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Simplicial Homology for Future Cellular Networks
Anaïs Vergne, Laurent Decreusefond, Philippe Martins, Senior Member, IEEE

Abstract—Simplicial homology is a tool that provides a math-
ematical way to compute the connectivity and the coverage of a
cellular network without any node location information. In this
article, we use simplicial homology in order to not only compute
the topology of a cellular network, but also to discover the clusters
of nodes still with no location information. We propose three
algorithms for the management of future cellular networks. The
first one is a frequency auto-planning algorithm for the self-
configuration of future cellular networks. It aims at minimizing
the number of planned frequencies while maximizing the usage of
each one. Then, our energy conservation algorithm falls into the
self-optimization feature of future cellular networks. It optimizes
the energy consumption of the cellular network during off-peak
hours while taking into account both coverage and user traffic.
Finally, we present and discuss the performance of a disaster
recovery algorithm using determinantal point processes to patch
coverage holes.

Index Terms—Future cellular networks, Self-Organizing Net-
works, simplicial homology.

I. INTRODUCTION

L
ONG Term Evolution (LTE) is the 3GPP standard spec-

ified in Releases 8 and 9. Its main goal is to increase

both capacity and speed in cellular networks. Indeed, cellular

network usage has changed over the years and bandwidth hun-

gry applications, as video calls, are now common. Achieving

this goal for both capacity and speed costs a lot of money to

the network operator. A solution to limit operation expendi-

tures is the introduction of Self-Organizing Networks (SON).

3GPP standards have indeed identified self-organization as a

necessity for future cellular networks [1]. Self-organization is

the ability for a cellular network to automatically configure

itself and adapt its behavior without any manual intervention.

Therefore, SON features can be divided into self-configuration,

self-optimization, and self-healing functions. We will define

and describe the features we are interested in, for a further

reading a full description of SON in LTE can for instance be

found in [2].

First, self-configuration functions aim at the plug-and-play

paradigm: new transmitting nodes should be automatically

configured and integrated to the existing network. Upon arrival

of a new node, the neighboring nodes update their dynamic

neighbor tables thanks to the Automatic Neighbor Relation

(ANR) feature. Among self-configuration functions, we can

find the dynamic frequency auto-planning problem. It is a

known problem from spectrum-sensing cognitive radio where

equipments are designed to use the best wireless channels

in order to limit interference [3]. The different nodes of the
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secondary cognitive network have to choose the best frequency

to use in order to maximize the coverage and minimize the

interference with the base stations of the primary network.

However there is no hierarchy between the nodes of future

cellular networks, all nodes pertain to the primary network.

Therefore the cognitive network solutions can not be used

here. Moreover, while in earlier releases, static frequency

planning was preferred, it has became a critical point to

allow dynamic configuration since the network has a dynamic

behavior with arrivals and departures of base stations, and does

not always follow a regular pattern with the introduction of

Femtocells and Heterogeneous Networks (HetNet).

The second main SON feature is the category of the self-

optimization functions, which defines the ability of the net-

work to adapt its behavior to different traffic scenarios. Indeed,

in LTE cellular networks, eNode-Bs (eNB) have multiple

configurable parameters. An example is output power, so cells

sizes can be configured when capacity is the limitation rather

than coverage. Moreover, fast and reliable X2 communica-

tion interfaces connect eNBs. So the whole network has the

capability to adapt to different traffic situations. Then, users

traffic can be observed via eNBs and User Equipments (UEs)

measurements. Therefore, the self-optimization functions aim

at using these traffic observations to adapt the whole network,

and not only each cell independently, to the traffic situation.

One case where self-optimization is often needed is the adapta-

tion to off-peak hours. Typically a cellular network is deployed

to match daily peak hours traffic requirements. Therefore

during off-peak hours, the network is daily under-used. This

leads to a huge unneeded amount of energy consumption. An

idea is thus to switch-off some of the eNBs during off-peak

hours, while other eNBs adjust their configuration parameters

to keep the entire area covered. In case of a growth in traffic,

the switched-off eNBs could be woken up to satisfy the users

demand.

The third and last of the SON main functions is self-healing.

In future cellular networks, nodes would be able to appear and

disappear at any time. Since the cellular network is not only

constituted of operated base stations anymore, the operator

does not control the arrivals or departures of nodes. But the

disappearances of nodes can be more generalized: for example

in case of a natural disaster (floods, earthquakes or tsunamis...),

several nodes do disappear at once. The self-healing functions

aim at reducing the impacts from the failures of nodes must

it be in isolated cases, like the turning off of a Femtocells,

or more serious cases where the whole network is damaged.

We are interested in this latter case, where some of the nodes

are completely destroyed. However cellular networks are not

necessarily built with redundancy and then can be sensitive

to such damages. Coverage holes can appear resulting in no

signal for communication at all in a whole area. Paradoxically,
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reliable and efficient communication is especially needed in

such situations. Therefore, solutions for damage recovery for

the coverage of cellular networks are much needed.

In this article, we use simplicial homology to comply with

the self-organization requirements of future cellular networks.

Simplicial homology provides a way to represent any wireless

network without any location information, and compute its

topology. A cellular network is then represented by a com-

binatorial object called abstract simplicial complex, and its

topology is characterized in two dimensions by the so-called

first two Betti numbers: the number of connected components

and the number of coverage holes. But the simplicial complex

representation does not only allow the topology computation,

but it also gives geographical information, such as which nodes

are in some clusters, or which ones are more homogeneously

distributed. We use this simplicial complex representation in

three algorithms that answer three specific aspects of SON

in future cellular networks. First, we propose a frequency

auto-planning algorithm which, for any given cellular network,

provides a frequency planning minimizing the number of fre-

quencies needed for a given accepted threshold of interference.

