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Centre de Recherche Astrophysique de Lyon, CNRS/UMR 5574
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ABSTRACT

We present a fast unsupervised myopic deconvolution method ded-
icated to quasi-real time processing of video sequences such as an-
giograms. Our method is based on a Bayesian approach of which the
tuning parameters are automatically set thanks to the marginalized
likelihood of the observed image. We demonstrate the effectiveness
of our approach on simulated and empirical images.

1. CONTEXT AND PREVIOUS WORK

Coronary angiography is a medical imaging technique used to visu-
alize heart vessels (the coronaries) in order to diagnose and prevent
potential heart failures. Its principle consists in injecting a radio-
contrast agent by catheter into an artery and capturing an image se-
quence of the cardiovascular system thanks to X-ray irradiation.

In a previous work [1], we shown that the blur of angiogram se-
quences could be approximated by a convolution by a shift-invariant
point spread function (PSF). We found that the actual PSF is constant
for a given video sequence but depends on the operating conditions
and on the patient. We therefore proposed to use multi-frame blind
deconvolution to improve the quality of the videos both in terms of
signal to noise ratio and resolution. We observed that the PSF are
approximately isotropic and bell shaped with a profile similar to a
Lorentzian distribution:

h(r) ≈ η

1 + ‖2 r/γ‖2
, (1)

with r the 2-D position on the detector, γ the full width at half-
maximum (FWHM) of the PSF and η a normalization factor. This
multi-frame blind deconvolution method is however lengthy and re-
quires the tuning of a number of control parameters which make
it impracticable for non-specialists and incompatible with the quasi
real-time requirement. In this paper, we propose several improve-
ments to achieve a fast and unsupervised method which works well
in practice.

2. UNSUPERVISED MYOPIC DECONVOLUTION

2.1. Data model

For a given frame of the sequence, a raw image writes [1]:

y = Hγ ·x+ n (2)

with y ∈ RM the data (yj is the value measured by j-th pixel andM
is the number of pixels), Hγ ∈ RM×N the blur operator, x ∈ RN
the object of interest in the form of a pixelized image with N pixels
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and n ∈ RM a term which accounts for noise and approximation
errors. The notation Hγ indicates that the blur depends on some
parameters such as the width γ of the PSF.

2.2. Bayesian approach

Our goal is to recover the object x given the data y. This is a my-
opic deconvolution problem as it requires to solve a joint problem of
deblurring the data and estimating the PSF parameters. Deconvolu-
tion is well known to be an ill-conditioned inverse problem which
has to be regularized to obtain a robust and stable solution [2]. The
maximum a posteriori (MAP):

xMAP = argmax
x

Pr(x |y,θ) (3)

provides such a solution. In words, MAP aims at maximizing the
posterior probability of the unknowns x given the data y and so-
called hyper-parameters θ (among others the ones which character-
ize the PSF). Using Bayes rule:

Pr(x |y,θ) = Pr(y |x,θ) Pr(x |θ)
Pr(y |θ) ,

and realizing that the evidence Pr(y |θ) does not depend on x
yields:

xMAP = argmax
x

Pr(y |x,θ) Pr(x |θ) , (4)

where the likelihood of the data Pr(y |x,θ) depends on the noise
statistics and where the prior distribution Pr(x |θ) implements prior
knowledge about the sought image x. This however assumes that
the hyper-parameters θ are known. In order to have an unsupervised
method, we want to be able to automatically determine θ. To that
end, we propose to use maximum likelihood estimator for the hyper-
parameters:

θGML = argmax
θ

Pr(y |θ) . (5)

Using again Bayes rule, Pr(y |θ) is obtained by marginalizing the
joint distribution of y and x given θ:

Pr(y |θ) =
∫

Pr(y,x |θ) dx =

∫
Pr(y |x,θ) Pr(x |θ) dx .

The problem now amounts to integrate the joint distribution. Owing
to the number of variables (N the number of pixels in the restored
image), the only realistic cases are when the integral can be carried
out analytically. This implies to restrict our-self to Gaussian distri-
butions.



