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Abstract—In this article, we apply the simplicial complex
representation to cellular networks, then using a reduction
algorithm for simplicial complexes we provide algorithms for
the management of future cellular networks. First, we propose
a frequency auto-planning algorithm for the self-configuration
of future cellular networks. It aims at minimizing the number
of planned frequencies while maximizing the usage of each one.
Then, we present an energy conservation algorithm for the self-
optimization of future cellular networks during off-peak hours.
It takes into account not only coverage, but also user traffic.
Finally, we present and discuss the performance of a disaster
recovery algorithm using determinantal point processes to patch
coverage holes.

I. INTRODUCTION

Long Term Evolution (LTE) is the 3GPP standard specified

in Releases 8 and 9. Its main goal is to increase both capacity

and speed in cellular networks. Indeed, cellular network usage

has changed over the years and bandwidth hungry applications,

as video calls, are now common. Achieving this goal costs a

lot of money to the operator. A solution to limit operation

expenditures is the introduction of Self-Organizing Networks

(SON). 3GPP standards have identified self-organization as a

necessity for future cellular networks [1]. A full description of

SON in LTE can be found in [18]. SON features include self-

configuration, self-optimization, and self-healing functions.

First, self-configuration functions aims at the plug-and-play

paradigm: new transmitting nodes should then be automati-

cally configured and integrated to the existing network. Upon

arrival of a new node, the neighboring nodes update their

dynamic neighbor tables thanks to the Automatic Neighbor

Relation (ANR) feature. This information is equivalent to the

connectivity information in wireless sensor networks, needed

to build the simplicial complex representation. Among self-

configuration functions, we can find the dynamic frequency

auto-planning problem. It is a known problem from spectrum-

sensing cognitive radio where equipments are designed to use

the best wireless channels in order to limit interference [17].

The different nodes of the secondary cognitive network have

to choose the best frequency to use in order to maximize

the coverage and minimize the interference with the base

stations of the primary network. The hierarchy in networks

makes this solution not directly practicable to future cellular

networks. While in earlier releases, static frequency planning

was preferred, it has became a critical point since the network

has a dynamic behavior with arrivals and departures of base

stations, and does not always follow a regular pattern with

the introduction of Femtocells and Heterogeneous Networks

(HetNet).

The second main SON feature is the category of the self-

optimization functions, which defines the ability of the net-

work to adapt its behavior to different traffic scenarii. Indeed,

in LTE cellular networks, eNode-Bs (eNB) have multiple con-

figurable parameters. An example is output power, so cells size

can be configured when capacity is the limitation rather than

coverage. Moreover, fast and reliable X2 communication inter-

faces connect eNBs. So the whole network has the capability

to adapt to different traffic situations. Then, users traffic can be

observed via eNBs and User Equipments (UEs) measurements.

Therefore, the self-optimization functions aim at using this

traffic observations to adapt the whole network, and not only

each cell independently, to the traffic situation. One case where

self-optimization is often needed is the adaptation to off-

peak hours. Typically a cellular network is deployed to match

daily peak hours traffic requirements. Therefore during off-

peak hours, the network is daily under-used. This leads to a

huge unneeded amount of energy consumption. An idea is thus

to switch-off some of the eNBs during off-peak hours, while

other eNBs adjust their configuration parameters to keep the

entire area covered. In case of a growth in traffic, the switched-

off eNBs could be woken up to satisfy the users demand.

The third and last of the SON main functions is self-healing.

In future cellular networks, nodes would be able to appear and

disappear at any time. Since the cellular network is not only

constituted of operators base stations anymore, the operator

does not control the arrivals or departures of nodes. But the

disappearances of nodes can be more generalized: for example

in case of a natural disaster (floods, earthquakes or tsunamis...).

The self-healing functions aim at reducing the impacts from

the failures of nodes must it be in isolated cases, like the turn-

ing off of a Femtocells, or more serious cases where the whole

network is damaged. We are interested in this latter case. In

case of a disaster, a cellular network can be seriously damaged:

some of its nodes can be completely destroyed. However such

networks are not necessarily built with redundancy and then

can be sensitive to such damages. Coverage holes can appear

resulting in no signal for communication or no monitoring

at all of a whole area. Paradoxically, reliable and efficient

communication and/or monitoring is especially needed in such

situations. Therefore, solutions for damage recovery for the

coverage of cellular networks are much needed.

In this article, we use the simplicial complex representation

in order to represent a cellular network with ANR information.

First, we first propose a frequency auto-planning algorithm

which, for any given cellular network, provides a frequency

planning minimizing the number of frequencies needed for a

given accepted threshold of interference. The algorithm calls

several instances of a reduction algorithm, introduced in [26],
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for the allocation of each frequency. Using simplicial complex

representation combined to the reduction algorithm allows us

to obtain a homogeneous coverage between frequencies. In

a second part, we enhance the reduction algorithm to satisfy

any user traffic. The reduction algorithm, as it is presented in

[26],only satisfies perfect connectivity and coverage. However,

in cellular networks, especially in urban areas, coverage is

not the limiting factor, capacity is. So the optimal solution is

not optimal coverage anymore, but depends on the required

traffic. We present an enhanced reduction algorithm to reach

an optimally used network. The performance of our energy

conservation algorithm is discussed and compared to the

minimun configuration required by traffic. Finally, we present

a algorithm for disaster recovery of wireless networks first

introduced in [27]. Given a damaged cellular network, the

algorithm first adds too many nodes then runs the reduction

algorithm to reach an optimal result. For the addition of

vertices we propose the use of a determinantal point process

which has the inherent ability to locate areas with low density

of vertices: namely coverage holes. We thoroughly evaluate

the performance of our algorithm compared to the classic

recovery algorithm: the greedy algorithm for the set cover

problem, comparing their complexity, number of added nodes,

and smoothed robustness.