The algorithm calls several instances of a reduction algorithm,

introduced in [4], for the allocation of each frequency. Using

simplicial complex representation combined to the reduction

algorithm allows us to obtain a homogeneous coverage be-

tween frequencies. In a second part, we enhance the reduction

algorithm to satisfy any user traffic. The reduction algorithm,

as it is presented in [4], only satisfies perfect connectivity and

coverage. However, in cellular networks, especially in urban

areas, coverage is not the limiting factor, capacity is. So the

optimal solution is not optimal coverage anymore but depends

on the required traffic. We present an enhanced reduction

algorithm to reach an optimally used network. Finally, we

present an algorithm for disaster recovery of wireless networks

first introduced in [5]. Given a damaged cellular network, the

algorithm first adds too many nodes then runs the reduction

algorithm of [4] to reach an optimal result. For the addition

of new nodes we propose the use of a determinantal point

process which has the inherent ability to locate areas with

low density of nodes: namely coverage holes. We thoroughly

evaluate the performance of our algorithm compared to the

classic recovery algorithm: the greedy algorithm for the set

cover problem, comparing their complexity, number of added

nodes, and robustness through a slight move of the added

nodes.

The remainder of this article is organized as follows. After a

section on related work on self-configuration, self-optimization

and recovery of future cellular networks in Section II, we

introduce some simplicial homology definitions as well as the

reduction algorithm for simplicial complexes used all along the

article in Section III. Then in Section IV, we introduce our

frequency auto-planning algorithm. The energy conservation

algorithm is presented in Section V. Finally, we provide the

disaster recovery description and performance evaluation in

Section VI.

II. RELATED WORK

A. Self-configuration in future cellular networks

Configuration of the different nodes (eNBs, relays, Femto-

cells) of a cellular network has to be done during the deploy-

ment of the network, but also upon the arrival and departure of

any node. The classic manual configuration done for previous

generations of cellular networks can not be operated in future

cellular networks: changes in the network occur too often.

Moreover, the dissemination of private Femtocells leads to the

presence in the network of nodes with no access for manual

support. So the future cellular networks are heterogeneous

networks with no regular pattern for their nodes. They need to

be able to self-configure themselves. The initial parameter that

a node needs to configure are its IP adress, its neighbor list and

its radio access parameters. IP adresses are out of the scope

of this work, but we will discuss the two other parameters.

The selection of the nodes to put on one’s neighbor list can

be based on the geographical coordinates of the nodes and

take into account the antenna pattern and transmission power

[6]. However, this approach does not consider changing radio

environment, and requires exact location information which

can be easy to obtain for eNBs, but not for Femtocells. The

authors of [7] propose a better criterion for the configuration

of the neighbor list: each node scans in real time the Signal to

Interference plus Noise Ratio (SINR) from other nodes, then

the nodes which SINR are higher than a given threshold are

included in the neighbor list. The neighbor list of a node is then

equivalent to connectivity information between nodes. This is

the only information needed in order to build the simplicial

complex representing a given cellular network.

Among radio access parameters, we can find frequency but

also propagation parameters since the apparition of beam-

forming techniques via MIMO. Let us focus on the former

which is the subject of Section IV. The frequency planning

problem was first introduced for GSM networks. However the

constraints were not the same: the frequency planning was

static with periodic manual optimizations, and in simulations,

base stations were regularly deployed along an hexagonal

pattern. With the deployments of Femtocells, outdoor relays,

and Picocells, future cellular networks vary from GSM net-

work in two major points. First, cells do not follow a regular

pattern anymore, then they can appear and disappear at any

time. Therefore the frequency planning problem has to be

rethought in an automatic way. A naive idea for frequency

auto-planning would simply be applying the greedy coloring

algorithm to the sparse interference graph [8]. However, even

if the provided solution may be optimal for the number of

needed frequencies, the utilization of each frequency can be

disparate: one can be planned for a large number of nodes

compared to another planned for only few of them. Then if

the level of interference increase (more users, or more powered

antennas), this could lead to communication problems for the

over-used frequency, and a whole new planning is needed.

On the contrary, a more homogeneous resource utilization

can be more robust if interference increase, since there are

less nodes using the same frequency on average. We provide

here a frequency auto-planning algorithm which aims at a
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more homogeneous utilization of the resources. Moreover,

the planning of frequency channels for new nodes that do

not interfere with existing nodes while still providing enough

bandwidth is still an open problem. It has been addressed in

the cognitive radio field, but these algorithms usually enable

opportunistic spectrum access [9]. However, it is not possible

to extend this type of algorithm to the frequency allocation of

new nodes in cellular networks. Indeed, the new nodes would

be part of the primary network, with a quality of service to

achieve, so their frequency allocation needs to be guaranteed

and not opportunistic. The algorithm we propose aims at

allocating frequency channels to future cellular networks with

non-regular deployment, so upon the arrival of a new node,

the whole network is re-configured.

B. Self-optimization in future cellular networks

In order to ensure that future cellular networks are still

efficient in terms of both Quality of Service (QoS) and costs,

the self-configuration is not sufficient. Indeed, future cellular

networks have the ability to adjust their parameters to match

different traffic situation. Periodic optimization based on log

reports, and operated centrally is not an effective solution

in terms of speed and costs. That is why we need self-

optimization. Self-optimization can be classified in three types

depending on its goal.

First we can consider load balancing optimization. There is

multiple ways to adapt a cellular network to different loads:

it is for example possible to adapt the resources available in

different nodes. These schemes were mainly introduced for

GSM [10], and then CDMA [11], but the universal frequency

reuse of LTE and LTE-Advanced diminishes their applicabil-

ity. Then one can adapt the traffic strategy with admission

controls on given cells and forced handovers [12]. However,

as the previous solution, it is not very suitable for OFDMA

networks which require hard handover. Finally it is possible to

modify the coverage of a node by changing either its antennas

radiation pattern [13] or the output power [14]. We use this

latter approach to reach an optimal result for our algorithm:

we adapt the coverage radius of each node to be the minimum

required to cover a given area.