2.3. Generalized maximum likelihood

We introduce the, possibly improper, Gaussian distribution of the
centered variables u with symmetric positive semi-definite weight-
ing matrix W:

G(u;W)
def
=

∣∣∣∣W2π
∣∣∣∣1/2
+

exp
(
−1

2
‖u‖2W

)
, (6)

with ‖u‖2W = u> ·W·u and |W|+ the product of the strictly pos-
itive eigenvalues of W. The weighting matrix W is also called the
precision matrix by some authors [3]. If the covariance matrix of
u is non-singular, taking W = Cov(u)−1 and noting that |W|+
is then the determinant of W, the usual Gaussian distribution is re-
trieved. However, the definition in Eq. (6) let us cope with improper
statistics.

In practice, the statistics of the error term n in Eq. (2) is well
approximated by a centered Gaussian distribution, the likelihood of
the data y knowing the object x and the tuning parameters θ is then
given by:

Pr(y |x,θ) = G(y −Hγ ·x;B/σ2) , (7)

with Hγ ·x = E(y |x,θ) and B/σ2 = Wy|x,θ the expectation
and precision matrix of the data given x and θ respectively. The
scaling term σ2 characterizes the noise level. It is, for instance, an
estimate of the noise variance after some whitening implemented by
the matrix B which is, at least, positive semi-definite and may be
different from the identity to account for non-i.i.d. noise.

Since we restrict our-self to Gaussian distributions, the most
general expression of the a priori distribution of x knowing θ is:

Pr(x |θ) = G(x− x;µC) , (8)

with x = E(x |θ) and µC = Wx|θ the expected value and the
precision matrix of x knowing θ respectively. The matrix C is sym-
metric positive semi-definite and µ > 0 is a tuning parameter. In
what follows, in order to factorize the noise level characterized by
σ2, we introduce α = σ2 µ as the tuning parameter for the priors.

In the considered case (affine direct model and Gaussian distri-
butions) and providing H>γ ·B ·Hγ + αC is invertible, the MAP
solution is unique and has a closed form:

xMAP = x+Rθ · (y −Hγ ·x) , (9)

with Rθ the reconstruction matrix given by:

Rθ = (H>γ ·B ·Hγ + αC)−1 ·H>γ ·B , (10)

which does not depend on the noise level σ2 but solely on:

θ = {α, γ} (11)

which are thus the tuning parameters of our myopic problem: γ let
us tune the PSF, while α let us set the relative weight of the priors.

Providing that B/σ2 = Wy|x,θ does not depend on x, it can be
easily shown that the evidence is also a Gaussian distribution:

Pr(y |θ) = G(y −Hγ ·x;Qθ/σ2) , (12)

with Hγ ·x = E(y |θ) the expectation of y knowing θ and
Qθ/σ

2 = Wy|θ the corresponding precision matrix with:

Qθ = B · (I−Aθ) , (13)

where I is the identity and Aθ
def
= Hγ ·Rθ is the so-called influence

matrix [4].
Now the evidence Pr(y |θ) can be maximized with respect to

σ2 to yield the generalized maximum likelihood (GML) estimate of
the noise variance:

σ2
GML =

1

M+

∥∥y −Hγ ·x
∥∥2
Qθ

(14)

with M+ the number of strictly positive eigenvalues of Qθ . Re-
placing the noise variance by its maximum likelihood value σ2

GML,
maximizing the Pr(y |θ) with respect to the other tuning parame-
ters amounts to minimize:

GML(θ) =

∥∥y −Hγ ·x
∥∥2
Qθ

M+ |Qθ|
1/M+
+

(15)

which is a generalization of the criterion considered by Wahba [5]
and Trouvé et al. [3] as it takes into account non-i.i.d. noise and the
a priori expectation of the parameters x = E(x |θ).

