so on. Each candidate in {x, y, z} is then prefered by a majority of individuals
to all candidates in {a4, a5, ..., am}. It follows that the winners are exactly the same as with R

T1 ,
R

T2 and R

N respectively. That is F (RT1) = x, F (RT2) = x and F (RN) = y. Consequently, F
j

violates the reinforcement axiom.

The two propositions show that all Condorcet procedures introduced above violate RA when
the number of voters is equal to or greater than seven, provided that the number of alternatives is at
least three. In other words for all the procedures studied in this paper, we can always find a profile
at which RA is violated, with at least seven voters and at least three alternatives. Below seven
voters, we can find some pathological profiles, but not for all rules. Indeed, the reader can easily
check that the minimum number of voters at which the phenomenon arise is three for Copeland,
five for Fishburn, Schwartz and amendment. For the other rules, there is no case below seven.
Note also, that it straightforwardly appears that with two alternatives there exists no Condorcet
procedure which violates RA.

We will now turn to the evaluation on how frequent Condorcet procedures violate RA. In the
next section, we focus on the special case of three alternatives.
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4 The likelihood of reinforcement violation

Our main purpose in this section is to compare the nine Condorcet rules described above in terms
of their susceptibility to violate RA. We only study the three-alternative case in this paper, since
with four or more alternatives, computations are much more involved.

In order to do that we evaluate the proportion of preference profiles at which the violation of
RA arises. We first have a typology of the various profiles at which this violation occurs. We can
notice that if voting is restricted to profiles in which at least one Condorcet winner exists, then
selecting the Condorcet winners satisfies RA. Indeed, if a majority in each of the two constituencies
prefers a to x, then a majority in the whole constituency prefers a to x. Thus, the violation of RA

is due to majority cycles.
More precisely, given a voting rule, situations in which the voting rule violates RA are com-

pletely described by a set of linear inequalities (technicalities are available from the authors upon
simple request). And from this typology, by the use of computerised evaluation processes, we
obtain various frequencies measuring the susceptibility of this rule to violate RA.

The computer evaluation process consists in simulations using the traditional Monte Carlo
method. Computer simulations are very often used in social choice in order to determine the
frequencies of paradoxes, e.g., Nitzan (1985) or Kelly (1993) among others. The Monte Carlo
simulations method is useful when a problem cannot be solved analytically.

Its principle is as follows : (i) we choose a probabilistic hypothesis, that is the way probabilities
are assigned to events; (ii) we randomly generate under each probability approach a set of 100,000
profiles (a greater number does not significantly improve the results); and (iii) for each voting rule
under consideration, we then count the total number of pathological profiles among the list of
drawn profiles. The estimation of the likelihood that the rule violates RA is then derived as the
following ratio:

Number of occurences of pathological profiles randomly generated
Total number of profiles randomly generated

Note that the values we obtain are not exact probabilities, but rather estimates. For example,
a value equal to 0 doesn’t necessarily mean that the phenomenon cannot at all occur, but in fact,
simply means that its probability of occurrence is very small.

Two traditional probabilistic hypotheses are taken into account: impartial culture (IC) and
impartial anonymous culture (IAC). Both are based on an equal probability assumption, but not
exactly in the same way. Under the IAC probabilistic model, all anonymous preference profiles are
equally likely to be observed: for every possible preference order, the number of voters reporting
that order is drawn, in such a way that the total number of voters be equal to n. More precisely,
for each n and each linear order we draw randomly the number n1 of individuals with the first
linear order. And then, again randomly, we draw the number n2 of individuals with the second
linear order between 0 and n � n1, and so on. Under the IC probabilistic model and given any
voter, the six rankings are equally likely to be the preference relation of this voter. In other words,
for each voter, every preference order has an equal chance to be drawn ( 1

6 in the three-alternative
case). For a more detailed discussion on these probabilistic models, see Reggenwetter et al. (2006),
or Berg and Lepelley (1993), or Lepelley, Louichi, and Smaoui (2008).