The second type self-optimization is the capacity and cov-

erage adaptation via the use of relay nodes [15], while the

third is interference optimization. Our energy conservation

algorithm presented in Section V could lie in this third

category as the simplest approach towards interference control

is switching off idle nodes. It is done based on cell traffic for

Femtocells in [16]: after a given period of time in idle mode,

the node puts itself on stand-by. However, if one wants to

take into account the whole network, it has to consider the

coverage of the network before disconnecting, which is not

the case of Femtocells, which are by definition redundant to

the base stations network. Without considerations of traffic, we

proposed in [4] an algorithm that reduce power consumption in

wireless networks by putting on stand-by some of the nodes

without impacting the coverage. We can also cite [17] that

proposes a game-theoretic approach in which nodes are put

on stand-by according to a coverage function, but unmodified

coverage is not guaranteed. In both these works, only coverage

is taken into account. This approach could eventually fit the

requirements of cellular network in non-urban cells, if their

deployment has coverage redundancy. But it is not valid for

urban cells, where it is not coverage but capacity that delimits

cells. Our present algorithm goes a little bit further by adapting

the switching-off of the nodes to the whole network situation,

considering both traffic and coverage.

C. Recovery in future cellular networks

The first step of recovery in cellular networks is the detec-

tion of failures. The detection of the failure of a cell occurs

when its performance is considerably and abnormally reduced.

In [18], the authors distinguish three stages of cell outage:

degraded, crippled and catatonic. This last stage matches

with the event of a disaster when there is complete outage

of the damaged cells. After detection, compensation from

other nodes can occur through relay assisted handover for

ongoing calls, adjustments of neighboring cell sizes via power

compensation or antenna tilt. In [19], the authors not only

propose a cell outage management description but also de-

scribe compensation schemes. These steps of monitoring and

detection, then compensation of nodes failures are comprised

under the self-healing functions of future cellular networks

described in [20].

In Section VI, we are interested in what happens when self-

healing is not sufficient. In case of serious disasters, the com-

pensation from remaining nodes and traffic rerouting might

not be sufficient to provide service everywhere. In this case,

the cellular network needs a manual intervention: the adding

of new nodes to compensate the failures of former nodes.

However a traditional restoration with brick-and-mortar base

stations could take a long time, when efficient communication

is particularly needed. In these cases, a recovery trailer fleet

of base stations can be deployed by operators [21], it has been

for example used by AT&T after 9/11 events. But a question

remains: where to place the trailers carrying the recovery

base stations. An ideal location would be adjacent to the

failed node. However, these locations are not always available

because of the disaster, plus the recovery base stations may not

have the same coverage radii than the former ones. Therefore

a new deployment for the recovery base stations has to be

decided, in which one of the main goal is complete coverage

of damaged area. This can be viewed as a mathematical set

cover problem, where we define the universe as the area to

be covered and the subsets as the balls of radii the coverage

radii. Then the question is to find the optimal set of subsets that

cover the universe, considering there are already balls centered

on the existing nodes. It can be solved by a greedy algorithm

[22], ǫ-nets [23], or furthest point sampling [24], [25]. But

these mathematical solutions provide an optimal mathematical

result that do not consider any flexibility at all in the choosing

of the new nodes positions, and that can be really sensitive to

imprecisions in the nodes positions.

For a further reading, a complete survey on SON for future

cellular networks is given in [26].
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III. PRELIMINARIES

A. Simplicial homology

First we need to remind some definitions from simplicial

homology for a better understanding of the simplicial complex

representation of cellular networks.

When representing a cellular network, one’s first idea will

be a geometric graph, where nodes are represented by vertices,

and an edge is drawn whenever two nodes can communicate

with each other. However, the graph representation has some

limitations; first of all there is no notion of coverage. Graphs

can be generalized to more generic combinatorial objects

known as simplicial complexes. While graphs model binary re-

lations, simplicial complexes represent higher order relations.

A simplicial complex is a combinatorial object made up of

vertices, edges, triangles, tetrahedra, and their n-dimensional

counterparts. Given a set of vertices V and an integer k, a k-

simplex is an unordered subset of k+1 vertices [v0, v1 . . . , vk]
where vi ∈ V and vi 6= vj for all i 6= j. Thus, a 0-simplex

is a vertex, a 1-simplex an edge, a 2-simplex a triangle, a

3-simplex a tetrahedron, etc.

Any subset of vertices included in the set of the k+1 vertices

of a k-simplex is a face of this k-simplex. Thus, a k-simplex

has exactly k+1 (k−1)-faces, which are (k−1)-simplices. For

example, a tetrahedron has four 3-faces which are triangles.

A simplicial complex is a collection of simplices which is

closed with respect to the inclusion of faces, i.e. all faces

of a simplex are in the set of simplices, and whenever two

simplices intersect, they do so on a common face. An abstract

simplicial complex is a purely combinatorial description of the

geometric simplicial complex and therefore does not need the

property of intersection of faces. For details about algebraic

topology, we refer to [27].

We consider the nodes of a cellular network, and their

coverage radii. The C̆ech abstract simplicial complex then

provides the exact representation of the network’s coverage. Its

construction for a fixed coverage radius r for all the network’s

nodes is given:

Definition 1 (C̆ech complex): Given (X, d) a metric space,

ω a finite set of points in X , and r a real positive number. The

C̆ech complex of ω, denoted Cr(ω), is the abstract simplicial

complex whose k-simplices correspond to (k + 1)-tuples of

vertices in ω for which the intersection of the k + 1 balls of

radii r centered at the k + 1 vertices is non-empty.

However, the C̆ech complex can be hard to compute, and

requires some geographical information that is not always

available. For instance Femtocells are not GPS-enabled. There

exists an approximation to the coverage C̆ech complex that

is only based on the connectivity information: the so-called

neighbor list of each nodes of a SON-capable cellular network.

The Vietoris-Rips abstract simplicial complex is defined as

follows:

Definition 2 (Vietoris-Rips complex): Given (X, d) a met-

ric space, ω a finite set of points in X , and r a real positive

number. The Vietoris-Rips complex of parameter 2r of ω,

denoted R2r(ω), is the abstract simplicial complex whose k-

simplices correspond to unordered (k + 1)-tuples of vertices

in ω which are pairwise within distance less than 2r of each

other.

It is possible to build the C̆ech or the Vietoris-Rips complex

of a cellular network with different coverage radii using

different parameters associated with each one of the nodes.

