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Simplicial Homology for Future Cellular Networks
Anaïs Vergne, Laurent Decreusefond, Philippe Martins, Senior Member, IEEE

Abstract—Simplicial homology is a tool that provides a math-
ematical way to compute the connectivity and the coverage of a
cellular network without any node location information. In this
article, we use simplicial homology in order to not only compute
the topology of a cellular network, but also to discover the clusters
of nodes still with no location information. We propose three
algorithms for the management of future cellular networks. The
first one is a frequency auto-planning algorithm for the self-
configuration of future cellular networks. It aims at minimizing
the number of planned frequencies while maximizing the usage of
each one. Then, our energy conservation algorithm falls into the
self-optimization feature of future cellular networks. It optimizes
the energy consumption of the cellular network during off-peak
hours while taking into account both coverage and user traffic.
Finally, we present and discuss the performance of a disaster
recovery algorithm using determinantal point processes to patch
coverage holes.

Index Terms—Future cellular networks, Self-Organizing Net-
works, simplicial homology.

I. INTRODUCTION

L
ONG Term Evolution (LTE) is the 3GPP standard spec-

ified in Releases 8 and 9. Its main goal is to increase

both capacity and speed in cellular networks. Indeed, cellular

network usage has changed over the years and bandwidth

hungry applications, as video calls, are now common. Achiev-

ing this goal for both capacity and speed costs a lot of

money to the network operator. A solution to limit operation

expenditures is the introduction of Self-Organizing Networks

(SON) in LTE systems. 3GPP standards have indeed identified

self-organization as a necessity for future cellular networks

[1]. Self-organization is the ability for a cellular network to

automatically configure itself and adapt its behavior without

any manual intervention. Therefore, SON features can be

divided into self-configuration, self-optimization, and self-

healing functions. We will define and describe the features

we are interested in, for a further reading a full description of

SON in LTE can for instance be found in [2].

First, self-configuration functions aim at the plug-and-play

paradigm: new transmitting nodes should be automatically

configured and integrated to the existing network. Upon arrival

of a new node, the neighboring nodes update their dynamic

neighbor tables thanks to the Automatic Neighbor Relation

(ANR) feature. Among self-configuration functions, we can

find the dynamic frequency auto-planning. It is a known prob-

lem from spectrum-sensing cognitive radio where equipments

are designed to use the best wireless channels in order to

limit interference [3]. The different nodes of the secondary
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cognitive network have to choose the best frequency to use in

order to maximize the coverage and minimize the interference

with the base stations of the primary network. A similar

approach has been made in [4] for the spectrum allocation

of femtocells. However, there is no strict hierarchy between

the nodes of future cellular networks, all nodes pertain to the

primary network. Therefore these solutions can not always be

used here. Moreover, while in earlier releases, static frequency

planning was preferred, it has become a critical point to

allow dynamic configuration since the network has a dynamic

behavior with arrivals and departures of base stations, and does

not always follow a regular pattern with the introduction of

femtocells and relays in heterogeneous networks.

The second main SON feature is the category of the self-

optimization functions, which defines the ability of the net-

work to adapt its behavior to different traffic scenarios. Indeed,

in LTE cellular networks, eNode-Bs (eNB) have multiple

configurable parameters. An example is output power, so cells

sizes can be configured when capacity is the limitation rather

than coverage. Moreover, fast and reliable X2 communica-

tion interfaces connect eNBs. So the whole network has the

capability to adapt to different traffic situations. Then, users

traffic can be observed via eNBs and User Equipments (UEs)

measurements. Therefore, the self-optimization functions aim

at using these traffic observations to adapt the whole network,

and not only each cell independently, to the traffic situation.

One case where self-optimization is often needed is the adapta-

tion to off-peak hours. Typically a cellular network is deployed

to match daily peak hours traffic requirements. Therefore

during off-peak hours, the network is daily under-used. This

leads to a huge unneeded amount of energy consumption. An

idea is thus to switch-off some of the eNBs during off-peak

hours, while other eNBs adjust their configuration parameters

to keep the entire area covered. If the traffic grows, switched-

off eNBs can be woken up to satisfy the user demand.

The third and last of the SON main functions is self-healing.

In future cellular networks, nodes would be able to appear and

disappear at any time. Since the cellular network is not only

constituted of operated base stations anymore, the operator

does not control the arrivals or departures of nodes. But the

disappearances of nodes can be more generalized: for example

in case of a natural disaster (floods, earthquakes or tsunamis...),

several nodes do disappear at once. The self-healing functions

aim at reducing the impacts from the failures of nodes must

it be in isolated cases, like the turning off of a Femtocells,

or more serious cases where the whole network is damaged.

We are interested in this latter case, where some of the nodes

are completely destroyed. However cellular networks are not

necessarily built with redundancy and then can be sensitive

to such damages. Coverage holes can appear resulting in no

signal for communication at all in a whole area. Paradoxically,
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reliable and efficient communication is especially needed in

such situations. Therefore, solutions for damage recovery for

the coverage of cellular networks are much needed.

In this article, we use simplicial homology to comply with

the self-organization requirements of future cellular networks.

Simplicial homology provides a way to represent any wireless

network without any location information, and compute its

topology. A cellular network is then represented by a com-

binatorial object called abstract simplicial complex, and its

topology is characterized in two dimensions by the so-called

first two Betti numbers: the number of connected components

and the number of coverage holes. But the simplicial complex

representation does not only allow the topology computation,

but it also gives geographical information, such as which nodes

are in some clusters, or which ones are more homogeneously

distributed. We use this simplicial complex representation in

three algorithms that answer three specific aspects of SON

in future cellular networks. First, we propose a frequency

auto-planning algorithm which, for any given cellular network,

provides a frequency planning minimizing the number of fre-

quencies needed for a given accepted threshold of interference.

The algorithm calls several instances of a reduction algorithm,

introduced in [5], for the allocation of each frequency. Using

simplicial complex representation combined to the reduction

algorithm allows us to obtain a homogeneous coverage be-

tween frequencies. In a second part, we enhance the reduction

algorithm to satisfy any user traffic. The reduction algorithm,

as it is presented in [5], only satisfies perfect connectivity and

coverage. However, in cellular networks, especially in urban

areas, coverage is not the limiting factor, capacity is. So the

optimal solution is not optimal coverage anymore but depends

on the required traffic. We present an enhanced reduction

algorithm to reach an optimally used network. Finally, we

present an algorithm for disaster recovery of wireless networks

first introduced in [6]. Given a damaged cellular network, the

algorithm first adds too many nodes then runs the reduction

algorithm of [5] to reach an optimal result. For the addition of

new nodes we propose the use of a determinantal point process

which has the inherent ability to locate areas with low density

of nodes: namely coverage holes. We thoroughly evaluate the

performance of our three homology-based greedy algorithms,

providing complexity results and performance comparison

with three graph-based greedy algorithms.

The remainder of this article is organized as follows. After a

section on related work on self-configuration, self-optimization

and recovery of future cellular networks in Section II, we

introduce some simplicial homology definitions as well as the

reduction algorithm for simplicial complexes used all along the

article in Section III. Then in Section IV, we introduce our

frequency auto-planning algorithm. The energy conservation

algorithm is presented in Section V. Then, we provide the

disaster recovery algorithm description and in Section VI.

Finally, we conclude in the last section.

