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Abstract

We mainly prove that most d-dimensional convex surfaces Σ have
a set of endpoints of Hausdorff dimension at least d/3.

An endpoint means a point not lying in the interior of any shorter
path in Σ. “Most” means that the exceptions constitute a meager set,
relatively to the usual Hausdorff-Pompeiu distance.

The proof employs some of the ideas used in [9] about a similar
question. However, our result here is just an estimation about a still
unsolved question, as much as we know.
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54E52, 52A20.
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1 Notation, Introduction

Throughout this paper, d is an integer ≥ 2. B denotes the set of all convexe
bodies of the d + 1-dimensional Eudlidean space Ed+1, i. e. the compact
convex subsets with non empty interior.

For such a convex body C ∈ B, we are interested in the corresponding
convex surface, that is the boundary Σ = ∂C, endowed with its inner geodesic
distance. More precisely EC or EΣ denotes the set of all endpoints of Σ, that
is the points who are not in the interior of some shorter path in Σ. We focus
on the Hausdorff dimension of EC for typical C ∈ B, when one endows B
with the usual Pompeiu-Hausdorff metric:

dH(A,B) = sup(sup
A

dist(., B), sup
B

dist(., A)).

DEFINITION 1 By a function dimension we mean a continuous nonde-
creasing map R+ → R+ such that f(t) = 0⇔ t = 0.

If A is some metric space, its measure relatively to h is defined byHh(A) =
sup
ε>0
Hh
ε (A), where Hh

ε (A) is the infimum of the sums
∑
h(diamAn) associ-

ated to some countable covering of A by sets with diameters diamAi ≤ ε.
When h(t) = ts, we also write Hs and Hs

ε instead of Hh and Hh
ε . Here

Hs is the s-dimensional measure.
The Hausdorff dimension dimH(A) of A is defined by the fact thatHs(A) =

0 if s > dimH(A) and that Hs(A) =∞ if 0 < s < dimH(A).
h is said doubling when h(2t)/h(t) is bounded on R∗+.
We said that most elements, or typicall elements, of A share a property

when the set of exceptions is meager, that is included in a countable union
of closed sets with empty interiors.

When h is doubling, the properties Hh(A) > 0 and Hh(A) <∞ are invariant
under bi-Lipschitz maps, because of this we will be sometime imprecise on
the distance involved.

We state now our main result:

THEOREM 1 Most C ∈ B satisfy dimH EC ≥ d/3.

It will be proved in Section 3. Section 2 contains preliminary estimations.
The endpoints belong to the cut locus Ca of every point a ∈ Σ (that is

the set of points who are never interior points of shorter paths to a) and thus
for most Σ and any a ∈ Σ we also have dimH Ca ≥ d/3.
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Otsu and Shioya have proved in [8], in the more general framework of
d-dimensional spaces of curvature bounded below, that the cut locus Ca, and
thus the set of endpoints, is always Hd-negligible. But we address the

QUESTION 1 Does it exist a convex body C ∈ B satisfying Hd/3(EC) > 0?

In particular we dont know if we can have dimH EC > d/3, although it
would not be surprising that most C ∈ B satisfy dimH EC = d.

Existence of endpoints a certainly involves a kind of concentration of
the curvature of Σ around a, however Σ could be quite flat in an endpoint.
Adiprasito [1] recently solved an old standing question from Zamifirescu in
proving that for most C ∈ B, Σ = ∂C have some point a with infinite lower
curvature (that means that Σ admits in a “locally supporting spheres” with
radius arbitrarily small). But conversely, such a point a is not necessarily an
endpoint.

Zamfirescu proved many curvature properties about typical convex sur-
faces Σ: most of their points are endpoints [14] and for most a ∈ Σ and every
tangent direction of Σ in a, the lower curvature is zero or the upper curvature
is infinite [13]. Using an Alexandrov theorem [3], he also got that Σ is flat
almost everywhere [12] (this suggests that high concentration of curvature
should exist), however it is shown in [2] that Σ has no pair of opposite flat
points, that is with parallel tangent space. We also recall that a Klee result
[7] states that most C ∈ B are smooth and are strictly convex.