Given an abstract simplicial complex, its topology can be

computed via linear algebra computations. The so-called Betti

numbers are defined to be the dimensions of the homology

groups and are easily obtained by the rank-nullity theorem, but

they also have a geometrical meaning. Indeed, the k-th Betti

number of an abstract simplicial complex X is the number of

k-th dimensional holes in X . In two dimensions we are only

interested in the first two Betti numbers: β0 counts the number

of 0-dimensional holes, that is the number of connected

components, and β1 counts the number of holes in the plane,

i.e. coverage holes. Therefore computing the Betti numbers of

an abstract simplicial complex representing a cellular network

gives the topology of the initial network. It is the exact

topology when using the C̆ech complex representation. But

with the Vietoris-Rips complex representation, it is possible

to have so-called triangular holes in the network that do not

appear in the complex. The probability of that happening in

computed in [28], and in our case where it is upper-bounded by

about 0.03% for a cellular network simulated with a Poisson

point process.

B. Reduction algorithm

In this section, we recall the steps of the reduction algorithm

for abstract simplicial complexes presented in [4] that we will

use all along this article. The algorithm takes as input an

abstract simplicial complex: here it is the complex representing

the cellular network, and a list of boundary vertices that can be

given by the network operator. This list of boundary vertices

allow us to know the area of the network that we can not

obtain by location information.

Then the goal of the reduction algorithm is to remove ver-

tices form the abstract simplicial complex without modifying

its Betti numbers. That translates to a network by turning off

nodes from the network without modifying nor its connectivity

neither its coverage.

To cover an area, only 2-simplices are needed. So the

first step of the reduction algorithm is to characterize the

superfluousness of the 2-simplices of the complex for its

coverage. To do that, we define a degree for every 2-simplices:

a degree of a 2-simplex is the size of the largest simplex it

is the face of. Next, in order to remove vertices, and not 2-

simplices, we need to transmit the superfluousness information

of its 2-cofaces (2-simplices it is a face of) to a vertex via what

is called an index. An index of a vertex is defined to be the

minimum of the degrees of the 2-simplices it is a face of.

Indeed, a vertex is as sensitive for the coverage as its most

sensitive 2-simplex. The boundary vertices are given a negative

index to mark them as unremovable by the algorithm: we do

not want the covered area to be shrunk.

Finally, the indices give an optimal order for the removal of

the vertices: the greater the index of a vertex, the bigger the

cluster it is part of, and the more likely it is superfluous for

the coverage of its abstract simplicial complex. Therefore, the
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vertices with the greatest index are candidates for removal:

one is chosen randomly. If its removal does not change the

homology, i.e. if it does not modify its Betti numbers β0 and

β1, then it is effectively removed. Otherwise it is flagged as

unremovable the same way the boundary vertices are. The

algorithm goes on until every remaining vertex is unremovable,

thus achieving optimal result.

For more information on the reduction algorithm we refer

to [4].

IV. SELF-CONFIGURATION FREQUENCY AUTO-PLANNING

ALGORITHM

A. Problem formulation

In the frequency planning problem, the topology of the

network is not relevant since it is not modified. So we use the

simplicial complex representation only for the characterization

of clusters without location information.

First we need to build the abstract simplicial complex

representing the cellular network. In future cellular networks,

every transmitting nodes (eNBs, Femtocells, relays...) have a

neighbor list created and updated with the ANR feature. In

simulations and figures, we choose to consider a communi-

cation radius for each node. Then, any other nodes within

the communication radius of a node is added to its neighbor

list. With this neighbor list information, we can build the

Vietoris-Rips complex representing the network, each node

is represented by a 0-simplex and each neighbor, either 1-

way or 2-way, relationship is represented by a 1-simplex. The

other simplices are then created with only the 1-simplices

information.

The goal of a frequency planning algorithm is to assign

frequencies to every network’s nodes so that the interfer-

ence between them is minimum using the smallest number

of frequencies possible. In this article, we only consider

the one frequency per node case, and co-canal interference:

interference between two nodes using the same frequency.

However, the main idea of the algorithm can be extended

to several frequencies per node, and interference between

different frequencies by considering group of frequencies. In

order to represent the interference, we introduce a so-called

rejection radius. The rejection radius defines around every

node a rejection disk. Then if one node is within the rejection

disk of another node, we consider that they shall not share the

same frequency or the interference level will be too high for

reliable communication within at least one of the two cells.

This rejection radius defines the interference threshold that

is acceptable in the cellular network. It is the interference

criterion we will use for our auto-planning algorithm.

B. Algorithm description

We consider a cellular network as we can see an example

in the following figures. In Fig. 1, we can the every node with

their communication radius, and the Vietoris-Rips complex

representation of the network. In Fig. 2, we can observe the

rejection radii of the nodes. Here they are set to be half the

communication radii of each node. The interference between

nodes is then represented in an interference graph: an edge is

added if at least one of its extremity is in the rejection disk

of the other one. We can easily see that the configuration of

Fig. 2 will need 4 frequencies because of the tetrahedron on

the left.
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Fig. 1. A cellular network and its communication complex representation.
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Fig. 2. Interference graph.

The algorithm begins by computing the degrees of 2-

simplices and the indices of vertices, i.e. the nodes, as defined

for the reduction algorithm presented in Section III. Then

we apply a modified version of the reduction algorithm: the

order in which the nodes are removed is still decided by the

indices but the stopping condition is not the same anymore.

Indeed we are not interested into achieving optimal coverage

anymore. Therefore, instead of stopping when the maximum

index among every remaining nodes is below a given number,

the algorithm stops when there is no more nodes in any

rejection disk of any other node. The nodes of the resulting

simplicial complex are assigned the first frequency.

Then all the removed nodes are collected, and the corre-

sponding abstract simplicial complex recovered. This complex

is a subset of the initial complex so there is no need to build

another one from scratch. The next step is then to reapply

the modified coverage reduction algorithm to this recovered

complex to obtain a second set of nodes to which we assign

the second frequency. The algorithm goes on until every node

has an assigned frequency.

At the end, we have a frequency assigned to every node.