II. RELATED WORK

A. Self-configuration in future cellular networks

During the deployment of a cellular network, its different

nodes (eNBs, relays, femtocells) has to be configured. This

configuration happens first at the deployment, then upon every

arrival and departure of any node. The classic manual config-

uration done for previous generations of cellular networks can

not be operated in future cellular networks: changes in the net-

work occur too often. Moreover, the dissemination of private

femtocells leads to the presence in the network of nodes with

no access for manual support. So the future cellular networks

are heterogeneous networks with no regular pattern for their

nodes. They need to be able to self-configure themselves. The

initial parameters that a node needs to configure are its IP

adress, its neighbor list and its radio access parameters. IP

adresses are out of the scope of this work, but we will discuss

the two other parameters.

The selection of the nodes to put on one’s neighbor list can

be based on the geographical coordinates of the nodes and

take into account the antenna pattern and transmission power

[7]. However, this approach does not consider changing radio

environment, and requires exact location information which

can be easy to obtain for eNBs, but not for Femtocells. The

authors of [8] propose a better criterion for the configuration

of the neighbor list: each node scans in real time the Signal to

Interference plus Noise Ratio (SINR) from other nodes, then

the nodes which SINR are higher than a given threshold are

included in the neighbor list. The neighbor list of a node is then

equivalent to connectivity information between nodes. This is

the only information needed in order to build the simplicial

complex representing a given cellular network.

Among radio access parameters, we can find frequency but

also propagation parameters since the apparition of beam-

forming techniques via MIMO. Let us focus on the former

which is the subject of Section IV. The frequency planning

problem was first introduced for GSM networks. However the

constraints were not the same: the frequency planning was

static with periodic manual optimizations, and in simulations,

base stations were regularly deployed along an hexagonal

pattern. With the deployments of Femtocells, outdoor relays,

and Picocells, future cellular networks vary from GSM net-

work in two major points. First, cells do not follow a regular

pattern anymore, then they can appear and disappear at any

time. Therefore the frequency planning problem has to be

rethought in an automatic way. A naive idea for frequency

auto-planning would simply be applying the greedy coloring

algorithm to the sparse interference graph [9]. However, even

if the provided solution may be optimal for the number of

needed frequencies, the utilization of each frequency can be

disparate: one can be planned for a large number of nodes

compared to another planned for only few of them. Then if

the level of interference increase (more users, or more powered

antennas), this could lead to communication problems for the

over-used frequency, and a whole new planning is needed.

On the contrary, a more homogeneous resource utilization

can be more robust if interference increase, since there are

less nodes using the same frequency on average. We provide

here a frequency auto-planning algorithm which aims at a

more homogeneous utilization of the resources. Moreover,

the planning of frequency channels for new nodes that do

not interfere with existing nodes while still providing enough

bandwidth is still an open problem. It has been addressed in
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the cognitive radio field, but these algorithms usually enable

opportunistic spectrum access [10]. However, it is not possible

to extend this type of algorithm to the frequency allocation of

new nodes in cellular networks. Indeed, the new nodes would

be part of the primary network, with a quality of service to

achieve, so their frequency allocation needs to be guaranteed

and not opportunistic. In [4], the authors propose a spectrum

allocation for femtocells in a cellular network that is more

suited to our needs. However, the frequency planning of the

femtocells occurs after the frequency planning of the main

cells (eNBs). We propose an algorithm that do not distinguish

between the type of cells of the networks. Indeed there are

more type of cells than exactly two, relays fall in between

and femtocells are not necessarily alike. In our algorithm, the

planning of all the nodes: eNBs, relays or femtocells, is done

together.

B. Self-optimization in future cellular networks

In order to ensure that future cellular networks are still

efficient in terms of both Quality of Service (QoS) and costs,

the self-configuration is not sufficient. Indeed, future cellular

networks have the ability to adjust their parameters to match

different traffic situation. Periodic optimization based on log

reports, and operated centrally is not an effective solution

in terms of speed and costs. That is why we need self-

optimization. Self-optimization can be classified in three types

depending on its goal.

First we can consider load balancing optimization. There is

multiple ways to adapt a cellular network to different loads:

it is for example possible to adapt the resources available in

different nodes. These schemes were mainly introduced for

GSM [11], and then CDMA [12], but the universal frequency

reuse of LTE and LTE-Advanced diminishes their applicabil-

ity. Then one can adapt the traffic strategy with admission

controls on given cells and forced handovers [13]. However,

as the previous solution, it is not very suitable for OFDMA

networks which require hard handover. Finally it is possible to

modify the coverage of a node by changing either its antennas

radiation pattern [14] or the output power [15]. We use this

latter approach to reach an optimal result for our algorithm:

we adapt the coverage radius of each node to be the minimum

required to cover a given area.

The second type self-optimization is the capacity and cov-

erage adaptation via the use of relay nodes [16], while the

third is interference optimization. Our energy conservation

algorithm presented in Section V could lie in this third

category as the simplest approach towards interference control

is switching off idle nodes. It is done based on cell traffic for

Femtocells in [17]: after a given period of time in idle mode,

the node puts itself on stand-by. However, if one wants to

take into account the whole network, it has to consider the

coverage of the network before disconnecting, which is not

the case of Femtocells, which are by definition redundant to

the base stations network. Without considerations of traffic, we

proposed in [5] an algorithm that reduces power consumption

in wireless networks by putting on stand-by some of the nodes

without impacting the coverage. We can also cite [18] that

proposes a game-theoretic approach in which nodes are put

on stand-by according to a coverage function, but unmodified

coverage is not guaranteed. In both these works, only coverage

is taken into account. This approach could eventually fit the

requirements of cellular network in non-urban cells, if their

deployment has coverage redundancy. But it is not valid for

urban cells, where it is not coverage but capacity that delimits

cells. Our present algorithm goes a little bit further by adapting

the switching-off of the nodes to the whole network situation,

considering both traffic and coverage.

C. Recovery in future cellular networks

The first step of recovery in cellular networks is the detec-

tion of failures. The detection of the failure of a cell occurs

when its performance is considerably and abnormally reduced.

In [19], the authors distinguish three stages of cell outage:

degraded, crippled and catatonic. This last stage matches

with the event of a disaster when there is complete outage

of the damaged cells. After detection, compensation from

other nodes can occur through relay assisted handover for

ongoing calls, adjustments of neighboring cell sizes via power

compensation or antenna tilt. In [20], the authors not only

propose a cell outage management description but also de-

scribe compensation schemes. These steps of monitoring and

detection, then compensation of nodes failures are comprised

under the self-healing functions of future cellular networks

described in [21].

In Section VI, we are interested in what happens when self-

healing is not sufficient. In case of serious disasters, the com-

pensation from remaining nodes and traffic rerouting might

not be sufficient to provide service everywhere. In this case,

the cellular network needs a manual intervention: the adding

of new nodes to compensate the failures of former nodes.

However a traditional restoration with brick-and-mortar base

stations could take a long time, when efficient communication

is particularly needed. In these cases, a recovery trailer fleet

of base stations can be deployed by operators [22], it has been

for example used by AT&T after 9/11 events. But a question

remains: where to place the trailers carrying the recovery

base stations. An ideal location would be adjacent to the

failed node. However, these locations are not always available

because of the disaster, plus the recovery base stations may not

have the same coverage radii than the former ones. Therefore

a new deployment for the recovery base stations has to be

decided, in which one of the main goal is complete coverage

of damaged area. This can be viewed as a mathematical set

cover problem, where we define the universe as the area to

be covered and the subsets as the balls of radii the coverage

radii. Then the question is to find the optimal set of subsets that

cover the universe, considering there are already balls centered

on the existing nodes. It can be solved by a greedy algorithm

[23], ǫ-nets [24], or furthest point sampling [25], [26]. But

these mathematical solutions provide an optimal mathematical

result that do not consider any flexibility at all in the choosing

of the new nodes positions, and that can be really sensitive to

imprecisions in the nodes positions.

