
HAL Id: hal-00914632
https://hal.science/hal-00914632

Submitted on 5 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connecting dispersion models and wall temperature
prediction for laminar and turbulent flows in channels

Olivier Grégoire, Marie Drouin, Olivier Simonin

To cite this version:
Olivier Grégoire, Marie Drouin, Olivier Simonin. Connecting dispersion models and wall temperature
prediction for laminar and turbulent flows in channels. International Journal of Heat and Mass
Transfer, 2012, vol. 55, pp. 3100-3113. �10.1016/j.ijheatmasstransfer.2012.02.011�. �hal-00914632�

https://hal.science/hal-00914632
https://hal.archives-ouvertes.fr


To link to this article : DOI:10.1016/j.ijheatmasstransfer.2012.02.011 

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.02.011 

To cite this version : Grégoire, Olivier and Drouin, Marie and Simonin, 

Olivier Connecting dispersion models and wall temperature prediction for 

laminar and turbulent flows in channels. (2012) International Journal of Heat 

and Mass Transfer, vol. 55 . pp. 3100-3113. ISSN 0017-9310 

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers 

and makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 10363 

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr



Connecting dispersion models and wall temperature prediction for laminar and
turbulent flows in channels

O. Grégoire a,⇑, M. Drouin b, O. Simonin c

a STXN, 25 rue Leblanc, 75015 Paris, France
bCEA Saclay, DEN/DANS/DM2S/SFME/LETR, 91191 Gif-sur-Yvette, France
cUniversité de Toulouse, CNRS; IMFT; Allée du Professeur Camille Soula, 31400 Toulouse, France

Keywords:

Heat transfer
Taylor dispersion
Double averaging
Turbulence

a b s t r a c t

In a former paper, Drouin et al. [6] proposed a model for dispersion phenomena in heated channels that
works for both laminar and turbulent regimes. This model, derived according to the double averaging
procedure, leads to satisfactory predictions of mean temperature. In order to derive dispersion coeffi-
cients, the so called ‘‘closure problem’’ was solved, which gave us access to the temperature deviation
at sub filter scale. We now propose to capitalize on this useful information in order to connect dispersion
modeling to wall temperature prediction. As a first step, we use the temperature deviation modeling in
order to connect wall to mean temperatures within the asymptotic limit of well established pipe flows.
Since temperature in wall vicinity is mostly controlled by boundary conditions, it might evolve according
to different time and length scales than averaged temperature. Hence, this asymptotic limit provides poor
prediction of wall temperature when flow conditions encounter fast transients and stiff heat flux gradi-
ents. To overcome this limitation we derive a transport equation for temperature deviation ðTw ÿ hT f if Þ.
The resulting two-temperature model is then compared with fine scale simulations used as reference
results. Wall temperature predictions are found to be in good agreement for various Prandtl and Reynolds
numbers, from laminar to fully turbulent regimes and improvement with respect to classical models is
noticeable.

1. Introduction

Design, optimization and safety analysis of large heating de-
vices such as heat exchangers or nuclear reactor cores are major
concerns for many engineers. Those studies rely heavily upon flows
and heat exchanges modeling. Indeed, considering the geometrical
complexity and the size of such systems, it is not possible, to cal-
culate the details of velocity and temperature profiles in each
sub-channel. However, the primary interest for industrial purpose
is not the details of the flow, but rather the description on a large
scale of mean flow quantities and heat transfer properties. Such a
macroscopic description may be obtained by applying up-scaling
methods [9,15,20,21]. Doing so, a nuclear reactor core, for instance,
can be described in an homogenized way (porous approach) by
means of a spatial filter [1,19]. This averaging procedure leads to
modified equations for mean flow variables, with additional contri-
butions that account for small scale phenomena, mainly boundary
layers interactions with solids. Actually, such heating devices
might be seen as spatially periodic and anisotropic porous media,

with the additional difficulty that flows may achieve any regime,
from laminar to highly turbulent, within the pores.

In a former article [6], a complete macroscopic mean tempera-
ture model for flows in stratified porous media has been presented.
Correlations for scalar and temperature dispersion modeling in
rectangular, circular and annular pipes have been established and
assessed thanks to comparisons with fine scale simulation results.
Now, we focus on wall temperature modeling, or, in other words,
on heat exchange modeling. The most classical heat exchange coef-
ficients do not account for transients flows or non uniform heat
fluxes since they are based upon the assumption that flows are
fully established. It is well known, for instance, that heat exchange
in pipes inlet region are poorly predicted and ad hoc modifications
of models are generally used [10]. During a fast transient or when
heat fluxes encounter large gradients, flows cannot be considered
established anymore. Boundary layers and bulk flow do not react
simultaneously to those strong perturbations and are, in a sense,
out of phase. Since dispersion modeling relies on the analysis of
spatial deviations of flow quantities (the so-called ‘‘closure prob-
lem’’) [2], it appears to be a natural way to account for those
unbalances.

In this work, we propose to connect dispersion modeling to heat
transfer and averaged wall temperature modeling for forced
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convection flows in pipes. In Section 2, the averaging procedure
and the derivation and closure of the macroscopic mean tempera-
ture equation are recalled. In Section 3, we show how it is possible
to connect the temperature deviation modeling embedded in por-
ous media approach with classical heat exchange models. Since
temperature in wall vicinity is mostly controlled by boundary con-
ditions, it might evolve according to different time and length
scales than averaged temperature. Hence the resulting algebraic
closure must be seen as an asymptotic limit consistent with both
porous media modeling and classical heat exchange modeling for
smooth flows.