We ensured that no two nodes sharing the same frequency

will be too close to each other: interference will be under a

given threshold. Moreover, the use of our coverage reduction

algorithm with the optimized order for nodes removal allows

us to obtain a homogeneous usage of every frequency.

The frequency planning scheme obtained by our algorithm

for the configuration of Fig. 1 is represented in Fig. 3. A
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different color represent a different frequency. We can see that

our algorithm has planned four frequencies (black, red, green

and blue) of which we can see the communication area for

each one in Fig. 4.
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Fig. 3. Frequency planning scheme.
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Fig. 4. Coverage for each frequency.

We give in Algorithm 1 the full frequency auto-planning

algorithm: it requires the set of nodes ω, and their commu-

nication and rejection radii, then returns the list of assigned

frequencies for every node of ω. We introduce three parameters

in the algorithm description that we define here for a better

understanding. First of them is the number of planned nodes:

it represents the number of nodes to which we assigned a

frequency already. Then, the ‘Interference’ parameter is a

binary number to represent if there are at least two nodes

with potentially the same frequency within the rejection disk

of each other. Finally the ‘Frequency’ parameter, for every

node, is where the frequency assigned to it is stored.

C. Performance comparison

In this section we compare the performance of our fre-

quency auto-planning algorithm to the greedy coloring al-

Algorithm 1 Frequency auto-planning algorithm

Require: Set ω of N vertices, for each vertex v its commu-

nication radius rv , and its rejection radius Rv .

Computation of the Vietoris-Rips complex X = Rr(ω)
Computation of D1(X), . . . , Ds2(X)
Computation of I[v1(X)], . . . , I[vs0(X)]
Imax = max{I[v1(X)], . . . , I[vs0(X)]}
Nplanned = 0
Interference = 1
X ′ = X
i = 0
while Nplanned < N do

while Interference == 1 do

Draw w a vertex of index Imax

X ′ = X ′\{w}
Computation of D1(X

′), . . . , Ds′
2
(X ′)

for i = 1 → s′
0

do

if I[vi(X
′)] == Imax then

Recomputation of I[vi(X
′)]

end if

end for

Imax = max{I[v1(X ′)], . . . , I[vs′
0
(X ′)]}

Interference = 0
for all u, v ∈ X ′ do

if ‖v − u‖ < max(Rv, Ru) then

Interference = 1
end if

end for

end while

for all v ∈ X ′ do

Frequency(v) = i
Nplanned = Nplanned + 1

end for

X ′ = X\X ′

i = i+ 1
end while

return List of assigned frequencies Frequency(v), ∀v ∈
ω.

gorithm. Indeed, the frequency planning can be viewed as

a graph coloring problem. If one considers the interference

graph, then the optimal number of frequencies to assign is

the chromatic number of the interference graph. The greedy

coloring algorithm provides a coloring assigning the first new

color available for each node. Therefore, the greedy coloring

algorithm is a frequency planning algorithm. And the number

of frequencies planned is at most the maximum node degree

of the interference graph plus one. The greedy coloring gives

especially good results for sparse graphs as the interference

graph is. So the first parameter that we will use to compare

the performance of both algorithm is the number of planned

frequencies.

We simulate the set of nodes with a Poisson point process

of intensity λ = 12 on a square of side a = 2. The

communication radii are sampled uniformly between a/10 and

2/
√
πλ for each node. Then the rejection radii are equal to

half their corresponding communication radii. The results are
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obtained in mean over 104 configurations. For each realization

of the Poisson process, we compute the number of frequencies

planned by the greedy coloring algorithm that we denote Ng.

Then on all realizations with a given Ng, we compute the mean

number of frequencies, denoted Nf , planned by our algorithm,

so we can see the difference between the two algorithms.

We also indicate which percentage of the 104 simulations

these scenarios are, the occurrence is added for statistical

information.

Ng 2 3 4 5 6
E

[

Nf |Ng

]

4.00 5.04 5.83 6.43 7.13
Occurrence 8.8% 55.6% 29.4% 5.3% 0.7%

TABLE I
MEAN NUMBER OF PLANNED FREQUENCIES.

In Table I, we can see the mean number of frequencies

planned by our algorithm given the number of frequencies

planned by the greedy coloring algorithm. We can see that

there is a difference between the two solutions: it is not

negligible in the beginning, but it decreases with the num-

ber of frequencies. Thus, our algorithm reaches its optimal

performance when the number of frequencies grows for the

same mean number of nodes, that is to say when there are

clusters of nodes.

However, even if the greedy coloring algorithm fares well

in the number of planned frequency, it leads to a disparate

utilization of frequencies. Indeed, if there is only one clique

of maximum size, one frequency will be only used for one

node of this clique, and for no other node in the whole

configuration. Therefore, the greedy coloring algorithm give

good results for a homogeneous network, but not for a cluster

network for example. For an optimal utilization of frequencies,

each frequency should cover the whole area, but it is not

always achievable if there are not enough nodes to cover

several times the whole area. Our algorithm aims at a more

homogeneous utilization of each ressource. In order to show

that, we compare the percentage of area covered by each

frequency on the total covered area for our frequency auto-

planning algorithm and for the greedy coloring algorithm. We

consider an area to be covered by a frequency if it is inside

the communication disk of a node using this frequency. The

percentages are given in mean over 104 simulations using the

same setting as in the first comparison.

We can see in Table II the percentage of area covered

by each frequency planned by our algorithm and the greedy

coloring algorithm. The results are presented depending on the

number of planned frequencies, we also indicate the number of

simulations these results concern for statistical relevance. For

our algorithm, even if the percentage decreases with the order

in which the frequencies are planned, which is logical since

the first frequency is planned in first and so on, we can see that

a rather homogeneous coverage is provided. Doing that, our

algorithm maximizes the usage of each resource. We can see

that for the greedy coloring algorithm, the frequencies are not

used equally: the first two frequencies are always a lot more

planned than the other ones, the latter are thus under-used.