For a further reading, a complete survey on SON for future

cellular networks is given in [27].
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III. PRELIMINARIES

A. Simplicial homology

First we need to remind some definitions from simplicial

homology for a better understanding of the simplicial complex

representation of cellular networks.

When representing a cellular network with only connectivity

information (i.e. neighbors lists) available, one’s first idea

will be a neighbor graph, where nodes are represented by

vertices, and an edge is drawn whenever two nodes are on

each other neighbors list. However, the graph representation

has some limitations; first of all there is no notion of coverage.

Graphs can be generalized to more generic combinatorial

objects known as simplicial complexes. While graphs model

binary relations, simplicial complexes represent higher order

relations. A simplicial complex is a combinatorial object

made up of vertices, edges, triangles, tetrahedra, and their n-

dimensional counterparts. Given a set of vertices V and an

integer k, a k-simplex is an unordered subset of k+1 vertices

[v0, v1 . . . , vk] where vi ∈ V and vi 6= vj for all i 6= j. Thus,

a 0-simplex is a vertex, a 1-simplex an edge, a 2-simplex a

triangle, a 3-simplex a tetrahedron, etc.

Any subset of vertices included in the set of the k+1 vertices

of a k-simplex is a face of this k-simplex. Thus, a k-simplex

has exactly k+1 (k−1)-faces, which are (k−1)-simplices. For

example, a tetrahedron has four 3-faces which are triangles.

A simplicial complex is a collection of simplices which is

closed with respect to the inclusion of faces, i.e. all faces

of a simplex are in the set of simplices, and whenever two

simplices intersect, they do so on a common face. An abstract

simplicial complex is a purely combinatorial description of the

geometric simplicial complex and therefore does not need the

property of intersection of faces. For details about algebraic

topology, we refer to [28].

Given an abstract simplicial complex, its topology can be

computed via linear algebra computations. The so-called Betti

numbers are defined to be the dimensions of the homology

groups and are easily obtained by the rank-nullity theorem,

of which a proof is given in [28]. But the Betti numbers also

have a geometrical meaning. Indeed, the k-th Betti number

of an abstract simplicial complex X is the number of k-

th dimensional holes in X . In two dimensions we are only

interested in the first two Betti numbers: β0 counts the number

of 0-dimensional holes, that is the number of connected

components, and β1 counts the number of holes in the plane,

i.e. coverage holes. Therefore computing the Betti numbers of

an abstract simplicial complex representing a cellular network

gives the topology of the initial network.

For the remainder of the paper we may drop the adjective

“abstract” from abstract simplicial complex, since every sim-

plicial complex in this paper is abstract.

B. Reduction algorithm

In this section, we recall the steps of the reduction algorithm

for abstract simplicial complexes presented in [5] that we will

use all along this article. The algorithm takes as input an

abstract simplicial complex: here it is the complex representing

the cellular network, and a list of boundary vertices that can be

given by the network operator. This list of boundary vertices

is needed in order to define the area of the network and not

shrink it during the process of reduction.

Then the goal of the reduction algorithm is to remove ver-

tices form the abstract simplicial complex without modifying

its Betti numbers. That translates to a network by turning off

nodes from the network without modifying nor its connectivity

neither its coverage.

To cover an area, only 2-simplices are needed. So the

first step of the reduction algorithm is to characterize the

superfluousness of the 2-simplices of the complex for its

coverage. To do that, we define a degree for every 2-simplices:

a degree of a 2-simplex is the size of the largest simplex it is

the face of:

Definition 1: We define the degree of a 2-simplex [v0, v1, v2]
to be the size of the greatest simplex it is part of:

D[v0, v1, v2] = max{d | [v0, v1, v2] ⊂ d-simplex}.

For future algorithms descriptions, we will simply denote

D1(X), . . . , Ds2(X) the s2 degrees of the s2 2-simplices of

the complex X , with sk being the number of k-simplices of

X .

Next, in order to remove vertices, and not 2-simplices, we

need to transmit the superfluousness information of its 2-

cofaces (2-simplices it is a face of) to a vertex via what is

called an index. An index of a vertex is defined to be the

minimum of the degrees of the 2-simplices it is a face of.

Indeed, a vertex is as sensitive for the coverage as its most

sensitive 2-simplex. The boundary vertices are given a negative

index to mark them as unremovable by the algorithm: we do

not want the covered area to be shrunk.

Definition 2: The index of a vertex v is the minimum of the

degrees of the 2-simplices it is a vertex of:

I[v] = min{D[v0, v1v2] | v ∈ [v0, v1, v2]},

If v, a vertex, is a boundary vertex, then I[v] = −1.

Finally, the indices give an optimal order for the removal of

the vertices: the greater the index of a vertex, the bigger the

cluster it is part of, and the more likely it is superfluous for

the coverage of its abstract simplicial complex. Therefore, the

vertices with the greatest index are candidates for removal:

one is chosen randomly. If its removal does not change the

homology, i.e. if it does not modify its Betti numbers β0 and

β1, then it is effectively removed. Otherwise it is flagged as

unremovable the same way the boundary vertices are. The

algorithm goes on until every remaining vertex is unremovable,

thus achieving optimal result.

For more information on the reduction algorithm we refer

to [5].

C. Simulation model

We want to represent the nodes of a cellular network and

its coverage. We are interested in future cellular networks

equipped with SON technology, that means cellular networks

of 4-th and higher generation. For example for a LTE network,

its nodes are the eNBs, femtocells, and relays that constitute it.

Then we want to compute the network’s coverage constituted
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of coverage disks centered on the nodes. The C̆ech abstract

simplicial complex provides the exact representation of the

network’s coverage. Its construction for a fixed coverage radius

r for all the network’s nodes is given:

Definition 3 (C̆ech complex): Given (X, d) a metric space,

ω a finite set of points in X , and r a real positive number. The

C̆ech complex of ω, denoted Cr(ω), is the abstract simplicial

complex whose k-simplices correspond to (k + 1)-tuples of

vertices in ω for which the intersection of the k + 1 balls of

radii r centered at the k + 1 vertices is non-empty.

However, the C̆ech complex can be hard to compute, and

requires some geographical information that is not always

available. For instance Femtocells are not GPS-enabled. There

exists an approximation of the coverage C̆ech complex that

is only based on the connectivity information: the so-called

neighbor list of each nodes of a SON-capable cellular network.

This approximation is the Vietoris-Rips abstract simplicial

complex which is defined as follows:

Definition 4 (Vietoris-Rips complex): Given (X, d) a metric

space, ω a finite set of points in X , and r a real positive

number. The Vietoris-Rips complex of parameter 2r of ω,

denoted R2r(ω), is the abstract simplicial complex whose k-

simplices correspond to unordered (k + 1)-tuples of vertices

in ω which are pairwise within distance less than 2r of each

other.