The remainder of this article is organized as follows. After a

section on related work on self-configuration, self-optimization

and recovery of future cellular networks in Section II, we

introduce some simplicial homology definitions as well as the

reduction algorithm for simplicial complexes used all along the

article in Section III. Then in Section IV, we introduce our

frequency auto-planning algorithm. The energy conservation

algorithm is presented in Section V. Finally, we provide the

disaster recovery description and performance evaluation in

Section VI.

II. RELATED WORK

A complete survey on SON for future cellular networks is

given in [4].

A. Self-configuration in future cellular networks

Configuration of the different nodes (eNBs, relays, Fem-

tocells) of a cellular network has to be done during the

deployment of the network, but also upon the arrival and

departure of every node. The classic manual configuration

done for previous generations of cellular networks can not be

operated in future cellular networks: changes in the network,

such as arrivals and departures, occur too often. Moreover, the

commercialization of private Femtocells leads to the presence

in the network of nodes with no access for manual support.

So the future cellular networks are heterogeneous networks

with no regular pattern for its nodes. They need to be able

to self-configure themselves. The initial parameter that a node

needs to configure are its IP adress, its neighbor list and its

radio access parameters. IP adresses are out of the scope of

this work, but we will discuss the two other parameters.

The neighbor list is the connectivity information we use for

the construction of the simplicial complex which represents the

cellular network. The selection of the nodes to put on one’s

neighbor list can be based on the geographical coordinates

of the nodes and take into account the antenna pattern and

transmission power [22]. However, this approach does not con-

sider changing radio environment, and requires exact location

information which can be easy to obtain for eNBs, but not for

Femtocells. The authors of [21] propose a better criterion for

the configuration of the neighbor list: each node scans in real

time the Signal to Interference plus Noise Ratio (SINR) from

other nodes.

Among radio access parameters, we can find frequency but

also propagation parameters since the apparition of beamform-

ing techniques via MIMO. Let us focus on the former which is

the subject of Section IV. The frequency planning problem was

first introduced for GSM networks. However the constraints

were not the same: the frequency planning was static with

periodic manual optimizations, and in simulations base stations

were regularly deployed along an hexagonal pattern. With

the commercialization of Femtocells and the deployments of

outdoor relays and Picocells, cells do not follow a regular

pattern anymore and can appear and disappear at any time.

Therefore the frequency planning problem has to be rethought

in an automatic way. A naive idea for frequency auto-planning

would simply be applying the greedy coloring algorithm to the

sparse interference graph [19]. However, even if it reaches an

optimal solution for the number of needed frequencies, their

utilization can be disparate: one frequency can be planned for

a large number of nodes compared to another planned for only

few of them. Then if the level of interferences increase (more

users, or more powered antennas), this could lead to commu-

nication problems for the over-used frequency, and a whole

new planning is needed. While a more homogeneous resource

utilization can be more robust if interferences increase, since

there are less nodes using the same frequency on average. We

provide here a frequency auto-planning algorithm which aims

at a more homogeneous utilization of the resources. Moreover,

the planning of frequency channels for new nodes that do

not interfere with existing nodes while still provide enough

bandwidth is still an open problem. It has been addressed in

the cognitive radio field, but these algorithms usually enable

opportunistic spectrum access [25]. However, it is not possible

to extend this type of algorithm to the frequency allocation of

new nodes in cellular networks. Indeed, the new nodes would

be part of the primary network, with a quality of service to

achieve, so their frequency allocation needs to be guaranteed

and not opportunistic. The algorithm we propose aims at

allocating frequency channels to future cellular networks with

non-regular deployment, so upon the arrival of a new node,

the whole network is re-configured.

B. Self-optimization in future cellular networks

In order to ensure that future cellular networks are still

efficient in terms of both Quality of Service (QoS) and costs,

the self-configuration is not sufficient. Indeed, future cellular

networks have the ability to adjust their parameters to match

different traffic situation. Periodic optimization based on log

reports, and operated centrally is not a effective solution
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in terms of speed and costs. That is why we need self-

optimization. Self-optimization can be classified in three types

depending on its goal.

First we can consider load balancing optimization. There is

multiple ways to adapt a cellular network to different loads:

it is for example possible to adapt the resources available in

different nodes. These schemes were mainly introduced for

GSM [10], and then CDMA [3], but the universal frequency

reuse of LTE and LTE-Advanced diminishes their applicability.

Then one can adapt the traffic strategy with admission controls

on given cells and forced handovers [14]. However, as the

previous solution, it is not very suitable for LTE and LTE-

A which require hard handover. Finally it is possible to

modify the coverage of a node by changing either its antennas

radiation pattern [12] or the output power [11]. We use this

latter approach to reach an optimal result for our algorithm:

we adapt the coverage radius of each node to be the minimum

required to cover a given area.

The second type self-optimization is the capacity and cover-

age adaptation via the use of relay nodes [20], while the third is

interference optimization. Our energy conservation algorithm

presented in Section V could lie in this third category as the

simplest approach towards interference control is switching off

idle nodes. It is done based on cell traffic for Femtocells in [7]:

after a given period of time in idle mode, the node puts itself

on stand-by. However, if one wants to take into account the

whole network, it has to consider the coverage of the network

before disconnecting, which is not the case of Femtocells,

which are by definition redundant to the base stations network.

Without considerations of traffic, we proposed in [26] an

algorithm that reduce power consumption in wireless networks

by putting on standby some of the nodes without impacting the

coverage. We can also cite [8] that proposes a game-theoretic

approach in which nodes are put on standby according to a

coverage function, but unmodified coverage is not guaranteed.

In both these works, only coverage is taken into account.