In this section, for each probabilistic hypothesis and each rule under study, we present tables
of values and graphs corresponding to some values of the total number of voters.

Beside the results with Monte Carlo simulations, we also provide analytical results under the
IAC hypothesis when the number of individuals is infinitely large. Within this framework, we use
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an analytical method — as distinguished from computer simulations — and provide exact relations
giving the proportion of anonymous profiles vulnerable to the violation of RA. These results are
obtained by the use of the technique of Fishburn and Gehrlein (1976).

4.1 Impartial anonymous culture

4.1.1 Simulations results under IAC

We consider the case where n 2 {25, 50, 75, 100} and t (the size of any of the two constituencies)
changes from 1 to at most n

2 (Tables 1 and 2)3. Note that cases where t � n

2 are symmetrical to
those where t  n

2 . For example, for n = 25, the results are the same with t = 1 and t = 24.
Table 1 (IAC 1) Frequencies of violation of RA for Condorcet procedures with n = 25 and n = 50

t n = 25 n = 50

F1 F2 F3, F4, F5, F6 F7,F8 F9 F1 F2 F3, F4, F5, F6 F7,F8 F9

1 5,54E-03 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,22E-02 3,10E-03 0,00E+00 3,10E-03 1,98E-03

2 7,16E-03 5,08E-03 4,40E-04 5,26E-03 2,36E-03 7,16E-03 2,04E-03 1,20E-04 2,22E-03 1,18E-03

3 4,54E-03 5,08E-03 1,02E-03 2,34E-03 1,18E-03 1,01E-02 4,20E-03 8,80E-04 4,22E-03 2,80E-03

4 5,84E-03 5,78E-03 1,86E-03 6,94E-03 2,36E-03 6,62E-03 3,02E-03 1,04E-03 3,48E-03 1,76E-03

5 3,96E-03 2,54E-03 1,50E-03 2,58E-03 1,34E-03 8,80E-03 5,50E-03 1,12E-03 5,60E-03 4,20E-03

6 6,54E-03 6,60E-03 2,94E-03 8,16E-03 2,70E-03 5,50E-03 3,56E-03 1,42E-03 4,04E-03 1,88E-03

7 4,80E-03 3,10E-03 2,04E-03 3,14E-03 2,02E-03 8,28E-03 5,12E-03 1,10E-03 5,36E-03 4,26E-03

8 5,96E-03 8,26E-03 3,76E-03 9,30E-03 4,56E-03 5,98E-03 4,20E-03 1,64E-03 4,58E-03 2,12E-03

9 3,76E-03 3,18E-03 1,64E-04 3,10E-03 2,54E-03 7,40E-03 5,96E-03 1,36E-03 6,06E-03 5,50E-03

10 5,40E-03 7,78E-03 3,46E-03 8,80E-03 4,06E-03 5,32E-03 4,56E-03 1,70E-03 5,02E-03 2,78E-03

15 6,54E-03 6,18E-03 2,08E-03 6,24E-03 6,68E-03

20 3,48E-03 4,04E-03 1,88E-04 4,14E-03 4,40E-03

25 3,74E-03 4,52E-03 1,60E-04 4,66E-03 7,28E-03

3Note that in the tables, the notation xE-y is used as an equivalent for x⇥10�y, where x and y are real numbers.
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Table 2 (IAC 2) Frequencies of violation of RA for Condorcet procedures with n = 75 and n = 100

t n = 75 n = 100

F1 F2 F3, F4, F5, F6 F7,F8 F9 F1 F2 F3, F4, F5, F6 F7,F8 F9

1 1,07E-02 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,29E-02 1,58E-03 0,00E+00 1,58E-03 6,80E-04