Let us observe now that for any C ∈ B, we have

EC =
⋂
ε>0

EC,ε

where EC,ε = E∂C,ε is the set of point of ∂C which are not the middle of
some shorter path of ∂C with length 2ε. The sets EC,ε are open subsets
of ∂C because of classical closeness properties of shorter paths that we will
often use implicitly. They mainly are described in the following lemma, of
which we have just used before the case where Cn = C (and often used with
Blaschke th.):

LEMMA 1 ([4] Th1 p.91 and Ascoli th.)
Consider a converging sequence Cn → C in B, and let γn : [0, 1] → ∂Cn be
a shorter path parametrized proportionally to the length. Then theree exists
a subsequence (γNn) uniformly convergent to a shorter path γ : [0, 1] → ∂C,
moreover the length of γ is then the limit of the length of γn.
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Thus one sees that EC is a Gδ set of ∂C (and of Ed+1).
It makes also natural for our purpose to estimate the bigness of the sets

EC,ε. In the following section we will make such an estimation around a con-
ical point created by slightly modifying a sphere. Because the modifications
in view are small, we focus on cases where the cone is almost flat, that means
that some angle α vill be very small.

2 Around the vertices of a modified sphere

We consider here a sphere Σ of radius 1 (other cases will follow by homo-
geneity), and an oriented line ∆ containing the center of Σ. We choose some
(small) 0 < α < π/2 and denote by Σ− the skullcap of all x ∈ Σ making
with ∆ an angle ≥ α.

Our modified sphere is then the boundary Σ′ of the largest convex set
among all those whose boundaries contain Σ−. Σ′ has a conical point v,
vertex of a cone Γ of revolution around ∆ and such that Σ′ ⊂ Γ ∪ Σ.

Then S = Γ∩Σ is a d− 1 sphere of radius sinα in Ed+1 and tanα in Σ′.

β

β/2

Γ ∩ Σ′

v
Σ−

α
α

We want to estimate, for a small α, the smallest possible distance rα from
the vertex v to a shorter path γ, in Σ′ and between points of S. Such a γ
lies in Γ ∩ Σ′ (in other words Γ ∩ Σ′ is convex in Σ′) and we note that

the open ball in Σ′ of center v and of radius rα is included in EΣ′,εα

with εα = 4 tanα. Actuallly this remains true if we substitute to Σ′ any
convex surface Σ′′ containing Γ ∩ Σ′ as a convex subset, so that we can also
consider a sphere modified by finitely many spaced enough conical point
creations.

Because of the revolution symmetry of Σ′, it is easy to check that γ
belongs to some tridimensional affine space, so that we can suppose that
d = 2 for the estimation of rα.

The curvature 2β concentrated at the vertices v is then given by

2π cosα = 2π − 2β
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(Γ ∩ Σ′ can be usually obtained by cutting from a disk with radius tanα a
sector with angle 2β and by pasting the part remaining). Thus we have

β = π(1− cosα) ∼ π

2
α2

(when α tends to zero) and

rα = tanα sin
β

2
∼ π

4
α3.

We can remember the estimations (the precise constants does not matter):
rα ∼ π

4
α3 and εa ∼ 4α.

Because of them, we will consider, for a function dimension h such that
h(t) = o(t3), small compact sets K in the following meaning:

DEFINITION 2 Let h be some function dimension and K a metric space.
Then K is strongly radially porous, respectively h-radially porous, if for
all x ∈ K, there exists a sequence of balls such that for each n we have

BK(x, rn) ⊂ BK(x, rn/n), respectively BK(x, rn) ⊂ BK(x, h(rn)), and with
the radius sequence (rn) decreasing of null limit.