This approach could eventually fit the requirements of cellular

network in non-urban cells, if their deployment has coverage

redundancy. But it is not valid for urban cells, where it is not

coverage but capacity that delimits cells. Our algorithm goes

a little bit further by adapting the switching-off of the nodes

to the whole network situation, the traffic and the coverage.

C. Recovery in future cellular networks

The first step of recovery in cellular networks is the detec-

tion of failures. The detection of the failure of a cell occurs

when its performance is considerably and abnormally reduced.

In [24], the authors distinguish three stages of cell outage:

degraded, crippled and catatonic. This last stage matches

with the event of a disaster when there is complete outage

of the damaged cells. After detection, compensation from

other nodes can occur through relay assisted handover for

ongoing calls, adjustments of neighboring cell sizes via power

compensation or antenna tilt. In [5], the authors not only

propose a cell outage management description but also de-

scribe compensation schemes. These steps of monitoring and

detection, then compensation of nodes failures are comprised

under the self-healing functions of future cellular networks

described in [2].

In Section VI, we are interested in what happens when self-

healing is not sufficient. In case of serious disasters, the com-

pensation from remaining nodes and traffic rerouting might

not be sufficient to provide service everywhere. In this case,

the cellular network needs a manual intervention: the adding

of new nodes to compensate the failures of former nodes.

However a traditional restoration with brick-and-mortar base

stations could take a long time, when efficient communication

is particularly needed. In these cases, a recovery trailer fleet

of base stations can be deployed by operators [23], it has been

for example used by AT&T after 9/11 events. But a question

remains: where to place the trailers carrying the recovery

base stations. An ideal location would be adjacent to the

failed node. However, these locations are not always available

because of the disaster, and the recovery base stations may not

have the same coverage radii than the former ones. Therefore

a new deployment for the recovery base stations has to be

decided, in which one of the main goal is complete coverage

of damaged area. This can be viewed as a mathematical set

cover problem. It suffices to define the universe as the area to

be covered and the subsets as the balls of radii the coverage

radii. Then the question is to find the optimal set of subsets that

cover the universe, considering there are already balls centered

on the existing vertices. It can be solved by a greedy algorithm

[9], ǫ-nets [16], or furthest point sampling [13], [6]. But these

mathematical solutions provide an optimal mathematical result

that do not consider any flexibility at all in the choosing of

the new nodes positions, and that can be really sensitive to

imprecisions in the nodes positions.

III. PRELIMINARIES

A. Simplicial homology

First we need to remind some definitions from simplicial

homology for a better understanding of the simplicial complex

representation of wireless networks.

When representing a wireless sensor network, one’s first

idea will be a geometric graph, where sensors are represented

by vertices, and an edge is drawn whenever two sensors can

communicate with each other. However, the graph represen-

tation has some limitations; first of all there is no notion

of coverage. Graphs can be generalized to more generic

combinatorial objects known as simplicial complexes. While

graphs model binary relations, simplicial complexes represent

higher order relations. A simplicial complex is a combinatorial

object made up of vertices, edges, triangles, tetrahedra, and

their n-dimensional counterparts. Given a set of vertices V
and an integer k, a k-simplex is an unordered subset of k+1
vertices [v0, v1 . . . , vk] where vi ∈ V and vi 6= vj for all

i 6= j. Thus, a 0-simplex is a vertex, a 1-simplex an edge, a

2-simplex a triangle, a 3-simplex a tetrahedron, etc.

Any subset of vertices included in the set of the k+1 vertices

of a k-simplex is a face of this k-simplex. Thus, a k-simplex

has exactly k+1 (k−1)-faces, which are (k−1)-simplices. For

example, a tetrahedron has four 3-faces which are triangles.

A simplicial complex is a collection of simplices which is
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closed with respect to the inclusion of faces, i.e. all faces

of a simplex are in the set of simplices, and whenever two

simplices intersect, they do so on a common face. An abstract

simplicial complex is a purely combinatorial description of the

geometric simplicial complex and therefore does not need the

property of intersection of faces. For details about algebraic

topology, we refer to [15].

We consider the nodes of a cellular network, and their

coverage radii. The construction of the C̆ech abstract simplicial

complex for a fixed radius r is given:

Definition 1 (C̆ech complex): Given (X, d) a metric space,

ω a finite set of N points in X , and r a real positive

number. The C̆ech complex of ω, denoted Cr(ω), is the abstract

simplicial complex whose k-simplices correspond to (k + 1)-
tuples of vertices in ω for which the intersection of the k+ 1
balls of radii ri centered at the k + 1 vertices is non-empty.

It is possible to build the C̆ech complex of a cellular net-

work with different coverage radii using the intersection of

different size coverage balls. The C̆ech complex characterizes

the coverage of the network. The k-th Betti numbers of an

abstract simplicial complex X are defined as the number of

k-th dimensional holes in X and are computed via linear

algebra computations. For example, β0 counts the number

of 0-dimensional holes, that is the number of connected

components. And β1 counts the number of holes in the plane.

Therefore the Betti number β1 of the C̆ech complex counts the

number of coverage holes of the wireless network it represents.

B. Reduction algorithm

In this section, we recall the steps of the reduction algorithm

for simplicial complexes presented in [26]. The algorithm

takes as input an abstract simplicial complex: here it is a C̆ech

complex and a list of boundary vertices that can be given by

the network operator or computed via the convex hull. Then it

removes vertices without modifying the connectivity nor the

coverage of the complex, and thus the ones of the cellular

network.