2.4. Practical formulation

In our case, the noise is approximately uniform and uncorrelated
but we have to cope with unmeasured pixels (see leftmost image in
Fig. 1) so B is the diagonal matrix B = diag(b) with b the mask of
measured pixels:

bj =

{
1 if j-th pixel is valid
0 else. (16)

In order to regularize the inverse problem, we impose the
smoothness of the object via its prior distribution as it is typically
done in image reconstruction with x = 0 and:

C = D> ·D , (17)

where D is a finite difference operator. That is to say that maximiz-
ing Pr(x |θ) amounts to minimizing ‖x‖2C = ‖D ·x‖22 which is a
quadratic measure of the roughness of x. Using 2-D indices for the
sake of clarity, our regularization typically writes:

‖x‖2C =
∑
j1,j2

(xj1+1,j2 − xj1,j2)
2 +

∑
j1,j2

(xj1,j2+1 − xj1,j2)
2 ,

(18)
withN1 andN2 the restored image dimensions, thusN = N1×N2

is the number of restored pixels.

2.5. Myopic estimation

To summarize, we propose to solve the myopic part of our problem
by minimizing GML(θ) with respect to θ. This is very like the
strategy proposed by Blanc et al. [6]. Taking into account that x =
0, the GML criterion is finally given by:

GML(θ) =
y> ·B · (I−Aθ) ·y

M+ |B · (I−Aθ)|
1/M+
+

, (19)

withM+ the number of strictly positive eigenvalues of B · (I−Aθ).
For comparison, we also consider the generalized cross valida-

tion criterion [4] which has been extensively used as the method of
choice for choosing the best hyper-parameters:

GCV(θ) =
y> · (I−Aθ)

> ·B · (I−Aθ) ·y
M+ [tr(I−Aθ)/M+]2

. (20)



Fig. 1: Blind and myopic deconvolution of a single coronarographic image. Left: original image. Center: blind deconvolution by Soulez et
al. [1]. Right: proposed myopic deconvolution (here with a circular mask).

2.6. Circulant approximation

The criteria (GML or GCV) which have to be minimized to deter-
mine the tuning parameters θ are not in general applicable in large
dimension because they involve to compute the determinant or the
trace of a very large matrix. There exist means to approximate the
quantities for large matrix [7], but our experience is that the achieved
precision is insufficient for our purposes. Since H is a convolution,
it can be approximated by a circulant block circulant matrix which
is diagonalized by the discrete Fourier transform (DFT):

Hγ ≈ F−1 · diag(ĥ) ·F , (21)

with F the DFT operator and ĥ = F ·h the DFT of the shift invari-
ant PSF h. Note that the corresponding adjoint of the PSF operator
is: H>γ ≈ F−1 · diag(ĥ

?
) ·F. The same trick can be applied to the

regularization operator C = D> ·D which is also shift-invariant:

C ≈ F−1 · diag(ĉ) ·F . (22)

For instance, the regularization term in Eq. (18) is approximated by:

‖x‖2C ≈
∑
k1,k2

ĉk1,k2 |x̂k1,k2 |
2 ,

with x̂ = F ·x the DFT of x and:

ĉk1,k2 = 4 sin2(π k1/N1) + 4 sin2(π k2/N2) , (23)

which is real and non-negative. Finally, by only considering a sub-
image where all pixels are measured:

B ≈ I . (24)

Putting all together, we obtain the following approximate ex-
pressions in Fourier domain for the generalized maximum likelihood
and generalized cross-validation criteria:

GML(θ) ≈
∑
k q̂k |ŷk|

2[∏
k∈K+

q̂k
]1/M+

, (25)

GCV(θ) ≈
N
∑
k q̂

2
k |ŷk|2[∑

k q̂k
]2 , (26)

with ĥ = F ·y the DFT of the raw image y and:

q̂k =
α ĉk

|ĥk|2 + α ĉk
, (27)

and where K+ is the set of frequels for which q̂k 6= 0 and M+ is the
size of this set.

2.7. Algorithm summary

To process a sequence of images, we first estimate the hyper-
parameters on a sub-region of a selected image of the sequence
by minimizing GML(θ) under circulant approximation. To carry
out this optimization, we use Nelder-Mead simplex algorithm [8]
as described in [9] with simple modifications to implement bound
constraints on the parameters θ. Given the GML estimate of the
hyper-parameters, we perform a regularized deconvolution for each
image of the sequence. This amount to solve the linear equations:

(H>γ ·B ·Hγ + αC) ·x = H>γ ·B ·y . (28)

At least due to the non-stationary operator B, these equations cannot
be easily diagonalized by FFT, so we use an iterative method such
as the linear conjugate gradients [10].