2 1,01E-02 1,90E-03 1,20E-04 2,04E-03 9,20E-04 9,32E-03 1,38E-03 1,40E-04 1,44E-03 7,00E-04

3 9,86E-03 1,42E-03 4,80E-04 1,42E-03 7,00E-04 1,20E-02 3,10E-03 4,00E-04 3,14E-03 1,66E-03

4 9,06E-03 2,54E-03 8,40E-04 2,88E-03 1,28E-03 8,30E-03 1,90E-03 6,20E-04 2,10E-03 1,04E-03

5 8,42E-03 1,80E-03 8,00E-04 1,74E-03 1,12E-03 1,13E-02 3,64E-03 7,80E-04 3,78E-03 2,28E-03

6 8,48E-03 3,56E-03 1,22E-03 4,16E-03 1,20E-03 7,98E-03 2,38E-03 7,80E-04 2,66E-03 1,04E-03

7 8,58E-03 1,64E-03 1,14E-03 1,70E-03 1,26E-03 1,02E-02 2,88E-03 8,80E-04 3,06E-03 2,38E-03

8 8,62E-03 4,22E-03 1,54E-03 4,76E-03 1,86E-03 8,22E-03 2,80E-03 9,60E-04 3,12E-03 1,38E-03

9 7,24E-03 2,32E-03 1,16E-03 2,34E-03 1,72E-03 9,94E-03 3,78E-03 1,20E-03 3,86E-03 3,64E-03

10 8,48E-03 5,04E-03 1,52E-03 5,52E-03 2,60E-03 8,02E-03 3,66E-03 1,18E-03 3,86E-03 1,86E-04

15 6,98E-03 3,66E-03 1,70E-03 3,72E-03 2,48E-03 8,16E-03 4,36E-03 1,28E-03 4,40E-03 4,38E-03

20 6,52E-03 6,88E-03 2,26E-03 6,80E-03 4,04E-03 6,52E-03 4,96E-03 1,74E-03 4,88E-03 2,76E-03

25 4,74E-03 4,16E-03 1,92E-03 4,20E-03 4,36E-03 6,82E-03 6,06E-03 2,08E-03 6,28E-03 5,24E-03

30 4,80E-03 6,74E-03 1,76E-03 7,00E-03 5,48E-03 5,78E-03 5,00E-03 1,64E-03 5,18E-03 4,36E-03

35 3,40E-03 4,02E-03 1,48E-03 4,10E-03 4,08E-03 5,50E-03 6,28E-03 1,68E-03 6,68E-03 5,80E-03

40 4,44E-03 5,44E-03 1,44E-03 5,60E-03 4,88E-03

45 4,18E-03 5,46E-03 1,68E-03 5,50E-03 5,60E-03

50 3,12E-03 3,90E-03 1,38E-03 3,88E-03 4,64E-03

The corresponding figures are below.

Fig. 1 Frequencies of violation of RA under IAC for F1

and n 2 {25, 50, 75, 100}

Fig. 2 Frequencies of violation of RA under IAC for F2

and n 2 {25, 50, 75, 100}
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Fig. 3 Frequencies of violation of RA under IAC for

F3 � F4 � F5 � F6 and n 2 {25, 50, 75, 100}

Fig. 4 Frequencies of violation of RA under IAC for

F7 � F8 and n 2 {25, 50, 75, 100}

Fig. 5 Frequencies of violation of RA under IAC for F9

and n 2 {25, 50, 75, 100}

Fig. 6 A comparison of the nine rules under IAC

for n = 100

These results illustrate the following facts:
(i) for all rules under study, it appears that for any given value of n, and for all values of t,

frequencies of violation of RA are relatively small (generally smaller than 1%); (ii) although all
frequencies are rather small, they are clearly smaller for F3 � F4 � F5 � F6 than for F2, F7 � F8

and F9 ; and for these three families of rules the results are relatively close, as illustrated in Fig.
6; (iii) it must also be noticed that F1 appears as the worst procedure, especially when the size
of one of the two constituencies is relatively greater than the size of the other one; (iv) except for
F1, for any fixed value of n, frequencies slightly increase when t rises (fluctuations are due to even
or odd values of t) as illustrated in Figs. 2, 3, 4, 5; (v) for any given value of t, frequencies for
F3 � F4 � F5 � F6 decrease when n rises, whereas this is not clear for F2, F7 � F8 and F9; (vi)
it follows that frequencies are higher as both constituencies tend to have the same size for all the
rules with the exception of F1; (vii) a contrario, frequencies for F1 are relatively smaller with equal
size constituencies. Indeed as observed in Fig. 1, for any fixed n, frequencies decrease when the
value of t rises, and for any given value of t, frequencies increase when the value of n rises.