The first step is to characterize the superfluousness of 2-

simplices for the coverage with a degree. The degree of a 2-

simplex is then defined to be the size of the largest simplex a

2-simplex is the face of. Next since we need to remove vertices

and not 2-simplices, we need to transmit the superfluousness

of its 2-simplices to a vertex via what is called an index. An

index of a vertex is defined to be the minimum of the degrees

of the 2-simplices it is a face of. Indeed, a vertex is as sensitive

for the coverage as its most sensitive 2-simplex.

Finally, the indices give an optimal order for the removal of

vertices: the greater the index of a vertex, the more likely it is

superfluous for the coverage of its C̆ech simplicial complex.

The boundary vertices are given a negative index to mark them

as unremovable by the algorithm: we do not want the covered

area to be shrunk. Therefore, the vertices with the greatest

index are candidates for removal: one is chosen randomly.

If its removal does not change the homology, i.e. if it does

not modify its Betti numbers β0 and β1, then it is effectively

removed. Otherwise it is flagged as unremovable the same

way the boundary vertices are: with a negative index. The

algorithm goes on until every remaining vertex is unremovable,

thus achieving optimal result. For more information on the

reduction algorithm we refer to [26].

IV. SELF-CONFIGURATION FREQUENCY AUTO-PLANNING

ALGORITHM

A. Main idea

We consider a cellular network that we represent by a

geometric simplicial complex: the transmitting nodes (eNBs,

Femtocells, relays...) are represented by vertices, then we build

the C̆ech complex corresponding to the different communi-

cation radii. In this application, we are not interested in the

characterization of the topology of the network, the main goal

is to assign frequencies to the networks nodes, so the network

’s topology is not considered nor modified. The disks we

consider to build the complex are therefore communication

disks: when communication disks intersect, the corresponding

nodes can communicate between each other. With the sim-

plicial complex representation, we can characterize groups of

nodes that are close to each other using simplices. Indeed,

in the frequency planning problem, the goal is to assign

to each node a frequency so that the interference between

them is the smallest possible using a minimum number of

frequencies. Here we will only consider co-canal interference:

interference between two nodes using the same frequency.

Moreover, we will only consider the one frequency per node

case but the main idea of the algorithm can be extended to

several frequencies per nodes.

We introduce what we call a rejection radius, this radius

defines around every node a rejection disk. If one node is

within the rejection disk of another node, then we consider

that they shall not share the same frequency or the level

of interference will be too high for reliable communication

within each one of the two cells. This rejection radius defines

the interference threshold that is acceptable in the cellular

network. It is the interference criterion we will use for our

auto-planning algorithm.

The algorithm begins by computing the degrees of 2-

simplices and the indices of vertices as defined for the re-

duction algorithm presented in Section III. Then we apply a

modified version of the reduction algorithm: the order in which

the vertices are removed is still decided by the indices but

the stopping condition is not the same anymore. Indeed we

are not interested into achieving optimal coverage anymore.

Therefore, instead of stopping when the maximum index

among every remaining vertices is below a given number, the

algorithm stops when there is no more vertices in any rejection

disk of any other vertex. The vertices of the resulting simplicial

complex are assigned the first frequency.

Then all the removed vertices are collected, and the corre-

sponding simplicial complex recovered. This simplicial com-

plex is a subset of the initial simplicial complex so there is

no need to build another simplicial complex from scratch. The

next step is then to reapply the modified coverage reduction

algorithm to this recovered simplicial complex to obtain a

second set of vertices to which we assign the second frequency.

The algorithm goes on until every vertex has an assigned

frequency.
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At the end, we have a frequency assigned to every node.

We ensured that no two nodes sharing the same frequency

will be too close to each other: interference will be under a

given threshold. Moreover, the use of our coverage reduction

algorithm with the optimized order for vertices removal allows

us to obtain a homogeneous usage of every frequency.

B. Algorithm description

We give in Algorithm 1 the full frequency auto-planning

algorithm: it requires the set of vertices ω, and their commu-

nication and rejection radii, then returns the list of assigned

frequencies for every vertex of ω.

Algorithm 1 Frequency auto-planning algorithm

Require: Set ω of N vertices, for each vertex v its commu-

nication radius rv , and its rejection radius Rv .

Computation of the C̆ech complex X = Cr(ω)
Computation of D1(X), . . . , Ds2(X)
Computation of I[v1(X)], . . . , I[vs0(X)]
Imax = max{I[v1(X)], . . . , I[vs0(X)]}
Nplanned = 0
Interference = 1
X ′ = X
i = 0
while Nplanned < N do

while Interference == 1 do

Draw w a vertex of index Imax

X ′ = X ′\{w}
Computation of D1(X

′), . . . , Ds′
2
(X ′)

for i = 1 → s′
0

do

if I[vi(X
′)] == Imax then

Recomputation of I[vi(X
′)]

end if

end for

Imax = max{I[v1(X ′)], . . . , I[vs′
0
(X ′)]}

Interference = 0
for all u, v ∈ X ′ do

if ‖v − u‖ < max(Rv, Ru) then

Interference = 1
end if

end for

end while

for all v ∈ X ′ do

Frequency(v) = i
Nplanned = Nplanned + 1

end for

X ′ = X\X ′

i = i + 1
end while

return List of assigned frequencies Frequency(v), ∀v ∈
ω.

It is interesting to note that we do not need to compute

the Betti numbers of the C̆ech complex, since we are not

effectively removing vertices so the topology of the network

does not change. However we use the simplicial complex

representation information to locate the vertices too close to

each other.

We introduce three parameters in the algorithm description.

First of them is the number of planned vertices: it represents

the number of vertices to which we assigned a frequency

already. Then, the ‘Interference’ parameter is a binary number

to represent if there are at least two vertices with potentially

the same frequency within the rejection disk of each other.

Finally we also introduce the ‘Frequency’ notation, for every

vertex, this is where we store the frequency assigned to it.