Greedy coloring algorithm
Ng 3 4 5 6
f1 97.3% 97.0% 96.7% 96.3%
f2 47.6% 50.1% 49.9% 51.1%
f3 12.9% 17.7% 18.8% 20.2%
f4 7.2% 8.8% 8.5%
f5 6.2% 6.7%
f6 6.2%

Occurrence 55.6% 29.4% 5.3% 0.7%

Frequency auto-planning algorithm
Nf 3 4 5 6
f1 71.3% 62.1% 54.2% 49.2%
f2 62.3% 56.4% 51.7% 47.4%
f3 35.6% 46.4% 45.7% 42.9%
f4 24.3% 35.6% 37.8%
f5 18.8% 28.1%
f6 15.3%

Occurrence 7.0% 23.0% 29.4% 22.6%

TABLE II
MEAN PERCENTAGE OF COVERED AREA FOR EACH FREQUENCY

V. SELF-OPTIMIZATION ENERGY CONSERVATION

ALGORITHM

A. Problem formulation

We are now interested in the self-optimization of a cellular

network previously configured. Indeed, during off-peak hours

a cellular network is under-used, we propose an algorithm that

aims at reducing the energy consumption when user traffic is

reduced.

First we want to represent the considered cellular network

and its topology with an abstract simplicial complex. The

network is constituted of transmitting nodes and their as-

sociated coverage disks. In future cellular networks, these

coverage disks can vary in size by modifying the configu-

ration parameters of the base stations. We choose to consider

here the maximum size of these disks in order to maximize

the coverage of each node so that a maximum number of

nodes can be switched-off. We can build the C̆ech complex

representing exactly the topology of the cellular network, or

its approximation the Vietoris-Rips complex. Then we have

to consider boundary nodes differently from the other ones.

Indeed, these nodes allow us to delimit the area to cover.

Finally we have to define how we represent user traffic in

the cellular network. In our simulations, we choose to create

groups of nodes, then for each group, the user demand is

represented by a given size of subset of nodes from this group

to be kept on. All the sizes of the requested subsets for every

group represent the required quality of service (QoS) of the

cellular network. This QoS metric is quite artificial, but our

algorithm can take into account any QoS as long as it is

defined in terms of required number of ressources from a

given pool available to a given group of nodes. We choose

to implement this simplistic metric because it is the easiest

one to implement.

To create the groups of nodes in simulations, we have to

take some care. Indeed, these groups have to make sense

geographically, but we do not have location information. So

in order to consider clusters of nodes, every group is defined

by a maximum simplex, a simplex which is not the face of
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any other simplex. The groups are created so that every node

pertains to exactly one group. Then, for every group of k
nodes, an integer is uniformly drawn between 1 and k, this

integer is the required number of nodes to keep on.

B. Algorithm description

We consider a cellular network with transmitting nodes and

their maximal coverage radii that we represent with an exact

or approximated coverage simplicial complex. We can see an

example of network and its Vietoris-Rips complex associated

in Fig. 5. The boundary nodes are defined by the convex hull

and are in red in the figure.
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Fig. 5. A cellular network and its coverage representation.

Then for the configuration of Fig. 5, we represent he QoS

groups of nodes in different colors, and give a table with their

corresponding size and required QoS in Fig. 6.
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Groups 1 2 3 4 5 6 7 8 9 10

Size 8 7 6 6 5 3 2 2 2 1
QoS 3 5 5 4 2 1 1 1 2 1

Fig. 6. QoS groups and required QoS.

The algorithm then begins by the computation of the Betti

numbers. They characterize the topology of the network that

we do not want to modify. Then the degrees of the 2-simplices

and the indices of the vertices are computed a first time as

defined in Section III. The principle of the reduction algorithm

is afterwards applied. However while the order of removal for

the nodes is the same, the breaking point is different. Instead

of stopping when the area is covered by a minimum number

of nodes, the algorithm stops when each group of nodes has

been reduced to the size of its required QoS. We can see the

obtained result for the configuration of Fig. 5 and Fig. 6 in

Figure 7. The kept nodes are circled.
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Fig. 7. Kept nodes.

The cellular network and its simplicial complex representa-

tion is represented in Fig. 8.
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Fig. 8. The network after the first step.

Finally, given this configuration of switched-on nodes, the

algorithm tries to reduce as much as possible the coverage radii

of each node without creating a coverage hole. The order in

which the coverage radii are examined is random. In Fig. 9, we

can see the final configuration of the cellular network with the

optimized coverage radii and its coverage abstract simplicial

complex for the configuration of Fig. 5.
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Fig. 9. Final configuration.

In the end, we have a configuration of nodes to keep

switched-on that is optimal. From the first part of the algo-

rithm, we ensure that enough nodes are kept on to satisfy

the QoS representing user traffic. Then, in the second part of

the algorithm, we ensure that no energy is spend uselessly by

optimizing the size of the serving cells.

We give in Algorithm 2 the full energy conservation al-

gorithm. It requires the set of nodes ω and their maximum
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coverage radii, then returns the list of kept nodes with their

new coverage radii. For our simulations, we choose to give

advantage to the larger simplices for the constitution of the

groups. Thus, the first group will consist of the largest simplex,

or one randomly chosen among the largest ones, then simplices

of smaller size will become groups until every node is part of a

group. It is possible to consider other rules for the constitution

of the groups, but it has to follow one condition: every node

must pertain to exactly one group. The groups are represented

by the variable ‘Group’, that for each node gives its group

number. Then ‘QoS’ represents the minimum number of nodes

required for a given group, while ‘Size’ represents its number

of nodes. We can see that the breaking point of the ‘while’ loop

of the algorithm takes the ‘QoS’ parameter into account. Then

a node can be removed if and only if it does not modify the

number of connected component and the number of coverage

holes, and it is not needed for the QoS requirements. Coverage

radii reduction for each node is done in the last loop.

C. Performance

In this section, we compare the performance of our algo-

rithm to an optimal, not always achievable solution. Indeed

we do not know of a energy conservation algorithm that

can switch-off nodes during off-peak hours while maintaining

coverage. Thus, we compare the number of switched-on nodes

after the execution of our energy conservation algorithm, to

the number of nodes needed for the QoS, given by the ‘QoS’

parameter. It is important to note that this optimal solution is

not always achievable because it does not take into account

that the area is to stay covered. Some nodes have to be kept for

traffic reasons, while other are kept to maintain connectivity

and/or coverage.

