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ABSTRACT

This paper presents a 3D deconvolution method for fluorescence mi-
croscopy that reached the first place at the “the 3D Deconvolution
Microscopy Challenge” held during ISBI 2013. It uses sparse cod-
ing algorithm to learn 2D “high resolution” features that will be used
as a prior to enhance the resolution along depth axis. This is a three
steps method: (i) deconvolution step with total variation regulariza-
tion, (ii) denoising of the deconvolved image using learned sparse
coding, (iii) deconvolution using denoised image as quadratic prior.
Its effectiveness is illustrated on both synthetic and real data.

1. INTRODUCTION
1.1. Motivation

Thanks to the widespread of fluorescent labeling techniques, fluo-
rescent microscopy is one of the most used imaging modality in bi-
ology and epifluorescence (a.k.a. wide field) microscopes are the
simplest set up for such observations. It consists on imaging at its
emission wavelength a cellular structure marked by fluorescent dye
excited by uniform illumination. On the resulting 2D image, struc-
tures are more or less defocalized according to their distance to the
focal plane. Moving this focal plane through the sample produces
a 3D representation of the object. However, its characteristics both
in terms of resolution and noise are often too coarse to fit in con-
straints of current biological research. Furthermore the resolution
is not isotropic and the actual resolution along the depth axis is far
more coarser than the resolution along lateral dimensions. Beside
more advanced microscope designs such as the confocal or multi-
photons microscopes, one can use only computational methods nu-
merically invert the blurring process and enhance epifluorescence
micrographs as demonstrated by Agard and Sedat [1]. Since, many
deconvolution algorithms were proposed (see [2, 3] for reviews) and
these “deconvolution microscopy” methods lead to various commer-
cial and open-source software [4, 5] but still suffer of several draw-
backs: computational and memory costs, restoration artifacts, non-
quantitative results. . . In the 2013, the first edition of the “3D De-
convolution Microscopy Challenge” was organized to stimulate the
community to look for novel, global and practical approaches to this
problem. I present in this paper the 3D deconvolution method that
was awarded in this challenge.

1.2. Notations

In this document I use the following notations:

• y ∈ RN is the observed data;

• N = Nx ×Ny ×Nz is the size of the observed data;
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• g ∈ RK is the processed data;
• K = Kx ×Ky ×Kz is the size of the processed data;
• k = 1, . . . ,K is the voxels index;
• H ∈ RK×K is the forward operator;
• w ∈ RK is the vector of statistical weights;
• u+ ∈ RK is the solution of the first step;
• u++ ∈ RK is the solution of the second step;
• u+++ ∈ RK is the solution of the last step;
• s ∈ {1, 2, 3} is the 2D subspace index corresponding to the

sections {(x, y), (x, z), (y, z)} respectively;

• m = 1, . . . ,M [s] is the pixel index in patches of size M [s];

• p ∈ R(M [1]+M [2]+M [3])×K is the patch vector with pm,k,s

the value of the mth pixel of the patch of the orientation s of
the slice centered on pixel k;

• P [s] is the set of all overlapping patches laying in the sub-
spaces s;

• ` = 1, . . . , L is the atom index in dictionary containing L
atoms;

• D ∈ RL×(M [1]+M [2]+M [3]) is the dictionary;
• D is the set of dictionary with L atoms of size M with unit
`2 norm;

• α ∈ RL×K×3 is the vector of coefficients;
• R ∈ RK×K×M×3 is a reconstruction operator;

2. ALGORITHM
2.1. Principle

As mentioned in the introduction, the resolution along the depth axis
is coarser (at best 2 times) than the resolution along lateral dimen-
sions. In most deconvolution method, the resolution of the decon-
volved data is still coarser in depth than laterally. The key idea of this
work is to extract “high resolution” features from lateral (x, y) sec-
tions and use them as a prior to enhance the lower resolution along
depth axis. It means that I implicitly rely on that object structures
are statistically isotropic (no preferred orientation).

This “copy - paste” method is achieved using sparse coding on
a learned dictionary [6, 7]. In sparse coding, every patch of the de-
noised image is a linear combination of few dictionary elements. In
learned sparse coding, this dictionary is learned on a training set or
directly using noisy image patches. The main contribution of this
work is to learn the dictionary only using 2D patches extracted from
lateral (x, y) sections of the 3D image of the previously deconvolved
image. This learned dictionary is then used to denoise every 2D im-
ages of every sections, namely (x, y), (x, z) and (y, z), which are
then averaged.