The definitions of the C̆ech and the Vietoris-Rips complex

of a cellular network can be extended to include different

distance parameters in order to represent nodes with different

coverage radii. The C̆ech complex represents the network and

its exact topology. However, using the Vietoris-Rips complex

representation, it is possible to have so-called triangular holes

in the network that do not appear in the complex. The

probability of that happening in computed in [29], and in our

case where it is upper-bounded by about 0.03% for a cellular

network simulated with a Poisson point process.

In simulations and figures, we can consider either a com-

munication/coverage disk approach, or directly a neighbor list

approach. In the first case, any node within the communication

disk of a given node is added to its neighbor list, or when two

coverage disks of two nodes intersect they are added to each

other neighbor lists. Note that communication radii are larger,

usually twice as large, than coverage radii. Finally, the abstract

simplicial complex of Vietoris-Rips type is then build based

on the neighbor lists.

IV. SELF-CONFIGURATION FREQUENCY AUTO-PLANNING

ALGORITHM

A. Problem formulation

In the frequency planning problem, the topology of the

network is not relevant since it is not modified. So we use

the simplicial complex representation only for the character-

ization of clusters without location information, and not for

topology computation. First we need to build the abstract

simplicial complex representing the cellular network. In future

cellular networks, every transmitting nodes (eNBs, Femtocells,

relays...) have a neighbor list created and updated with the

ANR feature. With this neighbor list information, we can build

the abstract simplicial complex representing the network, each

node is represented by a 0-simplex and each neighbor, either

1-way or 2-way, relationship is represented by a 1-simplex.

The other simplices are then created with only the 1-simplices

information (when three 0-simplices are connected via three

1-simplices then a 2-simplex is created, and so on).

The goal of a frequency planning algorithm is to assign

frequencies to every network’s nodes so that the interference

between them is minimum using the smallest number of

frequencies possible. In this article, we only consider the

one frequency per node case, and co-channel interference:

interference between two nodes using the same frequency.

However, the main idea of the algorithm can be extended

to several frequencies per node, and interference between

different frequencies by considering group of frequencies.

Interference is a two nodes relationship so we represent it

by an interference graph. Two nodes linked by an edge in the

interference graph shall not share the same frequency or the

interference level will be too high for reliable communication

inside at least one of the two cells.

B. Algorithm description

We consider a cellular network, nodes and communication

radii, as we can see an example in Fig. 1, of which we

compute its abstract simplicial complex representation based

on the neighbor lists. In Fig. 2, we can see the interference

graph. In our example we choose the interference to be only

distance-based. In the general case, the only requirement for

the interference model is that it can be represented by a graph

constant throughout the frequencies and the duration of the

configuration. We can see that the configuration of Fig. 2 will

need 4 frequencies because of the 4 linked nodes on the left.
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Fig. 1. A cellular network and its abstract simplicial complex representation.

The goal of the algorithm is than to assign a frequency

to each node so that no to nodes with interference share

the same frequency. The algorithm begins by selecting the

nodes that will receive the first frequency available. To do

that, we apply a modified version of the reduction algorithm

presented in Section III. It “removes” nodes until obtaining a

interference-free configuration of nodes that receive the first

frequency. The order in which the nodes are removed is still

decided by the indices but the stopping condition is not the

same as in simple reduction. Instead of stopping when the

maximum index among every remaining nodes is below a

given number, the algorithm stops when there is no more



6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 2. Interference graph.

pair of nodes connected to one another in the interference

graph. The resulting nodes of the reduction algorithm are then

assigned the first frequency and put aside for the remaining of

the algorithm.

All the previously “removed” nodes are then collected, and

the corresponding abstract simplicial complex recovered. This

complex is a subset of the initial complex so there is no need

to build another one from scratch. The next step is then to

reapply the modified reduction algorithm to this recovered

complex to obtain a second set of nodes to which we assign

the second frequency. The algorithm goes on until every node

has an assigned frequency.

At the end, we have a frequency assigned to every node.

We ensured that no two nodes sharing the same frequency

will be too close to each other: interference will be under a

given threshold. Moreover, the use of our coverage reduction

algorithm with the optimized order for nodes removal allows

us to obtain a homogeneous usage of every frequency.

The frequency planning scheme obtained by our algorithm

for the configuration of Fig. 1 is represented in Fig. 3. A

different color represent a different frequency. We can see that

our algorithm has planned four frequencies (black, red, green

and blue) of which we can see the communication area for

each one in Fig. 4.
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Fig. 3. Frequency planning scheme.

We give in Algorithm 1 the full frequency auto-planning

algorithm. It requires the set of nodes ω, and the neighbor lists

Ln(v) for each node v in ω to build the abstract simplicial

complex. If instead of the neighbor lists, one considers the

communication radii r, then the abstract simplicial complex

is the Vietoris-Rips complex R2r(ω). Plus, we need to build

the interference graph, so we consider an interference list
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Fig. 4. Coverage for each frequency.

Li(v) for each node v that contains the list of nodes v
has interference with. Then the algorithm returns the list of

assigned frequencies for every node of ω.

We introduce three parameters in the algorithm description

that we define here for a better understanding. First, Nassigned is

the number of nodes to which a frequency is assigned. Then, I
is a binary number that is equal to one if there are at least one

node with potentially the same frequency than another node

in its interference list and zero otherwise. Finally, f(v) is the

frequency assigned to the vertex v ∈ ω.

For the simplicial complex X , we denote sk the number

of its k-simplices, and v1, . . . , vs0 its s0 vertices. We do not

detail the computations of the degrees D1(X), . . . , Ds2(X) of

the 2-simplices and the indices I[v1(X)], . . . , I[vs0(X)] which

are explained in [5].

C. Simulation and complexity

First, in simulations, we create the set of nodes with a

Poisson point process of intensity λ = 12 on a square of

side a = 2. Then we draw a communication radius for

every node uniformly between a/10 and 2/
√
πλ and we build

the Vietoris-Rips complex. The complexity of building the

complex is in O(NC), where N is the number of nodes and

C is the clique number, i.e. the size of the largest simplex in

the complex. If communication radii are equal to a given r,

then C is upper-bounded by N
(

r
a

)2
in the general case. This

bound can be improved depending on the percolation regimes,

see [30].

We want to create distance-based interference depending

on the different communication radii of the nodes, so we

introduce a so-called “rejection” radius. Then, each node has

a rejection radius that is a growing function of its communica-

tion radius. In simulations, the rejection radii are equal to half

their corresponding communication radii. This rejection radius
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Algorithm 1 Frequency auto-planning algorithm

Require: Set ω of N vertices, for each vertex v its neighbor

list Ln(v), and its interference list Li(v).
Computation of the abstract simplicial complex X based

on ω and the Ln lists

Computation of D1(X), . . . , Ds2(X)
Computation of I[v1(X)], . . . , I[vs0(X)]
Imax = max{I[v1(X)], . . . , I[vs0(X)]}
Nassigned = 0
I = 1
X ′ = X
i = 0
while Nassigned < N do

while I == 1 do

Draw w a vertex of index Imax

X ′ = X ′\{w}
Re-computation of D1(X

′), . . . , Ds′
2
(X ′)

Re-computation of I[v1(X
′)], . . . , I[vs′

0
(X ′)]

Imax = max{I[v1(X ′)], . . . , I[vs′
0
(X ′)]}

I = 0
for all u, v ∈ X ′ do

if u ∈ Li(v) or v ∈ Li(u) then

I = 1
end if

end for

end while

for all v ∈ X ′ do

f(v) = i
Nassigned = Nassigned + 1

end for

X ′ = X\X ′

i = i + 1
end while

return Assigned frequencies f(v), ∀v ∈ ω.

creates a rejection disk. If a given node is inside the rejection

disk of another node, then it appears in its interference list

and they are linked by an edge in the interference graph.