C. Performance

For simulation reasons, we only compute the Vietoris-Rips

complex which is an approximation of the C̆ech complex

based on its graph description only, in the 2-dimensional case.

To measure the performance of our algorithm we compare

the number of frequencies our algorithm plans versus the

number of frequencies the greedy coloring algorithm plans.

Indeed, the frequency planning can be viewed as a graph

coloring problem. We consider the geometric graph whose

edges are added if at least one of its extremity vertex is within

the rejection disk of the other one. Then the optimal number

of frequencies to assign is the chromatic number of the graph.

The greedy coloring algorithm provides a coloring for a given

graph assigning the first new color available for each vertex.

Therefore, the greedy coloring algorithm provides a frequency

planning with a number of frequency equal to the maximum

vertex degree plus one. The greedy coloring gives especially

good results for the number of used colors for sparse graphs as

the interference graph is. However, the greedy coloring algo-

rithm leads to a disparate utilization of frequencies. Indeed, if

there is only one clique of maximum size, one frequency will

be only used for one vertex of this clique, and for no other

vertex in the whole configuration. Therefore, this algorithm

could give good results in a homogeneous network, but not

for a cluster network for example. Our algorithm aims at a

more homogeneous utilization of each ressource.

We simulate the set of vertices with a Poisson point process

of intensity λ = 12 on a square of side a = 2. The

communication radii are sampled uniformly between a/10 and

a2/λ, each rejection radius was equal to half its correspond-

ing communication radius. The results are obtained in mean

over 1000 configurations. For each realization of the Poisson

process, we compute the number of frequencies planned by

the greedy coloring algorithm that we denote Ng . Then on all

realizations with a given Ng , we compute the mean number

of frequencies, denoted Nf , planned by our algorithm.

Ng 2 3 4 5 6 7
E

[

Nf |Ng

]

3.73 4.66 5.53 6.21 6.95 6.50
Occurrence 1.1% 29.9% 45.6% 19.0% 4.2% 0.2%

TABLE I
MEAN NUMBER OF PLANNED FREQUENCIES E

[

Nf |Ng

]

FOR EACH GIVEN

Ng .

In Table I, we can see the mean number of planned

frequencies given the number of frequencies planned by the
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greedy coloring algorithm. We also indicate which percentage

of the 1000 simulations these situations represent. We can

see that there is a difference between the two solutions: it

is not negligible in the beginning, but it decreases with the

number of frequencies. Thus, our algorithm reaches its optimal

performance when the number of frequencies grows for the

same mean number of nodes, that is to say when there are

clusters of nodes or when the rejection radii are quite large

compared to the communication radii.

We are also interested in highlighting the strong point of our

frequency auto-planning algorithm: the homogeneous utiliza-

tion of frequencies. So we measure, for the same configuration

parameters, the percentage of area covered by each frequency

compared to the total covered area for our frequency auto-

planning algorithm and for the greedy coloring algorithm. The

percentages are given in mean over 1000 simulations. For an

optimal utilization of frequencies, each frequency should cover

the whole area, but it is not always achievable if there are not

enough nodes to cover several times the whole area.

# frequencies 3 4 5 6 7 8
Frequency 1 77.8% 73.2% 67.6% 63.4% 59.0% 48.9%
Frequency 2 65.8% 58.6% 58.4% 54.4% 49.2% 45.9%
Frequency 3 37.7% 46.4% 46.7% 46.1% 47.2% 46.8%
Frequency 4 26.4% 34.7% 36.4% 37.2% 43.5%
Frequency 5 18.6% 28.0% 30.6% 36.6%
Frequency 6 16.2% 24.9% 28.6%
Frequency 7 13.2% 17.9%
Frequency 8 11.4%
Occurrence 6.3% 18.4% 30.0% 24.9% 13.6% 4.9%

TABLE II
MEAN PERCENTAGE OF COVERED AREA BY EACH FREQUENCY WITH OUR

ALGORITHM

# frequencies 3 4 5 6 7
Frequency 1 98.1% 97.9% 97.7% 97.9% 98.2%
Frequency 2 57.7% 54.3% 55.7% 55.0% 52.3%
Frequency 3 17.7% 17.3% 19.1% 16.5% 18.0%
Frequency 4 4.1% 4.8% 4.2% 3.8%
Frequency 5 1.7% 1.2% 1.0%
Frequency 6 0.5% 1.0%
Frequency 7 1.0%
Occurrence 12.3% 44.7% 30.0% 11.3% 1.7%

TABLE III
MEAN PERCENTAGE OF COVERED AREA BY EACH FREQUENCY WITH THE

GREEDY COLORING ALGORITHM

We can see in Table II and Table III the percentage of area

covered by each frequency planned by our algorithm and the

greedy coloring algorithm. The results are presented depending

on the number of planned frequencies, we also indicate the

number of simulations these results concern for statistical

relevance. For our algorithm, even if the percentage decreases

with the order in which the frequencies are planned, which

is logical, we can see that a rather homogeneous coverage

is provided. Doing that, our algorithm maximizes the usage

of each resource. We can see that for the greedy coloring

algorithm, the frequencies re not all used equally, the first two

frequencies are always a lot more planned than the following,

the other frequencies are under-used.

D. Figures

We propose in this subsection figures illustrating the exe-

cution of our frequency auto-planning algorithm. In the first

figure, Figure 1, we can see the initial cellular network and

its coverage simplicial complex representation. In the cellular

network figure, the black circles are the communication radii,

while the pink ones are the rejection radii.
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Fig. 1. The cellular network and its coverage representation.