3. RESULTS

We tested our method on simulated images and on a set of empirical
angiogram sequences provided by the cardiac center of Hôpital de la
Croix Rousse (Lyon, France). Figures 1 and 2 show typical results
for empirical and simulated images respectively.

3.1. Validation of our approximations

In practice, the tuning parameters obtained from the minimization
with respect to α and γ of the two versions of the GML criterion,
the exact one in Eq. (19) and the approximated one in Eq. (25), are
very similar. Following Trouvé et al. [3], we used the generalized
singular value decomposition (GSVD) of the operators H and D



Fig. 2: Myopic deconvolution of an image blurred by a Gaussian
with FWHM γ = 2 pixels and with SNR = 8dB. A: result with
finite difference regularization, cf. Eq. (23), and GML parameter es-
timation. B: result following method in [11]. C: result with same
regularization as in B, cf. Eq. (29), but with GML parameter estima-
tion.

to speed-up the computations of the exact criterion. The DFT ap-
proximation is however much faster1, so we favor the use of our
DFT-based method.

3.2. Comparison with other approaches

When the problem was solely to estimate the regularization level
α, Wahba [5] found that GML and GCV give equally good results.
However, in our myopic context where both α and the width γ of
the PSF are unknown, we observed that GML provides much better
estimates of the tuning parameters than GCV. This confirms the con-
clusions of [3] who also favored GML rather than GCV to estimate
the depth from defocus of real images.

Compared to the original method by Soulez et al.[1], our method
gives similar results in terms of quality (see Fig. 1) in spite of the
simplifications made (myopic instead of blind deconvolution and
quadratic regularization instead of total variation). The myopic ap-
proach is however much faster: on an Intel Core i7 CPU at 2.94 GHz,
it takes about 0.4 second per 512× 512 image instead of 80 seconds
for the blind method. Including the myopic estimation step, a typical
angiogram sequence of 80 images is processed in only 30 seconds.
Our myopic algorithm is therefore a quasi real-time unsupervised
method.

Finally, we also compared our strategy to the deterministic ap-
proach of [11]. They considered a quadratic regularization such that:

ĉk1,k2 =
1

1 +
(√

k21 + k22/k0
)p , (29)

where k0 is the cut-off frequency (in frequels) of the object and p is
the exponent of the decreasing rate. Figure 2 shows that their reg-
ularization which requires to fit 2 more parameters (k0 and p) and
have therefore more flexibility to adapt to the actual object structure
yields an improved restoration compared to our simple regulariza-
tion, given in Eq. (18). However, this is only true if parameter es-
timation is done via GML, not by fitting the power spectrum of the
data as suggested by [11].

4. CONCLUSION

We have presented a fast unsupervised algorithm for myopic decon-
volution of images. Our algorithm was tested on simulations and em-
pirical sequences of medical images (angiograms). The first stage of

1Solving the exact myopic problem by GSVD can take up to 2 hours of
computation on a 16× 16 region of interest; compared to a few milliseconds
when using the DFT, even on a larger, say 64× 64, region.

the method consists in estimating the tuning parameters by means of
the generalized maximum likelihood (GML) while the second stage
is a regularized deconvolution. To estimate quickly the GML crite-
rion, we rely on circulant approximations of the operators which are
thus diagonalizable by discrete Fourier transform (DFT). We have
validated our assumptions on simulations and by comparing the ap-
proximated criterion to the exact one.

Our algorithm is currently under testing at the Hôpital de la
Croix Rousse (Lyon, France). Processing a typical coronarographic
sequence of 80 images with 512×512 pixels takes only 30 seconds.
This is about 4 times the observing duration. Thus our algorithm can
be used right after the acquisition to quickly enhance the quality of
the image and help the physician to make an improved diagnostic.
A graphical interface have been developed and the software will be
made freely available at http://mitiv.univ-lyon1.fr.
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