For flows exhibiting large or rapid variations of boundary condi-
tions, thermal unbalancemight reach a high level so other time and
length scales have to be taken into account. To overcome the limi-
tation of algebraic models to represent such an effect, a method to
derive a balance equation for wall temperature model is exposed in
Section 4. New contributions in this equation are closed consis-
tently with the algebraic limit of the porous model presented in
Section 3. The resulting two-temperaturemodel (averaged andwall
temperatures) is finally assessed by detailed comparisons with fine
scale simulation results and classical heat exchange models.

2. Macroscopic temperature equation

We recall in this section the averaging procedure and the deri-
vation and closure of the macroscopic mean temperature equation.
Since flows that are considered in this work can be turbulent, a sta-
tistical average operator, denoted ‘‘��’’, is used to handle the random
character of turbulence. Our aim is to develop a spatially homoge-
nized modeling of these flows, so we also apply a spatial filter. The
spatial average operator used to derive a macroscale model is

denoted ‘‘h � if’’. For each average, any quantity n may be split into
mean and fluctuating components as

n ¼ �nþ n0 ¼ hnif þ dn; ð1Þ

and one can write

n ¼ h�nif þ hn0if þ d�nþ dn0: ð2Þ

Statistical and spatial average properties are summarized in Drouin
et al. [6]. The order of application for those averages is discussed in
Pinson et al. [13].

In this study, incompressible and undilatable, single phase
flows in saturated, rigid porous media are considered. Fluid prop-
erties (density, viscosity, heat capacity) and the porosity of the
medium are assumed constant. Finally, we shall assume that ther-
mal interactions with solids reduce to an external forcing for the
fluid temperature. Under those hypothesis, macroscopic conserva-
tion of mass equation reads [13]:

@h�uiif
@xi

¼ 0: ð3Þ

Considering the thermal boundary condition on the wall Af for sta-
tistically averaged temperature

af

@T f

@xi
ni ¼

U

ðqCpÞf
on Af ð4Þ

and under the first gradient approximation for turbulent heat flux:

u0
iT

0
f ¼ ÿat

@T f

@xi
; ð5Þ

Drouin et al. [6] (see Section 3) derived the following equation for
mean temperature:

Nomenclature

Af interface between solid and fluid phases (m2)
D

A thermal active dispersion vector (m)
D

P thermal passive dispersion tensor (m2 sÿ1)
Cp Specific heat capacity (J kgÿ1 Kÿ1)
Dh hydraulic diameter of the pores (m)
e1,2 thickness of the central and near-wall layers
fw friction coefficient
ni ith component of the interface normal vector, pointing

towards the solid phase
Pe Péclet number (U Dh/af = RePr)
Pr Prandtl number (mf/af)
Prt turbulent Prandtl number (mt/at)
Re Reynolds number (U Dh/mf)
R radius of the pipe
REV Representative Elementary Volume
X volume of a REV
X1 volume of the central region of the REV
X2 volume of the near-wall region of the REV
Tf fluid temperature
T1,2 fluid temperature averaged over central and wall re-

gions, respectively
u1,2 fluid velocity averaged over central and wall regions,

respectively
us friction velocity (m sÿ1)

Greek symbols
af thermal diffusivity of the fluid (m2 sÿ1)
at turbulent thermal diffusivity (m2 sÿ1)
at/ macroscopic turbulent thermal diffusivity (m2 sÿ1)
kf thermal conductivity of the fluid (W/m/K)

dw Dirac delta function associated to the walls (mÿ1)
DT wall to mean temperature gap (K)
DV representative elementary volume (REV) (m3)
DVf fluid volume included in the REV (m3)
f active dispersion function (s)
gj passive dispersion function (m)
mf kinematic viscosity of the fluid (m2 sÿ1)
mt turbulent kinematic viscosity (m2 sÿ1)
q density of the fluid (kg mÿ3)
/ porosity
U wall heat flux
R solid surface
R2,1 surface delimiting inner and outer region

Other symbols
�� statistical average
�0 fluctuation from the statistical average
hi volume average
hif fluid volume average
hi1,2 fluid volume average over central and wall regions of

the flow, respectively
d� deviation from the fluid volume average
�⁄ dimensionless quantity
�f fluid
�B bulk
�w wall
�t turbulent



/
@hT f if
@t

þ @

@xi
ð/h�uiif hT f if Þ ¼ ÿ @

@xi
/ u0

iT
0
f

D E

f
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

macroscopic

turbulent

heat flux

þ @

@xi
/af

@hT f if
@xi

 !

þ / af

@T f

@xi
nidw

* +

f
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wall heat

transfer

þ @

@xi
/haf dT fnidwif

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

tortuosity

ÿ @

@xi
/hd�uidT f if

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

thermal

dispersion

: ð6Þ

Macroscopic turbulent heat flux can be modeled by means of a mac-
roscopic turbulent thermal diffusivity at/ [11,12]:

u0
iT

0
f

D E

f
¼ ÿat/

@hT f if
@xi

¼ ÿ mt/
Prt

@hT f if
@xi

: ð7Þ

Macroscopic turbulent viscosity models for flows in pipes are de-
tailed in Grégoire [8]. Thanks to Eq. (4), wall heat exchange reads

af

@T f

@xi
nidw

* +

f

¼
hUdwif
ðqCpÞf

: ð8Þ

When a porous medium is periodic, tortuosity vanishes. This is the
case for parallel flows in channels or pipes and tortuosity contribu-
tion is zero. Hence, the macroscopic mean temperature equation
reads:

@hT f if
@t

þ h�uiif
@hT f if
@xi

¼ @

@xj
ðaf þ at/Þ

@hT f if
@xj

" #

þ
hUdwif
ðqCpÞf

þ @

@xi
D

P
ij

@hT f if
@xj

 !