Then the interference graph is represented in Figure 2 next

to the frequency planning scheme obtained by our algorithm

for the configuration of Figure 1. In the left figure, vertices

that can induce interference to each other are linked by an

edge. In the figure on the right, a different color represent a

different frequency. We can see that our algorithm has planned

four frequencies (black, red, green and blue). Finally in Figure

3, we represent the covered area for each frequency of the

previously obtained planning.
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Fig. 2. Interference relations and frequency planning scheme.

V. SELF-OPTIMIZATION ENERGY CONSERVATION

ALGORITHM

A. Main idea

We consider a cellular network and represent it by its

associated coverage simplicial complex. Since we want to

use a minimum number of nodes, we consider for each one

its maximum coverage radius. Then we construct the C̆ech

complex corresponding to the set of nodes with their maximum

covered cells. In this application, we are not only interested in

the topology of the network but also by the characterization

of the clusters of nodes by simplices. Indeed, we intend to

optimize the number of switched-on nodes for the user traffic

requested in a given area. This area will be defined by the

nodes that are serving it.
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Fig. 3. Coverage for each frequency.

Before beginning the algorithm, we have to define how we

will represent user demand. To do this we will create groups

of vertices. These groups have to make sense geometrically:

they need to represent clusters of vertices. So, every group

will be defined by a simplex. Then these groups have to be

defined such that each vertex is part of one group exactly. To

consider user traffic, we will assign a traffic to each group:

for every group of k vertices/nodes, we will draw uniformly

an integer number between zero and k that is the number of

required nodes to keep switched-on. This is what will represent

the required QoS for the cellular network. This QoS metric is

quite artificial, but the algorithm can take into account any

QoS in terms of number of ressources required from a given

pool of ressources available in a group of nodes. This one is

the easier to implement if we want to consider that a same

pool of ressources is provided by nodes geographically close

to each other with no location information.

The algorithm begins by the computation of the Betti

numbers, since we do not want to modify the network’s

topology by turning off nodes. Then we compute the 2-

simplices degrees and the vertices indices of the coverage

reduction algorithm. As in the reduction algorithm of Section

III, the order for the removal of vertices follows the principle

of the coverage reduction algorithm. But the breaking point is

different. Instead of stopping when the area is covered by a

minimum number of vertices, the algorithm stops when each

group has been reduced to its required QoS.

Then given this configuration of switched-on nodes, i.e. kept

vertices, the algorithm tries to reduce as much as possible the

coverage radius of each node without creating a coverage hole.

The order in which the coverage radii are examined is random.

Finally, we obtain a configuration of vertices that defines

the nodes to keep switched-on that is optimal. From the first

part of the algorithm, we ensure that enough nodes are kept

on to satisfy the user demand. Then, from the second part,

we ensure that no energy is spend uselessly by optimizing the

size of the serving cells.

B. Algorithm description

We give in Algorithm 2 the full energy conservation algo-

rithm. It requires the set of vertices ω and their coverage radii,

then returns the list of kept vertices with their new coverage

radii.

Algorithm 2 Energy conservation algorithm

Require: Set ω of N vertices, for each vertex v its coverage

radius rv .

Computation of the C̆ech complex X = Cr(ω)
Creation of the list of boundary vertices LC

Computation of β0(X) and β1(X)
Computation of D1(X), . . . , Ds2(X)
Computation of I[v1(X)], . . . , I[vs0(X)]
for all v ∈ LC do

I[v] = −1
end for

Imax = max{I[v1(X)], . . . , I[vs0(X)]}
Ngroup = 0
for all Simplex Sk ∈ X from largest to smallest do

if ∀v ∈ Sk,Group(v) == 0 then

Ngroup = Ngroup + 1
∀v ∈ SkGroup(v) = Ngroup

Size(Ngroup) = k + 1
Draw QoS(Ngroup) among {0, . . . , k + 1}

end if

end for

while Imax > 2 and Size ≥ QoS do

Draw w a vertex of index Imax

X ′ = X\{w}
Computation of β0(X

′), β1(X
′)

if β0(X
′) 6= β0(X) and β1(X

′) 6= β1(X)and

Size(Group(w)) ≤ QoS(Group(w)) then

I[w] = −1
else

Size(Group(w)) = Size(Group(w)) − 1
Computation of D1(X

′), . . . , Ds′
k0

(X ′)

for i = 1 → s′
0

do

if I[vi(X
′)] == Imax then

Recomputation of I[vi(X
′)]

end if

end for

Imax = max{I[v1(X ′)], . . . , I[vs′
0
(X ′)]}

X = X ′

end if

end while

for all v ∈ X taken in random order do

X ′ = X
while β0(X

′) == β0(X)and β1(X
′) == β1(X) do

Reduce rv
end while

X = X ′

end for

return List of kept vertices v and their coverage radii rv .

For our simulations, we choose to give advantage to the

larger simplices for the constitution of the groups. Thus, the
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first group will consist of the largest simplex, or one randomly

chosen among the largest ones, then simplices of smaller size

will become groups until every vertex is part of a group. It

is possible to consider other rules for the constitution of the

groups, but it has to follow two conditions: every vertex must

pertain to at least a group, and must not pertain to more than a

group. The groups are represented by the variable ‘Group’, that

for each vertex gives its group number. Then ‘QoS’ represents

the minimum number of vertices required for a given group,

while ‘Size’ represents its number of vertices.

We can see that the breaking point of the ‘while’ loop of

the algorithm takes the ‘QoS’ parameter into account. Then a

vertex can be removed if and only if it does not modify the

number of connected component and the number of coverage

holes, and it is not needed for the QoS requirements. Coverage

radii reduction for each vertex is done in the last loop.

C. Performance

For simulation reasons, we only consider the Vietoris-Rips

complex in the 2-dimensional case. We choose the groups to

be simplices from the largest to the smallest as in the algorithm

description.