The complexity of building the interference graph is negligible

compared to the complexity of building the abstract simplicial

complex.

Then, the complexity of the frequency auto-planning algo-

rithm is upper-bounded by the complexity of the reduction

algorithm that is called Nf times, if Nf is the number of

assigned frequencies. The complexity of the reduction algo-

rithm is Ns2

(

N +
∑C−1

k=3
sk

)

in the general case according

to [5]. However it can be simplified when the set of nodes is

drawn uniformly, as in a Poisson point process, on a square,

the communication radii are all equal to a given r, and the

complex is a Vietoris-Rips one. In this case, the complexity

is in O((1 + ( r
a
)2)N ), see [5]. Therefore the final complexity

of our algorithm is in O(Nf (1 + ( r
a
)2)N ).

We can see that the complexity of our algorithm is highly

dependent on the choice of the simplicial complex repre-

sentation. But this representation is needed if one wants to

compute the topology of a network, and obtain clustering

information without location information. We do not compare

the complexity of our homology-based algorithm to classic

graph-based algorithms since the homology parameters we

encounter such as the radius r are not relevant in a graph-

based approach.

D. Performance comparison

In this section, we compare the performance of our fre-

quency auto-planning algorithm to the greedy coloring algo-

rithm. We choose this algorithm because our algorithm, as well

as the reduction algorithm, and consequently every algorithm

proposed in this article is of greedy type. Thus we compare

two greedy algorithms, ours is simplicial homology-based,

while the coloring algorithm is graph-based.

The frequency planning can be viewed as a graph coloring

problem. If one considers the interference graph, then the op-

timal number of frequencies to assign is the chromatic number

of the interference graph. The greedy coloring algorithm pro-

vides a coloring assigning the first new color available for each

node. Therefore, the greedy coloring algorithm is a frequency

planning algorithm. And the number of frequencies planned is

at most the maximum node degree of the interference graph

plus one. The greedy coloring gives especially good results

for sparse graphs as the interference graph is. So the first

parameter that we will use to compare the performance of

both algorithm is the number of planned frequencies.

For each realization of the Poisson process, we compute

the number of frequencies planned by the greedy coloring

algorithm that we denote Ng. Then on all realizations with

a given Ng , we compute the mean number of frequencies,

denoted Nf , planned by our algorithm, so we can see the

difference between the two algorithms. We also indicate

which percentage of the simulations these scenarios are, the

occurrence is added for statistical information. The results are

obtained in mean over 104 configurations.

Ng 2 3 4 5 6
E

[

Nf |Ng

]

4.00 5.04 5.83 6.43 7.13
Occurrence 8.8% 55.6% 29.4% 5.3% 0.7%

TABLE I
MEAN NUMBER OF PLANNED FREQUENCIES.

In Table I, we can see the mean number of frequencies

planned by our algorithm given the number of frequencies

planned by the greedy coloring algorithm. We can see that

there is a difference between the two solutions: it is not

negligible in the beginning, but it decreases with the num-

ber of frequencies. Thus, our algorithm reaches its optimal

performance when the number of frequencies grows for the

same mean number of nodes, that is to say when there are

clusters of nodes.

However, even if the greedy coloring algorithm fares well

in the number of planned frequency, it leads to a disparate

utilization of frequencies. Indeed, if there is only one clique

of maximum size, one frequency will be only used for one

node of this clique, and for no other node in the whole

configuration. Therefore, the greedy coloring algorithm give

good results for a homogeneous network, but not for a cluster
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network for example. For an optimal utilization of frequencies,

each frequency should cover the whole area, but it is not

always achievable if there are not enough nodes to cover

several times the whole area. Our algorithm aims at a more

homogeneous utilization of each ressource. In order to show

that, we compare the percentage of area covered by each

frequency on the total covered area for our frequency auto-

planning algorithm and for the greedy coloring algorithm. We

consider an area to be covered by a frequency if it is inside

the communication disk of a node using this frequency. The

percentages are given in mean over 104 simulations using the

same setting as in the first comparison.

Greedy coloring algorithm
Ng 3 4 5 6
f1 97.3% 97.0% 96.7% 96.3%
f2 47.6% 50.1% 49.9% 51.1%
f3 12.9% 17.7% 18.8% 20.2%
f4 7.2% 8.8% 8.5%
f5 6.2% 6.7%
f6 6.2%

Occurrence 55.6% 29.4% 5.3% 0.7%

Frequency auto-planning algorithm
Nf 3 4 5 6
f1 71.3% 62.1% 54.2% 49.2%
f2 62.3% 56.4% 51.7% 47.4%
f3 35.6% 46.4% 45.7% 42.9%
f4 24.3% 35.6% 37.8%
f5 18.8% 28.1%
f6 15.3%

Occurrence 7.0% 23.0% 29.4% 22.6%
TABLE II

MEAN PERCENTAGE OF COVERED AREA FOR EACH FREQUENCY

We can see in Table II the percentage of area covered

by each frequency planned by our algorithm and the greedy

coloring algorithm. The results are presented depending on the

number of planned frequencies, we also indicate the number of

simulations these results concern for statistical relevance. For

our algorithm, even if the percentage decreases with the order

in which the frequencies are planned, which is logical since

the first frequency is planned in first and so on, we can see that

a rather homogeneous coverage is provided. Doing that, our

algorithm maximizes the usage of each resource. We can see

that for the greedy coloring algorithm, the frequencies are not

used equally: the first two frequencies are always a lot more

planned than the other ones, the latter are thus under-used.

V. SELF-OPTIMIZATION ENERGY CONSERVATION

ALGORITHM

A. Problem formulation

We are now interested in the self-optimization of a cellular

network previously configured. Indeed, during off-peak hours

a cellular network is under-used, we propose an algorithm that

aims at reducing the energy consumption when user traffic is

reduced.

First we want to represent the considered cellular network

and its topology with an abstract simplicial complex. The

network is constituted of transmitting nodes and their as-

sociated coverage disks. In future cellular networks, these

coverage disks can vary in size by modifying the configuration

parameters of the base stations. We choose to consider here

the maximum size of these disks in order to maximize the

coverage of each node so that a maximum number of nodes

can be switched-off. Maximizing the coverage disk of one

node induces maximizing the size of its neighbor list. Then

we build the abstract simplicial complex representing the

network and its maximum neighbor lists. After that, we have

to consider boundary nodes differently from the other ones.

Indeed, these nodes allow us to delimit the area to cover.

Finally we have to define how we represent user traffic in

the cellular network. In our simulations, we choose to create

groups of network nodes. Then for each group of nodes, the

required quality of service (QoS) is a given number of nodes

that are required to stay on in order to satisfy the traffic of

the users inside that group coverage. Therefore, every group

of nodes has a required minimum size. This QoS metric is

quite artificial, but our algorithm can take into account any

QoS as long as it is defined in terms of required number of

ressources from a given pool of ressources available to a given

group of nodes. We choose to implement this simplistic metric

because it is the easiest one to implement. Other metrics can

be considered, the only rule being that one node must pertain

to exactly one group.