Our simulation results are computed on 104 configurations

of Poisson point processes of intensity λ = 6 on a square

of size a = 2 with a fixed boundary of nodes on the square

boundary. The coverage radii are sampled uniformly between

a/10 and 2/
√
πλ , except for the boundary nodes for which it

was set to a/3. For each group the ‘QoS’ number is a sampled

integer between zero and the size of the group. We denote by

No the optimal number of nodes, and by Nk the number of

kept nodes with our energy conservation algorithm. First we

compute the percentage of simulations for which we have a

given difference between the obtained number and the optimal

number of kept nodes.

Nk −No 0 1 2 3 4
Occurrence 1.3% 4.2% 8.5% 12.5% 15.4%

5 6 7 8 9 ≥ 10
15.4% 14.3% 11.0% 7.5% 4.9% 4.7%

TABLE III
OCCURRENCES OF GIVEN DIFFERENCES BETWEEN Nk AND No .

We can see in Table III the percentage of simulations in

which the number of kept nodes is different from the optimal

number of nodes. For 1.3% of the simulations the optimal

number is reached. In 82.8% of our simulations the difference

between the optimal and the effective number of kept nodes

Algorithm 2 Energy conservation algorithm

Require: Set ω of N vertices, for each vertex v its coverage

radius rv .

Computation of the C̆ech complex X = Cr(ω) or the

Vietoris-Rips complex X = R2r(ω)
Creation of the list of boundary vertices LC

Computation of β0(X) and β1(X)
Computation of D1(X), . . . , Ds2(X)
Computation of I[v1(X)], . . . , I[vs0(X)]
for all v ∈ LC do

I[v] = −1
end for

Imax = max{I[v1(X)], . . . , I[vs0(X)]}
Ngroup = 0
for all Simplex Sk ∈ X from largest to smallest do

if ∀v ∈ Sk,Group(v) == 0 then

Ngroup = Ngroup + 1
∀v ∈ SkGroup(v) = Ngroup

Size(Ngroup) = k + 1
Draw QoS(Ngroup) among {0, . . . , k + 1}

end if

end for

while Imax > 2 and Size ≥ QoS do

Draw w a vertex of index Imax

X ′ = X\{w}
Computation of β0(X

′), β1(X
′)

if β0(X
′) 6= β0(X) and β1(X

′) 6= β1(X)and

Size(Group(w)) ≤ QoS(Group(w)) then

I[w] = −1
else

Size(Group(w)) = Size(Group(w)) − 1
Computation of D1(X

′), . . . , Ds′
k0

(X ′)

for i = 1 → s′
0

do

if I[vi(X
′)] == Imax then

Recomputation of I[vi(X
′)]

end if

end for

Imax = max{I[v1(X ′)], . . . , I[vs′
0
(X ′)]}

X = X ′

end if

end while

for all v ∈ X taken in random order do

X ′ = X
while β0(X

′) == β0(X)and β1(X
′) == β1(X) do

Reduce rv
end while

X = X ′

end for

return List of kept vertices v and their coverage radii rv .

is smaller than 7, and it never exceeds 18. The number of

boundary nodes is 16, these nodes are not removable (in order

to never shrink the covered area) even if they are not needed

for the traffic. So an average of 5.16 nodes to cover the area

on top of those needed for user traffic seems plausible.

To have more advanced comparison, for the 104 configu-
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rations, we compute the optimal number of nodes. Then for

each optimal number of nodes No that occurred the most, we

compute the mean number of kept nodes E [Nk|No] over the

simulations which have No for optimal number. The results

are given in Table IV. For comparison, we also compute the

difference between No and Nk in percent. We finally indicate

which percent of our 104 simulations these cases occur to

show the relevance of these statistical results.

No 22 23 24 25 26
E [Nk|No] 28.95 29.52 30.04 30.69 31.30
Difference 31.6% 28.4% 25.1% 22.8% 20.4%
Occurrence 5.0% 6.2% 7.0% 7.4% 7.9%

27 28 29 30 31 32
31.85 32.68 33.25 33.95 34.64 35.38
18.0% 16.7% 14.7% 13.1% 11.7% 10.6%
7.4% 7.5% 7.2% 6.3% 5.9% 4.8%

TABLE IV
MEAN NUMBER OF KEPT NODES E [Nk|No] FOR A GIVEN OPTIMAL

NUMBER No .

We can see in Table IV that the more nodes are needed,

the less difference there is between our result and the optimal

one. Indeed, if more nodes are needed, there is a great chance

that these nodes can cover the whole area.

VI. DISASTER RECOVERY ALGORITHM

In this section we present a disaster recovery algorithm

introduced in [5] of which we remind the main idea and

investigate more thoroughly the performance.

A. Main idea

The disaster recovery algorithm aims at restoring a dam-

aged cellular network. Thus, we consider a cellular network

presenting coverage holes and possibly many disconnected

components. The C̆ech complex or its approximation the

Vietoris-Rips complex is build based on the set of nodes and

their coverage radii. We also need a list of boundary nodes,

which can be fictional, in order to know the whole area to be

covered. To patch the damaged network provides the locations

where to put new nodes, so in this section locations of nodes

are known. We also restrict ourselves to a fixed common

coverage radius for every nodes, even if the main idea can be

extended. We can see an example of damaged cellular network

with a square boundary of fictional nodes and its representation

by the Vietoris-Rips complex in Fig. 10.

The algorithm then adds new nodes in addition to the set

of existing nodes. For the addition of nodes, several methods,

deterministic or random, are possible. But we choose here to

focus here on the best fitted random method: determinantal

point processes. However, the number of new added nodes

is not computed as in determinantal point processes, but via

an incrementation. It is first set to the minimum number of

nodes to cover the whole area minus the number of existing

nodes. When the nodes are added, the two first Betti numbers

are computed. Then if there are more than one connected

component, or any coverage hole, other new nodes are added.