þ @

@xi
D

A
i

hUdwif
ðqCpÞf

 !

; ð9Þ

where D
P
ij and D

A
i are dispersion tensors. Specific models have been

proposed and calibrated for those quantities in [6].

3. Connecting temperature deviation modeling with algebraic

heat exchange models

In this section, we aim to achieve consistency between the
upscaling procedure used to derive the macroscopic temperature
equation and wall temperature modeling. Indeed, in order to de-
rive their macroscopic mean temperature model, Drouin et al. [6]
used the Carbonell and Whitaker [2] closure relationship, valid
for periodic porous media, that tightly relates the temperature
deviation to mean temperature gradient and wall heat flux. We
analyze here the possibility to connect this closure with wall tem-
perature prediction.

3.1. Forced convection classical heat exchange models

In forced convection, the most common way to model heat
transfer at a macroscopic scale is to assume that the wall heat flux
is proportional to the difference between the wall and bulk
temperatures:

U ¼ hðTw ÿ TBÞ; ð10Þ

where

TB ¼
huT f if
huif

¼ hT f if þ
hdudT f if
huif

; ð11Þ

and

h ¼ NuDh

ðqCpÞfaf

: ð12Þ

In other word, wall temperature is connected with bulk tempera-
ture through the heat exchange coefficient and the thermal heat
flux according to:

Tw ¼ TB þ
U

h
: ð13Þ

The Nusselt number Nu quantifies the ratio between conductive and
convective heat transfer. For forced convection flows in ducts, one
generally uses correlations relating Nusselt number to Reynolds
and Prandtl numbers. Among all correlations (see [10] for a review
of available correlations), Colburn [4] or Dittus–Boelter [5] are the
most used. They read

Nu ¼ maxðNuL;NuTÞ; ð14Þ

where NuL is a constant that depends on the geometry and

NuT ¼ A Rem Prn: ð15Þ

Classical models give satisfactory results for steady established
flows with uniform wall heat flux and are very easy to use. However
they are not able to accurately predict heat transfer for fast tran-
sients or when the wall heat flux is highly non-uniform. For in-
stance, if one injects a temperature burst in an adiabatic pipe,
such kind of models will predict that wall temperature is every-
where and always equal to bulk temperature. It is obviously not
the case!

3.2. Algebraic wall temperature model based on a porous media

approach

We aim here to achieve consistency between the upscaling pro-
cedure used to derive the macroscopic temperature equation and
wall temperature modeling. Indeed, in order to derive their macro-
scopic mean temperature model, Drouin et al. [6] used the Carbo-
nell andWhitaker [2] closure relationship, valid for periodic porous
media:

dT f ¼ T f ÿ hT f if ¼ gj

@hT f if
@xj

þ f
hUdwif
ðqCpÞf

: ð16Þ

In other word, we analyze here the possibility to connect hT f if and
Eq. (16), through definition (1), in order to derive a model for the
wall temperature. Doing so, we aim to account for dispersion effect
upon wall temperature calculation.

In (16), functions gj and f are solutions of the following closure
problem (see [6])

Inside the REV : �ui

@gj

@xi
ÿ @

@xi
ðaf þ atÞ

@gj

@xi

� �

¼ @at

@xj
ÿ d�uj; ð17Þ

�ui

@f

@xi
ÿ @

@xi
ðaf þ atÞ

@f

@xi

� �

¼ ÿ1; ð18Þ

at walls :
@gj

@xi
ni ¼ ÿdijni; ð19Þ

af

@f

@xi
ni ¼

U

hUdwif
: ð20Þ

Using the same approach, we now focus on near wall temperature
modeling. Using Eq. (16) one can write

Tw ¼
hT f dwif
hdwif

¼ hT f if þ gjw

@hT f if
@xj

þ fw
hUdwif
ðqCpÞf

: ð21Þ

where

gjw
¼

hgjdwif
hdwif

; fw ¼
hfdwif
hdwif

: ð22Þ



To close the wall temperature modeling, gjw and fw are needed. Gi-
ven the form of the closure problem, gjw and fw are only known up
to a constant (see [6]). This difficulty can be avoided using the idem-
potence property of the spatial filter [14,15] in Eq. (16):

hdT f if ¼ hgjif
@hT f if
@xj

þ hfif
hUdwif
ðqCpÞf

¼ 0: ð23Þ

A general formulation for the wall temperature is then obtained by
subtracting Eq. (23) to Eq. (21)

Tw ¼ hT f if þ Dgj

@hT f if
@xj

þ Df
hUdwif
ðqCpÞf

; ð24Þ

where Dgj = gjw ÿ hgjif and Df = fw ÿ hfif.

3.2.1. Determination of the model parameters for parallel flows in

channels

For parallel flows in channels, Eq. (24) simplifies to

Tw ¼ hT f if þ Dgz

@hT f if
@z

þ Df
hUdwif
ðqCpÞf

: ð25Þ

For laminar flows in plane channels or circular pipes, the closure
problem (Eqs. (17)–(20)) can be analytically solved. This calculation
allows us to show that Dgz is identical to the active dispersion coef-
ficient introduced in [6]. The values found for Dgz and Df are sum-
marized in Table 1.

Note that the closure relationship (25) used with the coeffi-
cients given in Table 1 is strictly consistent with the analytical
solution of local temperature equation for established laminar
flows with constant wall heat flux.