One can equivalently use open or closed ball. h-radial porosity implies strong
radial porosity. When K is compact, strong radial porosity means that given
any n, r > 0, there exists a finite covering (B(xi, ri]) of K by pairwise dis-
jointed closed balls satisfying K∩B(x, ri] ⊂ B(x, ri/n], ri < r (it also implies
the h-radial porosity of K for an h depending on K); and h-radial porosity
means similarly that given any r > 0, there exists a finite covering of K
by pairwise disjointed closed balls satisfying K ∩ B(xi, ri] ⊂ B(xi, h(ri)] and
ri < r.

3 Most C ∈ B satisfy dimH EC ≥ d/3

Roughly speaking, our strategy for proving bigness of typical EΣ is to find
some big fixed compact set K who is included in most EΣ, up to some
parametrization of Σ by the unit sphere Sd. They are two canonical such
parameterizations for Σ = ∂C:

ΦC(x) = argmaxC(. | x) where (. | .) denotes the inner product of Ed+1,
and when C is strictly convex,
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{ΦC(x)} = Σ ∩ (cC + R+x) where cC ∈ IntC is the usual isobarycenter of
C (or for instance the center of the smallest ball containing C).

The first idea is not good because the map will not be bi-Lipschitz at all for
typical C. The second idea works well but induces some technical complica-
tion: when modifying slightly C you must also care about the modification
of the center. Because of this we will choose a fixed center in our proof.

Let Bc = {C ∈ B | c ∈ IntC}, it is an open subset of B, isometric
(both for the Euclidean and for the Hausdorff metric!) to B0 and B admits
a (countable) covering by such Bc. Because of this it will be very simple
to check that when some property (invariant under Euclidean isometries) is
shared by most C ∈ B0, then it is also shared by most C ∈ B.

Thus, for C ∈ B0 we will consider the bi-Lipchitzian map ΦC : Sd → ∂C
defined by

{ΦC(x)} = Σ ∩ (R+x).

We then define for any compact subset K of Sd :

GK = {C ∈ B0 | ΦC(K) ⊂ EC} =
⋂
ε>0

GK,ε

where GK,ε = {C ∈ B0 | ΦC(K) ⊂ EC,ε} is an open subset of B0 (because of
Lemma 1). So by the Baire theorem, to prove that most C ∈ B0 belong to
GK , it is enough to check that every GK,ε is dense in B0:

PROPOSITION 1 If K is an h-radially porous compact set of Sd, with
h(t) = o(t3), then GK,ε is dense in B0 for all ε > 0.

We will use the following Lemma (whose corresponding would be more in-
tricate if we had choosed a center cC depending on C, to define the parametriza-
tion ΦC):

LEMMA 2 Let K be a compact subset of the unit sphere Sd and let DK be
the set of all C ∈ B0 such that there exists a finite family (Bi) of balls such
that

ΦC(K) ⊂
⋃

int∂C(∂C ∩ ∂Bi).

Then a sufficient condition for DK to be dense in B0 is that K is strongly
radially porous.
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Proof of Lemma 2. The idea is that it is enough to prove that the adherence
of DK contains every C ∈ B0 who has curvature bounded by two positive real
numbers, and then to use the radial porosity of Φc(K) to get C ′ ∈ DK near
from C by intersecting C with some large balls Bi whose boundary spheres
don’t meet Φc(K), but in such a way that Φc(K) ⊂ C \C ′. We give however
more details though the reader may find them boring (or clumsy!).

Convex polytopes constitute a dense set in B0, idem for finite intersections
C of closed balls Bi with radius ri, and also do their Minkovski closed ball
Cr = {x ∈ Ed+1 | dist(x,C) ≤ r}, with r > 0. So for such a Cr and a given
ε > 0, we just need to find some C ′ ∈ DK with dH(Cr, C

′) < ε.
We observe the following curvature estimation: if a ∈ Σ = ∂Cr, there are

two Balls B and B′ with radius (not depending on a) r and R = r + max ri,
such that B ⊂ Cr ⊂ B′ and a ∈ ∂B ∩ ∂B′.