Their number is incremented with a random variable following
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Fig. 10. A damaged cellular network with a fixed boundary.

an exponential growth: first set to 1, it is doubled every time

new nodes are added and the network is still not patched.

Using determinantal point processes for the addition of

nodes allows us to not only take into account the number

of existing nodes via the computation of the number of added

nodes, but also their locations. Indeed, the existing nodes are

taken as the first drawn points of the point process, then every

new point is drawn following a density law that is valued

at zero at every node (existing or newly added) location and

grows to be maximum the furthest from every node. The

principle behind this method is explained in [5], and how to

simulate determinantal point processes is detailed in [29]. The

addition of new nodes stops as soon as the network is repaired:

one connected component and no coverage hole.

We can see the first step of the disaster recovery algorithm

illustrated in Fig. 11 for the cellular network of Fig. 10.

Existing nodes are black circles while added nodes are red

plusses.
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Fig. 11. With the determinantal addition method with a Ginibre basis.

Finally, the next step of our approach is to run the reduc-

tion algorithm presented in Section III which maintains the

topology of the repaired cellular network. At this step, we

remove some of the new nodes we just virtually added in

order to achieve an optimal result with a minimum number

of really added nodes. We can see in Fig. 12 an execution of

the reduction algorithm on the intermediate configuration of

Figure 11 which constitutes of the second and final step of the

disaster recovery algorithm. Removed nodes are represented

by blue diamonds.

We give in Algorithm 3 the outline of the algorithm. The

algorithm requires the set of Ni initial nodes ωi, the fixed

coverage radius r, as well as the list of boundary nodes Lb.
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Fig. 12. The coverage reduction algorithm run on the determinantal method
example.

Algorithm 3 Disaster recovery algorithm

Require: Set of vertices ωi, radius r, boundary vertices Lb

Computation of the C̆ech complex X = Cr(ω) or the

Vietoris-Rips complex X = R2r(ω)

Na = ⌈ a2

πr2
⌉ −Ni

Addition of Na vertices to X following a determinantal

point process

Computation of β0(X) and β1(X)
u = 1
while β0 6= 1 or β1 6= 0 do

Na = Na + u
u = 2 ∗ u
Addition of Na vertices to X following chosen method

Computation of β0(X) and β1(X)
end while

Reduction algorithm on X
return List La of kept added vertices.

B. Performance comparison

We now compare the performance results of our disaster

recovery algorithm to the best known coverage recovery algo-

rithm: the greedy algorithm for the set cover problem along

two parameters first the mean number of added nodes, and

the smoothed robustness that we define. The greedy algorithm

lays a grid of potential new nodes, and adds first the node the

furthest from every other existing node, and so on until the

furthest node is in the coverage of an existing or added node.

Therefore, one can note that our homology algorithm with a

grid addition method gives the exact same result as the greedy

algorithm: the number et locations of new nodes are the same.

We compared the mean number of added nodes follow-

ing four different scenarios for the initial state. Indeed, the

performance of a recovery algorithm can be really affected

depending on how damaged is the cellular network to repair.

So the different scenarios are defined by the mean percentage

of covered area before running a recovery algorithm. In

Table V, we present the mean final number of added nodes

for the greedy algorithm and our homology algorithm over

104 configurations for each scenario. Every configuration is

simulated on a square of side a = 1, and nodes with identical

coverage radius of r = 0.25 for the construction of the

Vietoris-Rips complex.

% of area initially covered 20% 40% 60% 80%

Greedy algorithm 3.65 3.36 2.82 1.84
Homology algorithm 4.47 3.85 2.98 1.77

TABLE V
MEAN FINAL NUMBER OF ADDED NODES E

[

Nf

]

The numbers of nodes added in the final state both with our

recovery algorithm and the greedy algorithm are roughly the

same. Nonetheless, we can see that our algorithm performs a

little bit worse than the greedy algorithm in the less covered

area scenarios. Indeed the greedy algorithm takes advantage

of its grid layout and perfect spacing between added nodes.

However, our homology algorithm gives better result in the

more covered scenarios, thanks to the inherent ability of

determinantal point processes to locate the coverage holes.

In order to show the advantages of our disaster recovery

algorithm we choose to evaluate the compared robustness of

the two algorithms when the added nodes positions are slightly

moved, i.e. when the practical positioning does not strictly

follow the theoretical positioning. In order to do this, we apply

a Gaussian perturbation to each the added nodes position. The

covariance matrix of the perturbation is given by Σ = σ2Id
with σ2 = 0.01, which means that the standard deviation for

each node is of σ = 0.1. Other simulations parameters are

unchanged, results in Table VI and VII are given in mean

over 104 simulations. First, we compute the average number

of holes β1 created by the Gaussian perturbation in Table VI.

Then in Table VII, we count the percentage of simulations

in which the number of holes is still zero after the Gaussian

perturbation on the new nodes positions.

% of area initially covered 20% 40% 60% 80%

Greedy algorithm 0.68 0.67 0.48 0.35
Homology algorithm 0.58 0.52 0.36 0.26

TABLE VI
MEAN NUMBER OF HOLES E [β1] AFTER THE GAUSSIAN PERTURBATION

% of area initially covered 20% 40% 60% 80%

Greedy algorithm 40.7% 45.2% 58.8% 68.9%
Homology algorithm 54.0% 58.0% 68.8% 76.1%

TABLE VII
PROBABILITY THAT THERE IS NO HOLE P(β1 = 0) AFTER THE GAUSSIAN

PERTURBATION

We can see that the perturbation on the number of holes

decreases with the percentage of area initially covered, since

the initial nodes are not perturbed. Our homology algorithm

clearly performs better, even in the least covered scenarios,

there are less than half of the simulations that create coverage

holes, which is not the case for the greedy algorithm. The

greedy algorithm also always create more coverage holes in

mean than our disaster recovery algorithm for the same nodes

positions perturbation. Therefore our algorithm seems more

fitted to the disaster recovery case when a recovery network

is deployed in emergency both indoor, via Femtocells, and

outdoor, via a trailer fleet, where exact GPS locations are
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not always available, and exact theoretical positioning is not

always followed.
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