B. Algorithm description

We consider a cellular network with transmitting nodes and

their maximal coverage radii that we represent with an abstract

simplicial complex. We can see an example of network and

its complex associated in Fig. 5. The boundary nodes are

computed here via the convex hull and are in red in the figure.
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Fig. 5. A cellular network and its abstract simplicial comple representation.

Then for the configuration of Fig. 5, we represent the QoS

groups of nodes in different colors, and give a table with their

corresponding size and required QoS in Fig. 6.

The algorithm then begins by the computation of the Betti

numbers. They characterize the topology of the network that

we do not want to modify: the number of connected com-

ponents and the number of coverage holes. In the example

of Fig. 5, there is one connected component,β0 = 1, and no

coverage hole, β1 = 0. Then the algorithm aims at reducing

the number of nodes as the reduction algorithm presented in

Section III, but we want to keep enough nodes to satisfy the

traffic represented by a minimum number of nodes to keep on

by group. So we apply a modified reduction algorithm with
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Groups 1 2 3 4 5 6 7 8 9 10

Size 8 7 6 6 5 3 2 2 2 1
QoS 3 5 5 4 2 1 1 1 2 1

Fig. 6. QoS groups and required QoS.

a different breaking point. Instead of stopping when the area

is covered by a minimum number of nodes, the algorithm

stops when each group of nodes has been reduced to the size

of its required QoS. We can see the obtained result for the

configuration of Fig. 5 and Fig. 6 in Figure 7. The kept nodes

are circled.
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Fig. 7. Kept nodes.

The cellular network and its abstract simplicial complex

representation is represented in Fig. 8.
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Fig. 8. The network after the first step.

Finally, given this configuration of switched-on nodes, the

algorithm tries to reduce as much as possible the coverage radii

of each node without creating a coverage hole to minimize the

energy consumption. In Fig. 9, we can see the final config-

uration of the cellular network with the optimized coverage

radii and its abstract simplicial complex representation for the

configuration of Fig. 5.
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Fig. 9. Final configuration.

In the end, we have a configuration of nodes to keep

switched-on that is optimal. From the first part of the algo-

rithm, we ensure that enough nodes are kept on to satisfy

the QoS representing user traffic. Then, in the second part of

the algorithm, we ensure that no energy is spend uselessly by

optimizing the size of the serving cells.

We give in Algorithm 2 the full energy conservation algo-

rithm. It requires the set of nodes ω and their neighbor lists in

order to build the abstract simplicial complex. If instead of the

neighbor lists, one considers the communication radii r, then

the abstract simplicial complex is the Vietoris-Rips complex

R2r(ω). Or if one wants to represent the exact topology and

considers the coverage radii r, then it is the C̆ech complex

Cr(ω).
The groups are represented by the variable G(v) that for

each node v gives its group number. Then for a given group

g, Q(g) is the minimum number of nodes required by the

QoS, while S(g) is its number of nodes. So we always have

Q(g) ≤ S(g). Either these parameters have to be given as

input, or the way to compute them is to be integrated into the

algorithm. We can see that the breaking point of the “while”

loop of the algorithm takes the QoS parameter Q into account.

Then a node can be removed if and only if it does not modify

the Betti numbers of the abstract simplicial complex, and it is

not needed for the QoS requirements.

Optional coverage radii reduction for each node is done

in the last loop. If one wants to implement that last step,

then maximum coverage radii are needed in input. The order

in which the coverage radii are examined is random. The

reduction can be made by steps for example. At the end, the

algorithm returns the list of kept nodes with their new coverage

radii.

C. Simulation and complexity

As in the previous section, we simulate the set of nodes

with a Poisson point process on a square of side a = 2.

However, since we need boundary nodes and do not need

a great number to see the efficiency of the algorithm, the

intensity of the Poisson point process is lowered to λ = 6.

Then the coverage radii of the vertices from the Poisson point

process are sampled uniformly between a/10 and 2/
√
πλ. And

the coverage radii of the boundary nodes is set to a/3. The

complexity of building the Vietoris-Rips complex is still in
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Algorithm 2 Energy conservation algorithm

Require: Set ω of N vertices, for each vertex v its neighbor

list Ln(v), its group G(v), and its maximum coverage

radius r(v). For each group g, its size S(g) and its QoS

Q(g).
Computation of the abstract simplicial complex X based

on ω and the Ln lists.

Creation of the list of boundary vertices LB

Computation of β0(X) and β1(X)
Computation of D1(X), . . . , Ds2(X)
Computation of I[v1(X)], . . . , I[vs0(X)]
for all v ∈ LB do

I[v] = −1
end for

Imax = max{I[v1(X)], . . . , I[vs0(X)]}
while Imax > 2 and S(g) ≥ Q(g) ∀g do

Draw w a vertex of index Imax

X ′ = X\{w}
Computation of β0(X

′), β1(X
′)

if β0(X
′) 6= β0(X) or β1(X

′) 6= β1(X) or

S(G((w)) < Q(G((w)) then

I[w] = −1
else

S(G(w)) = S(G(w)) − 1
Re-computation of D1(X

′), . . . , Ds′
2
(X ′)

Re-computation of I[v1(X
′)], . . . , I[vs′

0
(X ′)]

Imax = max{I[v1(X ′)], . . . , I[vs′
0
(X ′)]}

X = X ′

end if

end while

for all v ∈ X taken in random order do

X ′ = X
while β0(X

′) = β0(X) and β1(X
′) = β1(X) do

Reduce r(v)
end while

X = X ′

end for

return List of kept vertices and their new coverage radii

r(v).

O(NN( r

a
)2), where N is the number of vertices and r is the

common coverage radius.

To create the groups of nodes in simulations, we have to

take some care. Indeed, these groups have to make sense

geographically, but we do not have location information. So

in order to consider clusters of nodes, every group is defined

by a maximum simplex, a simplex which is not the face of

any other simplex. The groups are created so that every node

pertains to exactly one group. Then, for every group g of size

S(g) = k, an integer is uniformly drawn between 1 and k,

this integer is then the required number of nodes to keep on,

i.e. Q(g).
For our simulations, we choose to give advantage to the

larger simplices for the constitution of the groups. Thus, the

first group will consist of the largest simplex, or one randomly

chosen among the largest ones, then simplices of smaller size

will become groups until every node is part of a group. It

is possible to consider other rules for the constitution of the

groups, but it has to follow one condition: every node must

pertain to exactly one group. The constitution of NG groups

is given in Algorithm 3.

Algorithm 3 Computation of QoS groups

Require: Simplicial complex X
NG = 0
for all Simplex Sk ∈ X from largest to smallest do

if ∀v ∈ Sk, G(v) == 0 then

NG = NG + 1
∀v ∈ SkG(v) = NG

S(NG) = k + 1
Draw Q(NG) among {1, . . . , k + 1}

end if

end for

The complexity of the energy conservation algorithm is

the same as the reduction algorithm since it is an improved

reduction algorithm, that is O((1 + ( r
a
)2)N ), see [5].

D. Performance comparison

In this section, we compare the performance of our algo-

rithm to an optimal, not always achievable greedy solution.

As in the previous section we choose to compare our greedy

simplicial homology-based energy conservation algorithm to

a greedy graph-based algorithm. We do not know of a energy

conservation algorithm that can switch-off nodes during off-

peak hours while maintaining coverage. Thus, we compare the

number of switched-on nodes after the execution of our energy

conservation algorithm, to the number of nodes needed for the

QoS, given by the sum of the Q(g) for all g. It is important to

note that this optimal solution is not always achievable because

it does not take into account that the area is to stay covered.