The algorithm we propose here has three steps:
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Fig. 1. Results of the three steps of our method on parts of the green
channel of the first “3D Deconvolution Microscopy Challenge” data
set.

1. deconvolution using Total Variation regularization,

2. denoising of the deconvolved image using learned sparse cod-
ing,

3. deconvolution using denoised image as quadratic prior.

The results of these three steps are illustrated on figure (1) on a zoom
of the green channel (with filaments) of the deconvolution challenge
data set.
2.2. Step 1: Total variation deconvolution

This first step is exactly identical to the deconvolution step described
in [8]. The maximum a posteriori estimates u+ obtained by mini-
mizing a cost function under a non-negativity constraint:

u+ = argmin
u≥0

(Jdata(u) + µ1 JTV(u)) , (1)

with Jdata(u) a data fitting term, JTV(u) a regularization term and
µ1 an hyper-parameter.

2.2.1. Data-fitting term

Under uncorrelated Gaussian noise assumption, the data fitting term
writes:

Jdata(u) =
∑
k

wk

(
[H ·u]k − gk

)2
, (2)

where wk is the inverse of the noise variance at voxel k. This model
can cope with non-stationary noise and can be used to express con-
fidence on measurements on each voxel of the data. Thus it can deal
with unmeasured voxels (due to saturation, borders. . . ) by setting
wk = 0 for such voxels. With such a formulation, it is possible to
take rigorously the borders into account. In order to apply H using
FFT-based computations, most works suppose that H is circulant.
Doing so, to keep a rigorous direct model without the unrealistic pe-
riodic assumption, both data and estimated object must be extended.
This field extension is mandatory for two reasons: (i) to prevent spa-
tial aliasing and (ii) to estimate parts of the scene outside of the field
of view that contributes to the measurements inside the instrument
field of view [9]. For that reason, as the PSF has the same size as the
data, we extend the reconstructed image u and the data g to at least
K = (2Nx − 1)× (2Ny − 1)× (2Nz − 1), padding g with zeros
and setting wk = 0 in the extended area.

Furthermore, except for very low detector noise, this formula-
tion can account for mixed Poisson + Gaussian noise by approxi-
mating it as a non-stationary uncorrelated Gaussian noise [10]:

wk
def
=

{ (
γmax(gk, 0) + σ2

k

)−1 if gk is measured,
0 otherwise,

(3)

where γ is the quantization factor of the detector and σ2
k is the vari-

ance of other approximately Gaussian noises (e.g., read-out noise) at
voxel k.

2.2.2. TV regularization term

As most observed objects are smooth with few sharp structures (e.g.,
edges and spikes), I use as regularizing prior an hyperbolic approxi-
mation of the classical 3D total variation[11]:

JTV(u) =
∑
k

√
‖∇ku‖22 + ε2 , (4)

with∇k the finite difference operator to approximate spatial gradient
at voxel k. Parameter ε > 0 ensures differentiability of JTV at 0.

2.3. Step 2: Denoising

The solution u+ of the TV deconvolution step is then “denoised”
using learned sparse coding, cleaning artifacts and enhancing reso-
lution especially along the depth axis. Both dictionary learning and
sparse coding are done using the SPAM toolbox1 [6, 7].

2.3.1. Dictionary learning

The dictionary D[s=1] is learned on the set P [1] of all overlapping
patches extracted from lateral sections of the 3D deconvolved image
u+:

D[s=1] =argmin
D∈D

min
α

{
λ0

∑
`

|α`,k|

+
∑
k,m

[
qk,m −

∑
`

D
[s=1]
`,m αk,`

]2 , (5)

1an open source toolbox: http://spams-devel.gforge.inria.fr/index.html
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Fig. 2. (x, y) and (x, z) sections of the first “3D Deconvolution Microscopy Challenge” data set compared with its deconvolution using the
proposed method.

where q is a vector of `2 normalized patches:

qk,m =
p
[s=1]
k,m√∑

m′

(
p
[s=1]

k,m′

)2
.