To summarize, we have shown that for F

j

, j = 2, 3, 4, 5, 6, 7, 8, 9, the frequency of occurrence
is maximal when both group tend to have the same size, whereas for F1 we have the opposite
phenomenon.

Now, one natural question is about the limit frequencies as n gets larger.

18



4.1.2 Exact limiting results

We now focus on large electorates—and indeed on infinite electorates, that is on cases where the
total number of voters in both constituencies tends to infinity. Let RA (F

j

,1) be the vulnerability
of the voting rule F

j

as the total number of voters tends to infinity and RA (F
j

, ↵,1) be the
vulnerability of the voting rule F

j

as the total number of voters tends to infinity assuming that the
proportion of voters in the first constituency is exactly ↵, with ↵ 2

⇤
0, 12

⇤
. We provide closed-form

formulae giving this likelihood for Copeland, Schwartz, Fishburn and the Amendment rules. For
the other rules similar results require very involved computations.4

We then can state the following results.

Proposition 13. Let the Copeland rule be the voting rule. Then

i) RA (F2,1) =
31

6144
⇡ 2.528⇥ 10�3

ii) RA (F2, ↵,1)

= � 1

258048

↵ (28083↵4 � 70160↵3 + 68490↵2 � 30960↵ + 5460)

(↵� 1)5
if 0  ↵  1

3

=

✓
30966↵10 � 126670↵9 + 226755↵8 � 231480↵7 + 147630↵6

�61236↵5 + 17010↵4 � 3240↵3 + 405↵2 � 30↵ + 1

◆

258048↵5 (↵� 1)5
if

1

3
 ↵  1

2

After computations it appears that RA (F2, ↵,1) = RA (F7, ↵,1) = RA (F8, ↵,1) = RA (F9, ↵,1)
and RA (F2,1) = RA (F7,1) = RA (F8,1) = RA (F9,1). This result is consistent with the
previous simulation observations.

For some values of ↵, we have the following results in Table 3.

Table 3 (IAC 3) Frequencies of violation of RA for large electorates

↵ F2�F7�F8�F9 ↵ F2�F7�F8�F9 ↵ F2�F7�F8�F9 ↵ F2�F7�F8�F9

0, 025 5,20E-04 0, 15 2,80E-03 0, 275 4,40E-03 0, 4 5,13E-03

0, 05 1,02E-03 0, 175 3,18E-03 0, 3 4,63E-03 0, 425 5,24E-03

0, 075 1,50E-03 0, 2 3,53E-03 0, 325 4,83E-03 0, 45 5,33E-03

0, 1 1,96-03 0, 225 3,85E-03 0, 35 4,83E-03 0, 475 5,39E-03

0, 125 2,39E-03 0, 25 4,14E-03 0, 375 5,00E-03 0, 5 5,42E-03

Graphically, we have the following results in Fig.7.

4The main difficulty encountered is the evaluation of an 11-dimensional volume over a parameterized polytope.
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Fig. 7 Frequencies of violation of RA under IAC for

F2 � F7 � F8 � F9 with large electorate

As seen above, it appears that: (i) in general, cases of violations are rather rare, (ii) highest
frequencies are reached for electorates with equal size constituencies.