For turbulent flows, analytical expressions cannot be found for
Dgz and Df and they have to be modeled. To this aim, simulations
were carried out for a large range of Reynolds numbers and Prandtl
numbers. Velocity profiles result from RANS calculations for turbu-
lent regime. To perform the latter RANS simulations, the low-Rey-
nolds number �kÿ �e Chien model [3] is used. Since we consider
parallel flows, velocity and thermal diffusivity profiles are calcu-
lated in 1D. The closure problem (Eqs. (17)–(20)) is discretized
and numerically solved in the section of the unit cell.

As for laminar flows, we observe that the model coefficient Dgz
is equal to the active dispersion coefficient introduced in [6]. The
model given by Drouin et al. [6] for DA

z is thus used here to model
Dgz (see Section 4 in Drouin et al. [6]). The model coefficient Df is
modeled considering that Eq. (25) must be consistent with classical
models for established flows with uniformwall heat flux. In this re-
stricted framework, we have

Tw ¼ TB þ
hUdwif
ðqCpÞf

� D2
h

4afNu
; ð26Þ

and for such flows, mean temperature equation simplifies to

@hT f if
@z

¼
hUdwif

h�uzif ðqCpÞf
: ð27Þ

Combining (25)–(27)

TB þ
hUdwif
ðqCpÞf

� D2
h

4afNu
¼ hT f if þ

Dgz

h�uzif
þ Df

 !

hUdwif
ðqCpÞf

; ð28Þ

and consequently

Dgz

h�uzif
þ Df ¼

ðqCpÞf
hUdwif

� TB ÿ hT f if þ
hUdwif
ðqCpÞf

� D2
h

4afNu

 !

; ð29Þ

Using the thermal dispersion model of Drouin et al. [6], Eq. (11)
gives

TB ÿ hT f if ¼ ÿh�uziÿ1
f D

P
zz

@hT f if
@z

ÿ h�uziÿ1
f D

A
z

hUdwif
ðqCpÞf

; ð30Þ

Eq. (30) is then injected in Eq. (29) and the following relationship
can be written

Df� ¼ Dfaf

D2
h

¼ 1
4Nu

ÿ D
P
zz

afPe
2 ÿ 2� D

A
z

DhPe
: ð31Þ

Applied to the cases of plane channel and circular pipe, function
(31) has been validated for a broad range of Re number (see
Fig. 1). A detailed description of the dispersion coefficients may
be found in [6]. The following algebraic model is finally proposed
for Tw:

Tw ¼ hT f if þ Dgz

@hT f if
@z

þ Df
hUdwif
ðqCpÞf

; ð32Þ

Dgz ¼ D
A
z ; ð33Þ

Df ¼ D2
h

af

1
4Nu

ÿ D
P
zz

afPe
2 ÿ 2� D

A
z

DhPe

 !

: ð34Þ

This model is consistent with porous media model of Drouin et al.
[6] and though implicitely accounts for Taylor dispersion. However,
since it is based upon the same assumptions than the closure prob-
lem, its use must be limited to smooth flow configurations.

4. Wall temperature transport equation model

When mean temperature gradients are very stiff or in the pres-
ence or highly heterogeneous wall heat fluxes, algebraic model is
less valid and accurate. Under those conditions, the scale separa-
tion assumption is not verified. Furthermore, wall temperature is
mainly controlled by boundary conditions and immediately reacts
to variations of the heat flux. Consequently, time and length scales
involved in mean temperature and wall temperature might be very
different if large temperature variation or stiff heat flux gradients
are met. For such flows, a more complex model is needed.

4.1. General formulation

To overcome the limitations of algebraic models, a transport
equation is derived for DT ¼ Tw ÿ hT f if using a two-layer model.
Let us consider a parallel flow in a duct of constant section (see
Fig. 2). Two distinct regions are defined: a near wall region, de-
noted X2, and a central region X1. The frontier of the elementary
volumeX isR andR2,1 is the frontier betweenX1 andX2. A spatial
averaging procedure is defined for each region. It is denoted: h � i1,2
for regions 1 and 2 respectively. In each region i, a mean tempera-
ture Ti, a bulk temperature TBi and a mean velocity ui represent the
mean flow variables:

u1;2 � h�ui1;2 ð35Þ

T1;2 � hT f i1;2 ð36Þ

u1;2TB1;2 � h�uT f i1;2: ð37Þ

In such a framework, we have the following relations:

Table 1

Values of the model coefficients Dgz and Df for laminar flows in ducts.

Plane channel Circular pipe

Dgz/Dh Pe/240 Pe/96

af =D
2
hDf

1/48 1/32



X1 þX2 ¼ X ð38Þ
X1T1 þX2T2 ¼ XhT f if ð39Þ
X1u1 þX2u2 ¼ Xh�uif ð40Þ
X1u1TB1 þX2u2TB2 ¼ Xh�uif TB ð41Þ

where Eqs. (40) and (41) defines total mass flow rate and total en-
ergy flux. Furthermore, let us introduce the following definitions:

X1

X
� h ð42Þ

X2

X
� 1ÿ h: ð43Þ

As a first approximation, we shall assume that turbulent and lami-
nar diffusive contributions along the main flow direction are negli-
gible with respect to advection and dispersion contributions [13].
The wall heat flux is assumed constant over a cross section and
reads:

hUdwif ¼
RU

X
: ð44Þ

In order to model heat flux between regions 1 and 2, we also intro-
duce an internal heat transfer coefficient h2,1:

U2;1 ¼ h2;1ðT2 ÿ T1Þ: ð45Þ

Thanks to definition (39), relation (45) also reads

U2;1 ¼ h2;1
T2 ÿ hT f if

h
: ð46Þ

According to definitions above and thanks to relations (38)–(41), we
split the temperature transport equation into transport equations
for T1 and T2:

@hT1

@t
þ @hu1TB1

@z
¼ R2;1U2;1

XðqCpÞf
; ð47Þ

@ð1ÿ hÞT2

@t
þ @ð1ÿ hÞu2TB2

@z
¼ RU

XðqCpÞf
ÿ R2;1U2;1

XðqCpÞf
: ð48Þ

Adding Eqs. (47) and (48) allows us to recover the macroscopic 1D
transport equation for temperature:

Fig. 1. Parallel flows in ducts: evolution of Df⁄ as a function of the Reynolds number for several Prandtl numbers. Comparison with numerical reference results.

Fig. 2. Schematic description of the two-layers decomposition: case of a circular
pipe. Solid surface is denotedRwhile the surface delimiting both regions is denoted
R2,1.



@hT f if
@t

þ
@h�uif TB

@z
¼ RU

XðqCpÞf
: ð49Þ

This result garantees that Eqs. (47) and (48) respect the conserva-
tion of energy principle. Let us divide Eq. (47) by h and Eq. (48)
by 1 ÿ h and substract the resulting balance equations. We thus de-
rive the balance equation:

@ðT2 ÿ T1Þ
@t

þ @ðu2TB2 ÿ u1TB1 Þ
@z

¼ RU

ð1ÿ hÞXðqCpÞf
ÿ R2;1U2;1

XðqCpÞf

� 1
hð1ÿ hÞ : ð50Þ

From now, we shall link each contribution in (50) with
DT ¼ Tw ÿ hT f if . Let us start with time derivative contribution.
Thanks to definition (39), we have

T2 ÿ T1 ¼
T2 ÿ hT f if

h
:

Since the wall layer (layer 2) is supposed to be thin, it is assumed
that Tw and T2 evolve simultaneously. In other word, the time nec-
essary to achieve a T2 temperature in equilibrium with wall bound-
ary condition is much smaller than that necessary to achieve
equilibrium between inner and outer regions of the flow. Under this
assumption, (Tw ÿ T2) can be assumed constant in the time deriva-
tive in the left hand side of Eq. (50):

@ðT2 ÿ T1Þ
@t

¼ @

@t

ðTw ÿ hT f if Þ
h

’ 1
h

@DT

@t
: ð51Þ

Using (41), we show that

TB2u2 ÿ TB1u1 ¼
TB2u2 ÿ TBh�uif

h
¼

TB2u2 ÿ hT f if h�uif ÿ hdT f d�uif
h

¼ 1
h
½ðTB2 ÿ hT f if Þu2 ÿ hT f if ðh�uif ÿ u2Þ

ÿ hdT f d�uif �: ð52Þ

Furthermore, since layer 2 (wall layer) is assumed thin, it is physi-
cally acceptable to link TB2 and Tw by a wall heat exchange
coefficient

U ¼ hwðTw ÿ TB2 Þ: ð53Þ

Hence, advection contribution in (50) may read:

@ðTB2u2 ÿ TB1u1Þ
@z

¼ 1
h

@

@z
½ðTB2 ÿ hT f if Þu2 ÿ hT f if ðh�uif ÿ u2Þ

ÿ hdT f d�uif �

¼ u2

h

@Tw ÿ hT f if
@z

ÿ u2

hwh

@U

@z
ÿ
h�uif ÿ u2

h

�
@hT f if
@z

ÿ 1
h

@hdT f d�uif
@z

: ð54Þ

Velocities are constant along z. Taking into account relations (53)
and (46), we express the contribution involving the heat flux be-
tween regions 1 and 2 in (50) as

R2;1U2;1

XðqCpÞf
� 1
hð1ÿ hÞ ¼

R2;1h2;1

XðqCpÞf
�
T2 ÿ hT f if

h
� 1

h2ð1ÿ hÞ

’ R2;1h2;1

XðqCpÞf
� DT ÿ U

hw

� �

� 1
hð1ÿ hÞ : ð55Þ

Finally, we introduce (51), (54) and (55) in Eq. (50) to get after some
algebra

@DT

@t
þ u2

@DT

@z
¼ U

XðqCpÞf
� 1
1ÿ h

hRþ R2;1h2;1

hhw

� �

ÿ R2;1h2;1

Xhð1ÿ hÞðqCpÞf
DT þ ðh�uif ÿ u2Þ

@hT f if
@z

þ
@hdT f d�uif

@z
þ u2

hw

@U

@z
: ð56Þ

For flows with smooth mean temperature gradient and uniform
wall heat fluxes, the scale separation assumption is valid. In other
words, DT must achieve the asymptotic limit given by the algebraic
model (32):

DT ¼ Dgz

@hT f if
@z

þ Df
hUdwif
ðqCpÞf

; ð57Þ

and the transport terms in Eq. (56) can be neglected. Under these
restraining assumptions, Eq. (56), reads

R2;1h2;1

Xhð1ÿ hÞðqCpÞf
DT ¼ ðh�uif ÿ u2Þ

@hT f if
@z

þ U

XðqCpÞf

� 1
1ÿ h

hRþ R2;1h2;1

hhw

� �

ð58Þ

and must be consistent with algebraic model (57). By identification,
comparison between Eqs. (58) and (57) leads to