We compare the performance of our algorithm to an optimal,

not always achievable solution. Indeed we do not know of a

energy conservation algorithm that switch-off vertices during

off-peak hours while maintaining coverage. We compare the

number of switched-on vertices after the execution of our

energy conservation algorithm, to the number of vertices

needed for the QoS, given by the ‘QoS’ parameter. It is

important to note that this optimal solution is not always

achievable since it does not take into account that the area

is to stay covered. Some vertices have to be kept for traffic

reasons, while other are kept to maintain connectivity and/or

coverage.

Our simulation results are computed on 1000 configurations

of Poisson point processes of intensity λ = 6 on a square of

size a = 2 with a fixed boundary of vertices. The coverage

radii are sampled uniformly between a/10 and a2/λ, except

for the boundary vertices for which it was set to 1/
√
λ. For

each group the ‘QoS’ number is a sampled integer between

zero and the size of the group. We denote by No the optimal

number of vertices, and by Nk the number of kept vertices

with our energy conservation algorithm. First we compute the

percentage of simulations for which we have a given difference

between the obtained number and the optimal number of kept

vertices.

Nk −No 0 1 2 3 4
Occurrence 8.3% 18.7% 24.5% 21.7% 13.6%

Nk −No 5 6 7 8− 10
Occurrence 8.6% 3.3% 1.0% 0.3%

TABLE IV
OCCURRENCES OF GIVEN DIFFERENCES BETWEEN Nk AND No .

We can see in Table IV the percentage of simulations in

which the number of kept vertices is different from the optimal

number of vertices. For 8.6% of the simulations the optimal

number is reached. In 87.1% of our simulations the difference

between the optimal and the effective number of kept vertices

is smaller than 4, and it never exceeds 10. The number of

boundary vertices is 12, these vertices are not removable (in

order to never shrink the covered area). So less than 10 vertices

needed to cover the whole area on top of the needed vertices

for the traffic seems plausible.

To have more advanced comparison, for the 1000 configu-

rations, we compute the optimal number of vertices. Then for

each optimal number of vertices No that occurred the most,

we compute the mean number of kept vertices E [Nk|No] over

the simulations which have No for optimal number. The results

are given in Table V. For comparison, we also compute the

difference between No and Nk in percent. We finally indicate

which percent of our 1000 simulations these cases occur to

show the relevance of these statistical results.

No 20 21 22 23 24
E [Nk|No] 23.40 24.14 24.91 25.06 26.43
Difference 17.0% 14.9% 13.2% 8.9% 10.1%
Occurrence 7.0% 7.3% 7.9% 6.9% 6.1%

No 25 26 27 28
E [Nk|No] 27.37 27.91 28.84 29.56
Difference 9.5% 7.3% 6.8% 5.6%
Occurrence 6.8% 7.9% 6.8% 5.4%

TABLE V
MEAN NUMBER OF KEPT VERTICES E [Nk|No] FOR A GIVEN OPTIMAL

NUMBER No .

We can see in Table V that the more vertices are needed, the

less difference there is between our result and the optimal one.

Indeed, if more vertices are needed, there is a great chance that

these vertices can cover the whole area.

D. Figures

We propose in this subsection figures illustrating the ex-

ecution of our energy conservation algorithm. In the first

figure, Figure 4, we can see the initial cellular network and its

coverage simplicial complex representation. The vertices have

different coverage radii, and there is no fixed boundary. The

boundary vertices are in red.
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Fig. 4. The cellular network and its coverage representation.

Then for the configuration of Figure 4, we represent he

groups of nodes in different colors, and give a table with their

corresponding QoS and size in Figure 5. The kept vertices are

circled.
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Fig. 5. Groups of QoS.

Finally in Figure 6, we can see the final configuration of

the cellular network with the optimized coverage radii and

its corresponding simplicial complex for the configuration of

Figure 4.
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Fig. 6. Final configuration.

VI. DISASTER RECOVERY ALGORITHM

In this section we present a disaster recovery algorithm

introduced in [27] of which we remind the description and

investigate more thoroughly the performance, especially its

smoothed robustness.

A. Main idea

We consider a damaged cellular network presenting cover-

age holes with a fixed boundary, in order to know the domain

to cover. We consider as inputs the set of existing vertices:

the nodes of a damaged cellular network, and their coverage

radii. We also need a list of boundary nodes, these nodes can

be fictional, but we need to know the whole area that is to

be covered. Then we build the C̆ech complex characterizing

the coverage of the network, the Betti number β1 of the C̆ech

complex counting the number of coverage holes of the wireless

network. In this section, we restrict ourselves to wireless

networks with a fixed communication radius r.

The algorithm begins by adding new vertices in addition

to the set of existing vertices presenting coverage holes. We

suggest here the use of the determinantal addition method.

It is possible to consider any vertices addition methods must

they be deterministic or random based: flexibility is one of the

greatest advantage of our algorithm. In particular, it is possible

to consider a method with pre-defined positions for some of

the vertices in real-life scenarii.

We choose that the number of added vertices, that we denote

by Na, is determined as follows. First, it is set to be the mini-

mum number of vertices needed to cover the whole area minus

the number of existing vertices. This way, we take into account

the number of existing vertices, that we denote by Ni. Then

the Betti numbers β0 and β1 are computed via linear algebra

thanks to the simplicial complex representation. If there is still

more than one connected component, and coverage holes, then

the number of added vertices Na is incremented with a random

variable u following an exponential growth:

• Na := ⌈ a2

πr2
⌉ −Ni.

• After adding the Na vertices, if β0 6= 1 or β1 6= 0,

Then, Na = Na + u, and u = 2 ∗ u.

Using determinantal point processes allows us to not only

take into account the number of existing vertices, via the

computation of Na, but we also take into account the existing

vertices positions, then every new vertex position as it is added.