Some nodes have to be kept for traffic reasons, while other are

kept to maintain connectivity and/or coverage. This number of

nodes can not be obtained for a random configuration of nodes

whose positions do not follow a given pattern.

Our simulation results are computed on 104 configurations

of We denote by No =
∑

g Q(g) the optimal number of

kept nodes for traffic reasons, and by Nk the number of kept

nodes with our energy conservation algorithm for both traffic

and coverage reasons. First we compute the percentage of

simulations for which we have a given difference between the

obtained number Nk and the minimum number No of kept

nodes.

Nk −No 0 1 2 3 4
Occurrence 1.3% 4.2% 8.5% 12.5% 15.4%

5 6 7 8 9 ≥ 10
15.4% 14.3% 11.0% 7.5% 4.9% 4.7%

TABLE III
OCCURRENCES OF GIVEN DIFFERENCES BETWEEN Nk AND No .

We can see in Table III the percentage of simulations in

which the number of kept nodes is different from the optimal

number of nodes. For 1.3% of the simulations the optimal

number is reached. In 82.8% of our simulations the difference
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between the optimal and the effective number of kept nodes is

smaller than 7, and it never exceeds 18. From our simulations,

we obtain an average of Nk−No = 5.16 nodes that are kept by

our algorithm for coverage reasons, and not for traffic reasons.

Considering that the number of boundary nodes that are always

kept for coverage reasons (they can also be included in the set

kept nodes for traffic reasons depending on the configurations),

is of 16 nodes. Then the difference seems logical.

To have more advanced comparison, for the 104 configu-

rations, we compute the optimal number of nodes. Then for

each optimal number of nodes No that occurred the most, we

compute the mean number of kept nodes E [Nk|No] over the

simulations which have No for optimal number. The results

are given in Table IV. For comparison, we also compute the

difference between No and Nk in percent. We finally indicate

which percent of our 104 simulations these cases occur to

show the relevance of these statistical results.

No 22 23 24 25 26
E [Nk|No] 28.95 29.52 30.04 30.69 31.30
Difference 31.6% 28.4% 25.1% 22.8% 20.4%
Occurrence 5.0% 6.2% 7.0% 7.4% 7.9%

27 28 29 30 31 32
31.85 32.68 33.25 33.95 34.64 35.38
18.0% 16.7% 14.7% 13.1% 11.7% 10.6%
7.4% 7.5% 7.2% 6.3% 5.9% 4.8%

TABLE IV
MEAN NUMBER OF KEPT NODES E [Nk |No] GIVEN No .

We can see in Table IV that the more nodes are needed, the

less difference there is between the number of kept nodes for

both coverage and traffic reasons Nk and the optimal minimum

number of nodes kept for only traffic reasons No. Indeed, if

more nodes are needed for traffic, there is a great chance that

these nodes can cover the whole area, and fewer nodes are

needed only for coverage reasons.

VI. DISASTER RECOVERY ALGORITHM

In this section we present a disaster recovery algorithm

introduced in [6] of which we remind the main idea and

investigate more thoroughly the performance in the next sec-

tion. But first, we need to introduce some stochastic geometry

concepts.

A. Repulsive point processes

In this section, we aim at repairing a damaged cellular

network by adding new nodes randomly in the damaged

area. The most common point process in cellular network

representation is the Poisson point process. However in this

process, conditionally to the number of points, their positions

are independent from each other. This independence creates

some aggregations of points, as well as voids (i.e. coverage

holes), both of which are not convenient for the recovery of

a network. That is why we propose the use of determinantal

point processes, in which the points positions are not indepen-

dent anymore.

General point processes can be characterized by their so-

called Papangelou intensity. Informally speaking, for x a

location, and ω a realization of a given point process, that

is a set of points, c(x, ω) is the probability to have a point

in an infinitesimal region around x knowing the set of points

ω. For Poisson process, c(x, ω) = 1 for any x and any ω. A

point process is said to be repulsive (resp. attractive) whenever

c(x, ω) ≥ c(x, ζ) (resp. c(x, ω) ≤ c(x, ζ)) as soon as ω ⊂ ζ.

For repulsive point process, that means that the greater the set

of points, the smaller the probability to have an other point.

Among repulsive point processes, we are in particular

interested in determinantal processes:

Definition 5 (Determinantal point process): Given X a

Polish space equipped with the Radon measure µ, and K
a measurable complex function on X2, we say that N is a

determinantal point process on X with kernel K if it is a point

process on X with correlation functions ρn(x1, . . . , xn) =
det(K(xi, xj)1≤i,j≤n) for every n ≥ 1 and x1, . . . , xn ∈ X .

We can see that when two points xi and xj tend to be close

to each other for i 6= j, the determinant tends to zero, and so

does the correlation function. That means that the points of

N repel each other. There exist as many determinantal point

processes as functions K . We are interested in the following:

Definition 6 (Ginibre point process): The Ginibre point pro-

cess is the determinantal point process with kernel K(x, y) =
∑∞

k=1
Bkφk(x)φk(y), where Bk, k = 1, 2, . . . , are k indepen-

dent Bernoulli variables and φk(x) =
1√
πk!

e
−|x|2

2 xk for x ∈ C

and k ∈ N.

The Ginibre point process is invariant with respect to

translations and rotations, making it relatively easy to simulate

on a compact set. Moreover, the repulsion induced by a

Ginibre point process is of electrostatic type. The principle

behind the repulsion lies in the probability density used to

draw points positions. The probability to draw a point at the

exact same position of an already drawn point is zero. Then,

the probability increases with increasing distance from every

existing points. Therefore the probability to draw a point is

greater in areas the furthest away from every existing points,

that is to say in coverage holes. The simulation of Ginibre

determinantal point processes is detailed in [31].

B. Main idea

The disaster recovery algorithm aims at restoring a dam-

aged cellular network. Thus, we consider a cellular network

presenting coverage holes and possibly many disconnected

components. The C̆ech complex or its approximation the

Vietoris-Rips complex is build based on the set of nodes and

either their coverage or communication radii, or their neighbor

lists. We also need a list of boundary nodes, which can be

fictional, in order to know the whole area to be covered once

the network is repaired.

In this section we suppose that the node locations are

known. Indeed the disaster recovery algorithm provides the

locations where to put new nodes in order to patch the network.

We also restrict ourselves to a fixed common coverage radius

for every nodes, even if the main idea can be extended.

We can see an example of damaged cellular network with a

square boundary of fictional nodes and its representation by the

approximated coverage complex: the Vietoris-Rips complex in

Fig. 10.
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Fig. 10. A damaged cellular network with a fixed boundary.

The algorithm then adds new nodes in addition to the set

of existing nodes. For the addition of nodes, several methods,

deterministic or random, are possible. But we choose here to

focus here on the most fitted random method: determinantal

point processes. However, the number of new added nodes

is not computed as in determinantal point processes, but via

an incrementation. It is first set to the minimum number of

nodes to cover the whole area minus the number of existing

nodes. When the nodes are added, the two first Betti numbers

are computed. Then if there are more than one connected

component, or any coverage hole, other new nodes are added.

Their number is incremented with a random variable following

an exponential growth: first set to 1, it is doubled every time

new nodes are added and the network is still not patched.

Using determinantal point processes for the addition of

nodes allows us to not only take into account the number of

existing nodes via the computation of the number of added

nodes, but also their locations. Indeed, the existing nodes

are considered part of the point process, then new nodes

positions are drawn following a determinantal point process.