Dgz ¼
hð1ÿ hÞXðqCpÞf

R2;1h2;1
� ðhuif ÿ u2Þ; ð59Þ

Df ¼
XðqCpÞf
R2;1h2;1

� h2 þ R2;1h2;1

Rhw

� �

ð60Þ

Coefficients of the first and second terms of the right hand side of
Eq. (56) still need to be determined. Using Eqs. (59) and (60), we
show that

R2;1h2;1

XðqCpÞf hð1ÿ hÞDT ¼
h�uif ÿ u2

Dgz

DT; ð61Þ

and

U

XðqCpÞf
� 1
1ÿ h

hRþ R2;1h2;1

hhw

� �

¼ ðh�uif ÿ u2Þ
Df

Dgz

RU

XðqCpÞf
: ð62Þ

Using Eqs. (59)–(62), Eq. (56) finally reads

@DT

@t
þ u2

@DT

@z
¼ ðh�uif ÿ u2Þ

Df

Dgz

RU

XðqCpÞf
ÿ
h�uif ÿ u2

Dgz

DT

þ ðh�uif ÿ u2Þ
@hT f if
@z

þ
@hdT f d�uif

@z
þ u2

hw

@U

@z
; ð63Þ

where X2 (i.e. e2), u2 and hw have to be evaluated.

4.2. Determination of the model parameters

The thickness of the near-wall layer can be seen as a character-
istic length associated with heat exchange. Thus, we classically
propose

e2 / Dh

Nu
: ð64Þ

4.2.1. Laminar flows

For laminar flows, the thickness of the near-wall layer reads

e2 ¼ Dh

Nuf

: ð65Þ

Since DT links wall temperature to spatially averaged temperature,
Nusselt number Nuf, for laminar flows, is slightly different from



classical Nusselt number that links wall to bulk temperatures. For
laminar flows in ducts, velocity and temperature profiles can be
determined analytically, at least for simple geometries. We find
for flows in plane channels: Nuf = 10 and for circular pipes:
Nuf = 6. Volume fraction 1 ÿ h and bulk velocity u2 of wall region
are given by integrating velocity profiles:

X2
X
¼ 1ÿ h¼ 4 e2

Dh
and u2 ¼ 6h�uif e2

Dh
1ÿ 4

3
e2
Dh

� �

in plane channels;

X2
X
¼ 1ÿ h¼ 4 e2

Dh
1ÿ e2

Dh

� �

and u2 ¼ 4h�uif e2
Dh

1ÿ e2
Dh

� �

in circular pipes:

ð66Þ

The wall layer heat exchange coefficient, introduced in (53), links
wall temperature to bulk temperature of wall layer:

hw ¼ U

Tw ÿ TB2

:

In order to obtain its expression, we consider that:

TB2 ¼
hTui2
u2

¼ Tw þ hðT ÿ TwÞui2
u2

:

Then, we use velocity and temperature profiles for steady and fully
developed laminar flows and we integrate those profiles other cross
sections. Those profiles reads for plane channels:

uðyÞ ¼
3h�uif
2

1ÿ y

e

� �2
� �

;

TðyÞ ÿ Tw ¼
3h�uif e2
2af

@TB

@z

1
2

y

e

� �2

ÿ 1
12

y

e

� �4

ÿ 5
12

� � ð67Þ

and for circular pipes:

uðrÞ ¼ 2h�uif 1ÿ r

R

� �2
� �

;

TðrÞ ÿ Tw ¼
h�uifR2

2af

@TB

@z

r

R

� �2

� 1ÿ 1
4

r

R

� �2
� �

ÿ 3
4

� �

:

ð68Þ

In Eq. (67), y is the transverse coordinate with the origin y = 0 lo-
cated at the symmetry plane of the channel and e = Dh/4 is half
the gap of the channel. In Eq. (68), r is the radial coordinate with
the origin r = 0 at the center of the pipe and R = Dh/2 is the radius
of the pipe. We also introduce the non dimensional thickness of
the central region denoted �. For plane channels, we use � = e1/
e = (e2 ÿ e)/e and for circular pipes, we use � = e1/R = (R ÿ e2)/R. For
flows in plane channel, we find after some algebra:

hw ¼ U

Tw ÿ TB2

¼ 140
17

kf

Dh

�
ð1ÿ �Þ 1ÿ �

2
ð1þ �Þ

� �

1þ 105
272

�7

7
ÿ 7�5

5
þ 11�3

3
ÿ 5�

� � : ð69Þ

Please note that at the limit where �? 0, one recovers the classical
Nusselt number for laminar flows in plane channels: Nu = 140/17.
For flows in circular pipes, we find after some algebra:

hw ¼ U

Tw ÿ TB2

¼ 48kf
Dh

� ð1ÿ �2Þ2

11þ �2ð3�6 ÿ 20�4 þ 42�2 ÿ 36Þ : ð70Þ

Please also note that at the limit where �? 0, one recovers the clas-
sical Nusselt number for laminar flows in circular pipes: Nu = 48/11.