4.2 Impartial culture

As for IAC above, we consider n = {25, 50, 75, 100} and let t change from 1 to n

2 . Again, the
Monte Carlo technique leads to the results provided in Tables 4 and 5 below:
Table 4 (IC 1) Frequencies of violation of RA for Condorcet procedures with n = 25 and n = 50

t n = 25 n = 50

F1 F2 F3, F4, F5, F6 F7,F8 F9 F1 F2 F3, F4, F5, F6 F7,F8 F9

1 3,76E-03 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,28E-02 7,12E-03 0,00E+00 7,12E-03 6,02E-03

2 1,04E-03 6,12E-03 6,00E-03 1,07E-02 6,80E-04 5,70E-03 3,04E-03 2,42E-03 4,84E-03 6,20E-04

3 3,44E-03 9,80E-04 9,00E-04 9,80E-04 4,40E-04 1,02E-02 7,82E-03 1,02E-03 7,86E-03 8,62E-03

4 1,01E-02 7,60E-03 6,32E-03 1,24E-02 2,38E-03 5,74E-03 3,46E-03 2,62E-03 4,82E-03 1,80E-03

5 3,12E-03 1,42E-03 1,36E-03 1,56E-03 1,12E-03 9,68E-03 7,98E-03 1,46E-03 7,96E-03 1,00E-02

6 1,07E-02 9,64E-03 7,14E-03 1,28E-02 4,06E-03 5,28E-03 3,46E-03 2,54E-03 4,82E-03 2,74E-03

7 2,66E-03 1,84E-03 1,82E-03 1,98E-03 1,72E-03 9,46E-03 8,74E-03 1,82E-03 8,78E-03 1,05E-02

8 9,52E-03 1,06E-02 6,92E-03 1,36E-02 4,88E-03 5,60E-03 4,24E-03 2,90E-03 4,98E-03 3,40E-03

9 3,24E-03 1,78E-03 1,58E-03 1,86E-03 2,08E-03 9,44E-03 8,54E-03 2,28E-03 8,68E-03 1,07E-02

10 9,32E-03 1,04E-02 7,34E-03 1,35E-02 4,84E-03 4,64E-03 3,98E-03 2,68E-03 4,84E-03 3,60E-03

15 5,44E-03 6,70E-03 1,82E-03 6,44E-03 1,15E-02

20 4,54E-03 3,98E-03 2,56E-03 4,72E-03 5,62E-03

25 7,58E-03 7,68E-03 2,26E-03 7,50E-03 1,21E-02
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Table 5 (IC 2) Frequencies of violation of RA for Condorcet procedure with n = 75 and n = 100

t n = 75 n = 100

F1 F2 F3, F4, F5, F6 F7,F8 F9 F1 F2 F3, F4, F5, F6 F7,F8 F9

1 9,00E-03 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,41E-02 6,04E-03 0,00E+00 6,04E-03 4,10E-03