It suffices to consider the Ni existing vertices as the Ni first

vertices sampled in the process, then each vertex is taken into

account as it is drawn.

The next step of our approach is to run the coverage

reduction algorithm presented in Section III which maintains

the topology of the cellular network: the algorithm removes

vertices from the simplicial complex without modifying its

Betti numbers. At this step, we remove some of the supernu-

merary vertices we just added in order to achieve an optimal

result with a minimum number of added vertices.

B. Algorithm description

We give in Algorithm 3 the outline of the algorithm. The

algorithm requires the set of initial vertices ωi, the fixed

coverage radius r, as well as the list of boundary vertices

Lb. It is important to note that only connectivity information

is needed to build the C̆ech complex.

Algorithm 3 Disaster recovery algorithm

Require: Set of vertices ωi, radius r, boundary vertices Lb

Computation of the C̆ech complex X = Cr(ωi)

Na = ⌈ a2

πr2
⌉ −Ni

Addition of Na vertices to X following a determinantal

point process

Computation of β0(X) and β1(X)
u = 1
while β0 6= 1 or β1 6= 0 do

Na = Na + u
u = 2 ∗ u
Addition of Na vertices to X following chosen method

Computation of β0(X) and β1(X)
end while

Coverage reduction algorithm on X
return List La of kept added vertices.
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C. Performance

We now compare the performance results of our disaster

recovery algorithm to the most known coverage recovery

algorithm: the greedy algorithm for the set cover problem.

First, we compare the mean number of added vertices.

Results presented in Table VI are computed in mean over

1000 simulations for each algorithm in different scenarii on

a square of side a = 1 with coverage radius r = 0.25,

and a Vietoris-Rips complex. Scenarii are defined by the

mean percentage of area covered before running the recovery

algorithm: if there are many or few existing vertices, and thus

few or many vertices to add. They concern the final number

of added vertices: the number of added vertices kept after the

reduction algorithm, or added with the greedy algorithm. It

is important to note that our algorithm with the grid method

gives the exact same result as the greedy algorithm, number

of added vertices and their positions being exactly the same.

% of area initially covered 20% 40% 60% 80%

Greedy algorithm 3.69 3.30 2.84 1.83
Homology algorithm 4.42 3.87 2.97 1.78

TABLE VI
MEAN FINAL NUMBER OF ADDED VERTICES E

[

Nf

]

The numbers of vertices added in the final state both with

our recovery algorithm and the greedy algorithm are roughly

the same. They both tend to the minimum number of vertices

required to cover the uncovered area depending on the initial

configuration. Nonetheless, we can see that our algorithm

performs a little bit worse than the greedy algorithm in the less

covered area scenarii because the vertices are not optimally

positioned and it can be seen when just a small percentage

of area is covered, and whole parts of the grid from the

greedy algorithm are used, instead of isolated vertices. In

compensation, our homology algorithm performs better in

more covered scenarii.

To show the advantages of our disaster recovery algorithm

we choose to evaluate the robustness of the algorithm when

the added vertices positions are slightly moved, i.e. when the

nodes positioning does not strictly follow the theoretical posi-

tioning. In order to do this, we apply a Gaussian perturbation

to each the added vertices position. The covariance matrix of

the perturbation is given by Σ = σ2Id with σ2 = 0.01, which

means that the standard deviation for each vertex is of σ = 0.1.

Other simulations parameters are unchanged, results in Table

VII and VIII are given in mean over 1000 simulations. First,

we compute the average number of holes β1 created by the

Gaussian perturbation in Table VII. Then in Table VIII, we

counted the percentage of simulations in which the number of

holes is still zero after the Gaussian perturbation on the new

vertices positions.

We can see that the perturbation on the number of holes

decreases with the percentage of area initially covered, since

the initial vertices are not perturbed. Our homology algorithm

clearly performs better, even in the least covered scenarii, there

are less than 50% of simulations that create coverage holes,

which is not the case for the greedy algorithm. The greedy

% of area initially covered 20% 40% 60% 80%

Greedy algorithm 0.68 0.65 0.45 0.35
Homology algorithm 0.62 0.53 0.37 0.26

TABLE VII
MEAN NUMBER OF HOLES E [β1] AFTER THE GAUSSIAN PERTURBATION

% of area initially covered 20% 40% 60% 80%

Greedy algorithm 40.8% 47.7% 61.0% 69.3%
Homology algorithm 50.9% 58.1% 67.9% 75.3%

TABLE VIII
PROBABILITY THAT THERE IS NO HOLE P(β1 = 0) AFTER THE GAUSSIAN

PERTURBATION

algorithm also always create more coverage holes in mean

than our disaster recovery algorithm for the same vertices

positions perturbation. Therefore our algorithm seems more

fitted to the disaster recovery case when a recovery network

is deployed in emergency both indoor, via Femtocells, and

outdoor, via a trailer fleet, where exact GPS locations are

not always available, and exact theoretical positioning is not

always followed.

D. Figures

We propose in this subsection some figures to illustrate the

disaster recovery algorithm. In Figure 7, we can see the initial

damaged cellular network with a boundary of fictional nodes

presenting coverage holes.
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Fig. 7. A damaged cellular network with a fixed boundary.

We can see the first step of the disaster recovery algorithm

illustrated in Figure 8 for the cellular network of Figure 7.

Existing vertices are black circles while added vertices are

red plusses.
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Fig. 8. With the determinantal addition method with a Ginibre basis.
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Finally, we can see in Figure 9 an execution of the reduc-

tion algorithm on the intermediate configuration of Figure 8

which constitutes of the second and final step of the disaster

recovery algorithm. Removed vertices are represented by blue

diamonds.
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Fig. 9. The coverage reduction algorithm run on the determinantal method
example.
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