2.3.2. Sparse coding denoising

The learned dictionary is then used to denoise every 2D sections us-
ing sparse coding. If the sampling rate differs from one dimension to
another, the dictionary is resampled in order to preserve atom phys-
ical size along each dimension using interpolation functions f1→2

and f1→3: D[s=2] = f1→2(D
[s=1]) and D[s=3] = f1→3(D

[s=1]).
The denoised image is

u++
k =

∑
k′,m,s

R
[s]

k,k′,m

∑
l

D
[s]
l,m α

[s]

k′,l (6)

α[s] = argmin
α

∑
m

(
p
[s]
k,m −

∑
`

D
[s]
`,m α

[s]
`,k

)2

+λs

∑
`

∣∣∣α[s]
`,k

∣∣∣ . (7)

R is a reconstruction operator which simply copies a weighted ver-
sion of every synthetic patch k′ at its proper position in the 3D im-
age. For instance, if only the central pixels m0 of the reconstructed
patches are averaged:

Rk,k′,m,s =

{
1/3 if k = k′ and m = m0,
0 otherwise, , (8)

as each pixels are at the center of only 1 patch in each of the 3 sub-
spaces.

2.4. Step 3: Deconvolution using quadratic prior

As expected, the solution of the step 2 u++ may be negative and
yields to a model (Hu++) which is too far from the actual data

as attested by the value of Jdata(u
++). As a consequence, a final

deconvolution step using u++ as a quadratic prior was added:

u+++ = argmin
u≥0

(
Jdata(u) + µ2

∥∥u− u++
∥∥2
2

)
, (9)

3. CHOICE OF THE PARAMETERS

For both deconvolution steps (step 1 and 3), few parameters were
needed, namely the Gaussian noise variance in each channel, the
hyper-parameters µ1 and µ2 and the parameter ε of the TV hyper-
bolic approximation.

For the learned sparse coding step, the main parameters are set
according to Mairal prescriptions [6, 7]:

• size of the patch M [1] = 9× 9,

• number of elements of the dictionary L = 500,

• hyper-parameter λs = 1/
√
M [s].

In addition to these parameters, there is however a lot of possible
variations of the presented method. For instance any other deconvo-
lution method can be used as step 1, orthogonal matching pursuit
can be preferred to the LASSO to solve Eq. (6) and/or Eq. (5). Such
questions should be assessed in further more extensive studies.

4. RESULTS
4.1. Simulations

This method was first tested on synthetic micrographs simulated for
“the 3D Deconvolution Microscopy Challenge” held during ISBI
2013. This dataset is composed of four channels with 1024× 512×
256 voxels. The four channels of this dataset were deconvolved in-
dependently using an aberration free diffraction PSF. The deconvo-
lution results, presented in Fig. 2, show the strong improvement both
in term of resolution and denoising. The increase of resolution is par-
ticularly spectacular along the depth axis for sharp structures like the
filaments in green. With these results, the presented method reached
the first rank at the “the 3D Deconvolution Microscopy Challenge”.
Unfortunately, ground truth and the quantitative figures of merit of
each participant of this challenge are still undisclosed.



4.2. Real data

I have demonstrated the robustness of the presented method by pro-
cessing experimental data shared by Cazares et al. on the cell im-
age library website2. This dataset consists on an observation of mi-
crotubules in a Drosophila S2 cell labeled Alexa Fluor 488 and ob-
served with a Zeiss Elyra structured illumination microscope (SIM)
with a NA = 1.4 objective. It is composed of a 3D widefield im-
age and a super-resolution SIM image that can be used as a ground
truth. Both micrographs have (1024 × 1024 × 44) voxels of size
40 × 40 × 110 nm. The PSF, parametrized by its aberrations, was
estimated by deconvolving the widefield data by the super-resolution
SIM data using the PSF estimation stage of the blind deconvolution
algorithm presented in [8].

The data, the deconvolution result and the structured illumina-
tion image are shown on Fig. 3. Compared to widefield, the decon-
volution result confirms the effectiveness of my method to increase
the resolution especially along the depth dimension. Furthermore,
even if much more details can be seen on SIM observation that still
have a better resolution, the deconvolution result seems less noisy.
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Fig. 3. Widefield observation and its deconvolution compared to the
super-resolution image given by structured illumination (SIM) on
Drosophila S2 cell.