2 8,30E-03 3,78E-03 2,92E-03 6,46E-03 6,00E-04 6,06E-03 3,00E-03 1,82E-03 4,72E-03 4,80E-04

3 7,26E-03 1,16E-03 1,08E-03 1,16E-03 4,80E-04 1,20E-02 7,06E-03 7,60E-04 7,14E-03 6,98E-03

4 1,00E-02 5,92E-03 3,74E-03 8,26E-03 1,96E-03 7,26E-03 4,18E-03 2,50E-03 5,72E-03 1,68E-03

5 6,64E-03 1,84E-03 1,50E-03 1,78E-03 1,20E-03 1,12E-02 8,10E-03 1,78E-03 8,14E-03 7,56E-03

6 1,05E-02 8,24E-03 4,32E-03 1,06E-02 2,86E-03 7,18E-03 4,08E-03 2,34E-03 5,42E-03 2,28E-03

7 5,98E-03 2,64E-03 1,66E-03 2,58E-03 1,78E-03 1,14E-02 8,48E-03 2,08E-03 9,20E-03 8,30E-03

8 8,96E-03 7,76E-03 4,10E-03 1,00E-02 3,32E-03 6,30E-03 4,32E-03 2,40E-03 5,36E-03 3,16E-03

9 6,46E-03 2,74E-03 2,28E-03 2,86E-03 2,00E-03 1,05E-02 8,12E-03 2,08E-03 7,76E-03 9,48E-03

10 9,70E-03 9,14E-03 4,44E-03 1,10E-02 4,32E-03 6,20E-03 5,32E-03 2,62E-03 6,02E-03 3,60E-03

15 6,30E-03 3,92E-03 2,78E-03 4,08E-03 3,16E-03 9,30E-03 8,10E-03 2,18E-03 8,36E-03 1,05E-02

20 8,34E-03 9,72E-03 4,68E-03 1,12E-02 6,20E-03 6,24E-03 5,66E-03 2,98E-03 6,20E-03 4,94E-03

25 5,16E-03 4,16E-03 2,50E-03 4,08E-03 3,98E-03 7,28E-03 8,64E-03 2,58E-03 8,56E-03 1,06E-02

30 7,48E-03 9,96E-03 4,66E-03 1,14E-02 7,26E-03 4,76E-03 5,18E-03 2,66E-03 5,62E-03 5,78E-03

35 4,68E-03 3,58E-03 2,20E-03 3,64E-03 4,80E-03 7,32E-03 8,82E-03 2,36E-03 8,80E-03 1,11E-02

40 4,92E-03 5,40E-03 2,86E-03 6,00E-03 5,86E-03

45 6,74E-03 7,60E-03 2,40E-03 7,80E-03 1,07E-02

50 4,92E-03 5,40E-03 2,86E-03 6,00E-03 5,86E-03

The corresponding figures are below.

Fig. 8 Frequencies of violation of RA under IC for F1

and n 2 {25, 50, 75, 100}

Fig. 9 Frequencies of violation of RA under IC for F2

and n 2 {25, 50, 75, 100}
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Fig. 10 Frequencies of violation of RA under IC for

F3 � F4 � F5 � F6 and n 2 {25, 50, 75, 100}

Fig. 11 Frequencies of violation of RA under IC for

F7 � F8 and n 2 {25, 50, 75, 100}

Fig. 12 Frequencies of violation of RA under IC for F9

and n 2 {25, 50, 75, 100}

Fig. 13 A comparison of the Condorcet rules under IC

for n = 100

Once again, it can be observed from Figs. 9, 10, 11 and 12 that frequencies of F

j

, j =
2, 3, 4, 5, 6, 7, 8, 9 are higher as both constituencies tend to have the same size. Moreover, like
Fig. 1 above, Fig. 8 shows that F1 is more sensitive to the violation of RA with unequal size
constituencies. It also appears that the performance of F2, F7 � F8 and F9 are again very close,
whereas frequencies of occurence are the smallest for F3 � F4 � F5 � F6 and the highest for F1.

Besides, it appears that the occurrences of paradoxes are higher under IC than under IAC,
which is very common in voting theory (see Gehrlein 2006, chap. 5).

5 Conclusion

The goal of this paper was to compare nine Condorcet procedures through the study of their
sensitivity to RA. In order to do that, we were first concerned with the number of voters at which
violations of the axiom occur. It appears that this is the case roughly as soon as the number of
voters is equal to 7. Secondly, we provide frequencies of these occurrences. Most of these latter
results are based on computer simulations—under two probabilistic classical hypotheses—but some
other are obtained with the analytical Fishburn–Gehrlein technique. Results are given for the nine
Condorcet procedures. Our results show how these frequencies change according to changes in the
values of the total number of voters, and the size of any one of the two constituencies.
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Further, it appears that for all these rules: (i) in general, cases of violations of RA are rather
rare, (ii) although all frequencies are small, they are smaller for Dodgson’s rule, Young’s rule,
Condorcet’s rule and Kemeny’s rule, and (iii) frequencies decrease for electorates with clearly
uneven constituencies, with the exception of Black’s rule. The main question motivating this
study was whether one should be unduly worried about the theoretical possibility of violation of
RA. The negative answer to this question is the main message of our analysis. Indeed, although all
these rules violate RA, the frequencies of violation are very rare, as it is the case with sequential
positional rules (see Courtin et al. 2010).

Finally, we have observed that in the special case of three alternatives, Dodgson’s rule, Young’s
rule, Condorcet’s rule and Kemeny’s rule always select the same winner whatever the profile. The
same conclusion holds for Schwartz’s rule and Fishburn’s rule.
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