Let xa ∈ Sd be such that a = argmaxCr(. | xa). Let b ∈ Σ, ρ = ‖b − a‖
and rb be the radius of the sphere containing b and tangent in a to Σ. Let
t = (a−b | xa), we have then r2

b−(rb− t)2 = ρ2− t2, thus 2rbt = ρ2 . But r ≤
ra ≤ R, so we have: ∀a, b ∈ Σ,

√
2r(a− b | xa) ≤ ‖b−a‖ ≤

√
2R(a− b | xa).

As ΦCr(K) is porous for the Euclidean metric, it is pertinent to consider
some radius δ < ε and n ≥ 4

√
R/r such that in Ed we have:

ΦC(K) ∩ B(a, δ) ⊂ ΦC(K) ∩ B(a, δ/n)

Then the half space H = {c ∈ Ed+1 | (a − c | xa) ≥ δ2/8R} satisfies
c ∈ Σ ∩ ∂H ⇒ ‖c − a‖ ≤ δ/2 and also c ∈ Σ ∩H ⇒ 2δ/n ≤ ‖c − a‖. Thus
we have ∅ = ΦC(K) ∩ ∂H and ∅ = H ∩ ΦC(K) ∩ B(a, δ).

Thus we can find a finite family of closed half spaces Hi such that C ′′ =
Cr ∩

⋂
Hi satisfies C ′′ ∈ B0, dH(C,C ′) < ε, ∅ = ΦC(K) ∩ ∂Hi and ∅ =

C ′′ ∩ ΦC(K).
We then obtain the wanted C ′ = C ∩

⋂
H ′i ∈ B0 by replacing each Hi by

some well chosed close ball H ′i (with large radius).
Proof of Proposition 1. Because K is strongly porous, it is enough by
Lemma 2 to check that a given C ∈ DK necessarily belongs to the adherence
GK,ε of GK,ε. But because K is h-radially porous and because Φc is bi-
Lipschitzian, this follows from the estimations of Section 2 applied in each
∂Bi instead of Σ, and with a finite number of conical points created in each
∂C ∩ ∂Bi.

We now state a slightly stronger version of Theorem 1 (implying for in-
stance that typically, EC is not a countable union of sets of dimension < d/3):
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THEOREM 2 let h be some doubling dimension function such that td/3 =
o(h(t)). Then for most C ∈ B and for every no empty open subset ω of
Σ = ∂C, we have Hh(ω ∩ EΣ) =∞ and thus dimH(ω ∩ EΣ) ≥ d/3.

Thus we also have dimH(EΣ) ≥ d/3

The estimations of the Hausorff dimensions are obtained by taking for in-
stance h(t) = −td/3 ln t for all t > 0 small enough. Actually to prove that
most C satisfy dimH(EΣ) ≥ d/3, it is enough to consider the simplest case
where h(t) = tα for some 0 < α < d/3.
Proof of Theorem 2. As mentioned above, it is enough to prove the
properties for most C ∈ B0. This follows from:

LEMMA 3 For h as in Theorem 2, we can find a compact subset of Sd

satisfying Hh(K) > 0 and with K ϕ-radially porous for some dimension
function ϕ with ϕ(t) = o(t3).

Indeed by Proposition 1, GK is a Gδ dense in B0 . But this is also true for
any image K ′ of K by an isometry of Sd. Now if we choose a countable dense
set D of such isometries, then the intersection G of all GL, for L ∈ D(K),
will be a Gδ dense subset in B0 and every C ∈ G satisfies the properties
wanted in Theorem 2.
Remark. Lemma 3 implies that we can have dimH K ≥ d/3. Conversly it is
easily seen that the ϕ–radial porosity in Lemma 3 implies that Hd/3(K) = 0
and hence dimH K ≤ d/3.
Proof of Lemma 3. It is enough to define such a K in Rd, endowed with
the norm ‖.‖∞. We use for this a quite standard construction of a rather
regular Cantor set.