4.2.2. Turbulent flows

In order to close the proposed model, we choose to connect u2
and e2 to characteristic velocity (us) and length scale (y⁄) of classi-
cal turbulent boundary layer theory. Please be careful that, instead
of Section 4.2.1 where the origin of the coordinate y is the center of
the channel (circular pipe respectively), in this section y stands for
the distance from wall. For established turbulent flows in pipes,
Nusselt number can be approached by a classical model

Nu ¼ ARemPrn: ð71Þ

Friction velocity is linked with friction factor and bulk velocity
through:

us ¼ h�ui
ffiffiffiffiffi

fw
8

r

ð72Þ

and wall unit is defined by: y⁄ � mf/us. In order to predict friction
factor, we shall use Blasius type of correlations:

fw ¼ aReÿb: ð73Þ

Finally, we introduce:

eþ2 � e2
y�

: ð74Þ

Expressions (71) and (73) are injected in (64) to obtained

eþ2 ¼ us
mf

� Dh

Nu
¼

h�uzif
ffiffiffiffiffi

fw
p

Dh

mf
ffiffiffi

8
p

ARemPrn
:

After some algebra, we find

eþ2 ¼
ffiffiffi
a

p

A
ffiffiffi

8
p Re1ÿb=2ÿm

Prn
: ð75Þ

For flows in smooth ducts, b 2 [0.19,0.25], m 2 [0.8,0.9] so that
1 ÿ b/2 ÿm ’ 0. Hence, one can use the following approximation

eþ2 ¼ Cb

Prn
where Cb �

ffiffiffi
a

p

A
ffiffiffi

8
p ð76Þ

and n 2 [1/3;1/2]. Classical values for a range within
a 2 [0.16,0.316] while A ranges within A 2 [0.009,0.024]. Hence,
plausible values for Cb might be found in the range Cb 2 [6,22]. Tur-
bulent boundary layer shows that four regions have to be
considered

Viscous sub layer : 0 6 yþ < 5;

buffer region : 5 6 yþ 6 30;

logarithmic region : 30 < yþ K1000;

bulk region : 1000 K yþ:

In other words, for classical values of the Prandtl number (i.e. Pr
close to one), e2 is placed within the so called buffer region of the
boundary layer.

We now have to connect e2 with its characteristic velocity u2. To
this aim, we use the following simplified velocity profile

uþ ¼ u

us
¼

yþ if yþ 6 yþt ;
1
j ln 1þ j yþ ÿ yþt

ÿ �� �
þ yþt if yþ > yþt ;

(

ð77Þ

where j = 0.41 and yþt ¼ 7:8. In Eq. (77), yþt does not denote the
upper limit of the viscous sub-layer but is the connection point

Table 2

Summary of the model parameters for laminar and turbulent flows in ducts.

X2/X u2(laminar) u2 (turbulent) hw (laminar) hw (turbulent)

Plane channel 4 e2
Dh 6h�uzif e2

Dh
1ÿ 4

3
e2
Dh

� �
Eq. (79) Eq. (69) 3kf

2e2

Circular pipe 4 e2
Dh

1ÿ e2
Dh

� �

4h�uzif e2
Dh

1ÿ e2
Dh

� �
Eq. (79) Eq. (70) 3kf

2e2



between both regions of the simplified profile. The value yþt ¼ 7:8,
placed within the buffer region, allows to approximate the classical
Reichardt velocity profile [16]. The wall layer thickness is small
with respect to the hydraulic diameter. Consequently, concentricity
effect in other geometries than plane channel are negligible. The
averaged velocity in the near-wall layer u2 is then given by:

u2

us
¼ 1

e2

Z e2

0
uþðyþÞdyþ: ð78Þ

Fig. 3. Adiabatic test case: spreading of a temperature jump along the time under the effect of Taylor dispersion.

Table 3

Validation test-cases: adiabatic dispersive flows. Acronym ‘‘CP’’ stands for plane
channel and ‘‘Tu’’ for circular pipes.

Re Pr

CP1 175 1.48
CP2 1.5 � 104 0.74
Tu1 175 1.48
Tu2 1.5 � 104 0.74



With (77), this leads to

u2

us
¼

eþ
2
2 if eþ2 6 yþt ;

yþ
t
2

2eþ
2
þ 1

eþ
2

1
jþ eþ2 ÿ yþt
ÿ �

ln 1þ j eþ2 ÿ yþt
ÿ �ÿ �

þ
�

yþt ÿ 1
ÿ �

eþ2 ÿ yþt
ÿ ��

if eþ2 > yþt :

8

>>><

>>>:

ð79Þ

Finally, we have to establish hw the heat exchange coefficient that
links the wall heat flux to Tw ÿ TB2 . In order to obtain its expression,
we once again use the following relationship:

TB2 ¼
hTui2
u2

¼ Tw þ hðT ÿ TwÞui2
u2

: ð80Þ

For turbulent boundary layers, it is usual to introduce the non-
dimensional form of temperature profile:

Tþ ¼ Tw ÿ T

Ts
with Ts ¼

U

qCpus
ð81Þ

where, in wall vicinity, temperature profile is given by:

Tþ ¼ Pr � yþ:

According to those definitions, Eq. (80) may also read

TW ÿ TB2 ¼ Ts
us
u2

hTþuþi2
u2

¼ Ts
us
u2

� y�

e2

Z eþ
2

0
Tþuþdy

þ
: ð82Þ

As a first approximation, and for the sake of simplicity, we shall as-
sume here that velocity profile is linear. After some algebra, we ob-
tain that

TW ÿ TB2 ¼
2e2
3kf

�U or; in other words; that hw ¼ 3kf
2e2

: ð83Þ

Finally the wall to mean gap temperature model reads

@DT

@t
þ u2

@DT

@z
¼ ðh�uif ÿ u2Þ

Df

Dgz

RU

XðqCpÞf
ÿ
h�uif ÿ u2

Dgz

DT

þ ðh�uif ÿ u2Þ
@hT f if
@z

þ
@hdT f d�uif

@z
þ u2

hw

@U

@z
; ð84Þ

where the thickness of the near-wall layer is

e2 ¼
Dh

Nuf
for laminar flows;

y�Cb

Prn
for turbulent flows;