The addition of new nodes stops as soon as the network is

repaired: one connected component and no coverage hole.

We can see the first step of the disaster recovery algorithm

illustrated in Fig. 11 for the cellular network of Fig. 10.

Existing nodes are black circles while added nodes are red

plusses.
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Fig. 11. The repaired network.

Finally, the next step of our approach is to run the reduc-

tion algorithm presented in Section III which maintains the

topology of the repaired cellular network. At this step, we

remove some of the new nodes we just virtually added in

order to achieve an optimal result with a minimum number

of really added nodes. We can see in Fig. 12 an execution of

the reduction algorithm on the intermediate configuration of

Figure 11 which constitutes of the second and final step of the

disaster recovery algorithm. Removed nodes are represented

by blue diamonds.
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Fig. 12. Final configuration.

We give in Algorithm 4 the outline of the algorithm. The

algorithm requires the set of Ni initial nodes ωi, the fixed

coverage radius r, as well as the list of boundary nodes Lb.

Algorithm 4 Disaster recovery algorithm

Require: Set ωi of Ni vertices, for each vertex v its neighbor

list Ln(v). List of Lb boundary vertices.

Require: Set ωi of Ni vertices, their coverage radius r, list

of boundary vertices Lb

Computation of the C̆ech complex X = Cr(ω) or the

Vietoris-Rips complex X = R2r(ω)

Na = ⌈ a2

πr2
⌉ −Ni

Addition of Na vertices to X following a determinantal

point process

Computation of β0(X) and β1(X)
u = 1
while β0 6= 1 or β1 6= 0 do

Na = Na + u
u = 2 ∗ u
Addition of Na vertices to X following a determinantal

point process

Computation of β0(X) and β1(X)
end while

Reduction algorithm on X
return List La of kept added vertices.

C. Simulation and complexity

The set of nodes is no more simulated by a Poisson point

process, since we want to simulate a damaged cellular network

at different stages of damage. Every configuration is still

simulated on a square of side a = 2, and nodes have a common

coverage radius of r = 0.5 for the construction of the Vietoris-

Rips complex, of which complexity is unchanged O(NN( r

a

2)).
The complexity of the drawing of nodes following a de-

terminantal point process is upper-bounded by the one of the

reduction algorithm, see [31] for details about the simulation

of Ginibre determinantal point processes. So the complexity

of the disaster recovery algorithm is in O((1 + ( r
a
)2)N ). It is
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important to note that the number of nodes N is the sum of

the number of initial nodes Ni and added nodes Na.

D. Performance comparison

We now compare the performance results of our disaster re-

covery algorithm to the best known greedy coverage recovery

algorithm: the greedy algorithm for the set cover problem. As

the reduction algorithm, our homology-based disaster recovery

algorithm is of greedy type, so we compare it to a graph based

greedy algorithm. The only way to obtain coverage with graph

representation is to lay nodes following a given pattern, that

is what the greedy algorithm for the set cover problem does,

with a square pattern. It lays a grid of potential new nodes,

and adds first the node the furthest from every other existing

node, and so on until the furthest node is in the coverage of

an existing or added node.

We first compare the mean number of added nodes follow-

ing four different scenarios for the initial state. Indeed, the

performance of a recovery algorithm can be really affected

depending on how damaged is the cellular network to repair.

So the different scenarios are defined by the mean percentage

of covered area before running a recovery algorithm. In Table

V, we present the mean final number of added nodes for the

set cover algorithm and our homology algorithm over 104

configurations for each scenario.

% of area initially covered 20% 40% 60% 80%

Set Cover algorithm 3.65 3.36 2.82 1.84
Homology algorithm 4.47 3.85 2.98 1.77

TABLE V
MEAN FINAL NUMBER OF ADDED NODES E

[

Nf

]

The numbers of nodes added in the final state both with our

recovery algorithm and the set cover algorithm are roughly the

same. Nonetheless, we can see that our algorithm performs

a little bit worse than the set cover algorithm in the less

covered area scenarios. Indeed the set cover algorithm takes

advantage of its grid layout and perfect spacing between added

nodes. However, our homology algorithm gives better result

in the more covered scenarios, thanks to the inherent ability

of determinantal point processes to locate the coverage holes.

In order to show the advantages of our disaster recovery

algorithm we choose to evaluate the compared robustness of

the two algorithms when the added nodes positions are slightly

moved, i.e. when the practical positioning does not strictly

follow the theoretical positioning. In order to do this, we apply

a Gaussian perturbation to each the added nodes position. The

covariance matrix of the perturbation is given by Σ = σ2Id
with σ2 = 0.01, which means that the standard deviation for

each node is of σ = 0.1. Other simulations parameters are

unchanged, results in Table VI and VII are given in mean

over 104 simulations. First, we compute the average number

of holes E [β1] created by the Gaussian perturbation in Table

VI. Then in Table VII, we count the percentage of simulations

in which the number of holes is still zero, P(β1 = 0), after

the Gaussian perturbation on the new nodes positions.

We can see that the perturbation on the number of holes

decreases with the percentage of area initially covered, since

% of area initially covered 20% 40% 60% 80%

Set Cover algorithm 0.68 0.67 0.48 0.35
Homology algorithm 0.58 0.52 0.36 0.26

TABLE VI
E [β1] AFTER THE GAUSSIAN PERTURBATION

% of area initially covered 20% 40% 60% 80%

Set Cover algorithm 40.7% 45.2% 58.8% 68.9%
Homology algorithm 54.0% 58.0% 68.8% 76.1%

TABLE VII
P(β1 = 0) AFTER THE GAUSSIAN PERTURBATION

the initial nodes are not perturbed. Our homology algorithm

clearly performs better. Even in the least covered scenarios,

there are less than half of the simulations that create coverage

holes, which is not the case for the set cover algorithm. The

set cover algorithm also always create more coverage holes

in mean than our homology algorithm for the same nodes

positions perturbation. Therefore our algorithm seems more

fitted to the disaster recovery case when a recovery network

is deployed in emergency both indoor, via Femtocells, and

outdoor, via a trailer fleet, where exact GPS locations are

not always available, and exact theoretical positioning is not

always followed.

VII. CONCLUSION

In this paper we propose three simplicial homology-based

algorithms that meet three problems of future cellular networks

equipped with SON technology. First, we propose a frequency

auto-planning algorithm that uses simplicial homology to pro-

vide a homogeneous usage of frequencies. Then, we present an

energy conservation algorithm that adapt the stay-on nodes of

a cellular network to both coverage, computed via simplicial

homology, and the capacity defined by user demand. Finally,

we introduce a disaster recovery algorithm in which we use

simplicial homology to compute coverage, and the repulsive

Ginibre determinantal point process to propose a efficient

fixing to a damaged network.

We investigate the performance of these three homology-

based algorithm. We compute their complexity that is highly

dependent on the simplicial complex representation which

is necessary to the topology computation. We compare our

three homology-based greedy algorithms to three graph-based

greedy algorithms to exhibit the benefits of using simplicial

homology. We show the advantages of our algorithms, which

are not mathematical optimality but application oriented. In-

deed the frequency auto-planning algorithm provides a better

coverage for every planned frequency; the energy conservation

algorithm takes into account both user traffic and coverage;

and the disaster recovery algorithm offers a repaired network

robust to slight modifications of its nodes positions.
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