K will be the intersection of a decreasing sequence of compact sets (Kn).
Each Kn is the finite union of pairwise disjointed cubes of side rn, (more
precisely closed balls of radius rn/2). K0 = [0, 1]d. If C is one of the cube of
Kn−1 we divide it in Nd

n cubes Ci with sides ρn = rn−1/Nn and C ∩Kn will
be the union of the cubes C ′i where C ′i is the closed ball of radius rn and with
same center as Ci. rn, and thus Kn is defined by Nn and by the condition of
Hh-mass repartition:

h(rn−1) = Nd
nh(rn). (1)

Now there only remains to explain how we choose the integers Nn ≥ 2 at the
step n. For this we just need the following lemma, with s = d/3:
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LEMMA 4 Let 0 < s ≤ d and K be define as above, with some doubling
function dimension h = tsθ(t) such that θ(t) is decreasing on R∗+.

Then K is an h-set, i. e. 0 < Hh(K) <∞.
Moreover if θ has infinite limit in zero and if the sequence (Nn) increases

quickly enough, then we also have rn ≤ ρ
d/s
n /n and thus K is ϕ-radially

porous for a dimension function satisfying ϕ(t) = o(td/s).

Actually he second point does not require θ to be decreasing, nor h to be
doubling, but only that θ has infinite limit in zero.
Proof of Lemma 4. We begin by the second point which is quite easy: (1)
means now:

rsn−1θ(rn−1) = Nd
nr

s
nθ(rn)

that is

rn =

(
rn−1

Nn

)d/s( θ(rn−1)

rd−sn−1θ(rn)

)1/s

where rn ≤ rn−1/Nn . So we can take Nn large enough so that the second
term of the right product is less then 1/n. The function ϕ is then choosed

so that ϕ(ρn) = ρ
d/s
n /n.

To prove the first point, we can suppose that s = d, by changing θ(t) with
ts−dθ(t), moreover Hh(K) ≤ h(1) is immediate from the construction. The
proof of the contrary inequality is more tricky1 but standard: it is enough to
check that for every covering of K by closed balls Ci with side Ri we have:∑

i∈I

h(Ri) ≥ h(1)/R (2)

Actually, considering slight increase of the sides Ri, one sees that it is enough
to check (2) when K is covered by the interiors (intCi). As K is compact,
finite such coverings are enough. Because each of the d projections of K are
closed sets of empty interior in R, up to another slight change of (Ci) we can
also suppose that K ∩ ∂Ci = ∅, and thus that for some n, the boundaries
∂Ci never meet Kn. We have then for every cube of Kn (with side rn):

C ∩ Ci 6= ∅ ⇒ C ⊂ Ci (3)

1when h(t) = tα one can get a similar K = Ld for some compact L satisfying dimH L =
dimB L = α/d, see Falconer [5] exemple 4.7 p.59 and thus by corollary 7.4 p.95 ibid. get
dimH L

d = ddimH L = α.
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Finally we just have to check (2) for a finite covering of K by closed balls
satisfying (3) for some n. We can also suppose the left member of (2) minimal
with respect to n. We observe then that we get a covering (C ′i) of [0, 1]d by
cubes of sides denoted R′i, if we set:

If for some integer 1 ≤ k ≤ n we have Ri = rk, then C ′i is the larger cube
with side ρk and with same center as Ci; in that case we said that i ∈ A
and we remark that

h(Ri) =
h(rk−1)

Nd
k

= h(rk−1)
ρdk
rdk−1

= ρdkθ(rk−1) ≥ R′i
d
θ(1).

Else we said that i ∈ B and C ′i is the larger cube with side 2Ri and with
same center as Ci.

With this in mind, we have

∑
i∈I

h(Ri) ≥
∑
i∈A

R′i
d
θ(1) +

1

R

∑
i∈B

h(R′i) ≥ θ(1)
∑
i∈A

R′i
d

+
1

R

∑
i∈B

R′i
d
θ(R′i)

≥ θ(1)
∑
i∈A

R′i
d

+
1

R

∑
i∈B

R′i
d
θ(1) ≥ θ(1)

R

∑
i∈I

R′i
d ≥ θ(1)

R
=
h(1)

R

This proves Lemma 4. To conclude the proof of Lemma 3 we must observe
that we are concerned with a dimension function as in Theorem 2, that is
h(t) = td/3θ(t), with θ of limite infinite in zero. To apply Lemma 4, we must
explain that we can also suppose that θ is decreasing. This is true because
else we can set θ′(t) = inf ]0,t] θ and we can replace h with h′(t) = td/3θ′(t) ≤
h(t). For this we mainly have to check that h′ is nondecreasing. So we
choose 0 < t < t′ and then t′′ ≤ t′ such that θ(t′′) = θ′(t′); we can suppose
θ′(t′) 6= θ′(t) and we have then t′′ > t and thus

h′(t′) = t′
d/3
θ(t′′) ≥ h(t′′) ≥ h(t).

Finally it is easily seen that h′ is doubling when h is.
Remark. We could try to reinforce Proposition 1 by taking h(t) = td/3 and
replacing B0 with B0,R = {C ∈ B | B(0, 1/R) ⊂ C ⊂ B(0, R)} (to get a
uniform bilipschitz born for all the maps ΦC we are concerned with). But
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in the second point of Lemma 4, if we take h(t) = td/3, then we get by the
same calculus ρ3

n = o(rn). Because of this the reinforcement seems of no use
for our estimation of the size of EC .

Another canonical idea to slightly deform a ball B in view of creating
endpoints is to consider for instance the convex hull C of some compact
set K ⊂ ∂B, large enough in dimension and porous enough. But it seems
to us that it should not give better borns and that the proofs would be
more difficult, if not impossible to us, because we would not able to make
estimations analogous to the very simple ones of Section 2.

We end with a property involving this last idea. Let K denote the space
of all nonempty compact subsets K of Ed+1, endowed with the Pompeiu-
Hausdorff metric dH. Then we have:

PROPOSITION 2 For most K ∈ K, if Σ denotes the boundary of the
convex hull convK of K, then we have K ∩ Σ = EΣ.

Proof We observe first that K 7→ convK is continuous and thus that for
ε > 0, the set

Fε = {K ∈ K | K ∩ ∂ convK ⊂ E∂ convK,ε}

is open in K (because of Lemma 1). It is also dense because it contains all
finite K. From this we get that K ∩ Σ ⊂ EΣ for a typical K ∈ K. But it
is also known that each point a ∈ Σ \ K lies in the interior of some linear
segment [xy] ⊂ Σ joining points of K ∩ Σ, and thus a 6∈ EΣ.
Remark. Typical K ∈ K share rather surprising properties, for instance
they are Cantor sets of null Hausdorff dimension, but they also have a kind
of smoothness which implies the smoothness of convK, see [15]. One could
said that for a typical K ∈ K, convK is nearer from a convex polyhedron P
that is a typical convex body C. Some properties of convK are studied in
Gruber’s survey [6], in Wiaecker [11] and also in [9].

In a recent work Rouyer [10] has also studied main properties of compact
sets, who are typical in the Gromov-Hausdorff metric space of all metric non
empty compact spaces, up to isometry, endowed with the Gromov-Hausdorff
metric

dGH(A,B) = inf dH(f(A), g(B))

for all isometric injections f : A → E, g : B → E of A and B in a same
metric space E.
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