8

<

:
ð85Þ

which leads to the values of X2/X and u2 summarized in Table 2.
Models for Df and Dgz are summarized in Table 1 for laminar

flows and in Eqs. (33) and (34) for turbulent flows. For parameter
n, we choose: n = 0.4, consistently with Dittus–Boelter heat ex-
change model. For parameter Cb, we aim to guarantee that e2 is
placed within the buffer layer and that its value is consistent with
Mac Adams friction factor and Dittus–Boelter heat exchange mod-
el. Value Cb = 15.5 if consistent with those assumptions. Sensibility
analysis has been performed within the range n 2 [1/3,1/2] and
Cb 2 [5,20] (see [7]). Its appears that wall temperature weakly de-
pends upon those both constants.

5. Results and discussion

In order to illustrate the potentialities of the transport equation
temperature model presented in Section 4, solutions of Eq. (84) are
compared, on one hand, with reference results coming from fine-
scale simulations and, on the other hand, with results of a classical
model. Fine scale simulation results are spatially averaged over the
cross section of the pipes and channels in order to achieve 1D pro-
files along the main flow direction. In industrial codes used to pre-
dict heat exchange in nuclear reactor cores or heat exchangers
[1,19], thermal dispersion is usually neglected and, consequently,
it is implicitly assumed that TB ¼ hT f if . Hence, bulk temperature
calculated with such codes simply reads

@TB

@t
þ
@h�uifTB

@z
¼ RU

XðqCpÞf
þ @

@z
ðaf þ at/Þ

@TB

@z

� �

ð86Þ

and wall temperature is given by

Tw ¼ TB þ
U

h
:

In fine scale simulations, the Nusselt number is a result. It is calcu-
lated thanks to velocity and temperature profiles within the bound-
ary layer. In macroscopic scale models, the Nusselt number value is
given by the model. In order to perform fair comparisons, we have
used the same model for the Nusselt number model for both classi-
cal heat exchange model and transport equation model. This model
matches the results obtain with the low-Reynolds �kÿ �e model of
Chien [3] for uniformly heated, established flows. This Nusselt num-
ber is fairly well approached by

Nu ¼ 0:011Re0:87Pr0:5:
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Fig. 4. Temperature jump in a laminar adiabatic flows in a plane channel, Re = 175,
Pr = 1.48: comparison between classical (Eq. (86)), dispersive (Eq. (30)) and
reference results coming from spatially averaged CFD fine scale simulations.
Temperature profiles are scaled with inlet (Te) and outlet (Ts) temperature values.
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Fig. 5. Temperature jump in a laminar adiabatic flows in a plane channel, Re = 175,
Pr = 1.48: comparison between bulk (TB), averaged (hT f if ) and wall (Tw) temperature
profiles provided by our macroscale model. On can see the shift between bulk
temperature increase and wall temperature increase. Temperature profiles are
scaled with inlet (Te) and outlet (Ts) temperature values.



Fig. 6. Wall temperature during the crossing of a temperature jump in laminar adiabatic flows in plane channels and circular pipes (see Table 3), at 3 different times and for
Re = 175 and Pr = 1.48. Comparison between three wall temperature profiles: classical (Eq. (86)), transport equation model (Eq. (84)) and reference results coming from
spatially averaged CFD fine scale simulations are shown. Wall temperature profiles are scaled with inlet (Te) and outlet (Ts) temperature values.



Fig. 7. Wall temperature during the crossing of a temperature jump in turbulent adiabatic flows in plane channels and circular pipes (see Table 3), at 3 different times and for
Re = 15000 and Pr = 0.74. Comparison between three wall temperature profiles: classical (Eq. (86)), transport equation model (Eq. (84)) and reference results coming from
spatially averaged CFD fine scale simulations are shown. Wall temperature profiles are scaled with inlet (Te) and outlet (Ts) temperature values.



Two types of configurations are simulated in order to highlight the
model features:

1. the spreading of temperature jump by Taylor dispersion in adi-
abatic pipes (that kind of configurations allows to study the
effects of the mean temperature gradient on wall temperature);

2. non-uniformly heated steady flows in which the effects of wall
heat fluxes combined with Taylor dispersion can be observed.

5.1. Adiabatic flows – Taylor dispersion

We analyze the spreading of a temperature jump induced by
Taylor dispersion in an adiabatic channel. This case is analogous
to the case presented by Taylor [17,18] except that we focus on
the wall temperature. This type of flows is of great interest for
industrial purposes since it is representative of the thermal shock
configuration. Flows are at constant mass flow rate along the axis
of the pipe, denoted z. The pipe is L = 60Dh long. Initially, the fluid
temperature is uniform over the pipe T(z, t = 0) = Ts. The fluid tem-
perature at the inlet, i.e. at z = 0, is uniform across the section. At
t = t0, we increase the inlet temperature, so that
T(z = 0, t > t0) = Te > Ts. A description of the flows is shown by
Fig. 3. Reynolds and Prandtl numbers hereafter considered are gi-
ven in Table 3. This type of flows is representative of fast transient
configurations with stiff mean temperature gradients.

For adiabatic flows, only passive dispersion contribution acts.
Classical models (86), that do not account for dispersion, predict

Tw ¼ TB: ð87Þ

In our modeling framework, TB is given by (see Eq. (30))

TB ¼ hT f if þ
hd�udT f if
h�uif

:

First of all, let us present some phenomenological results. Fig. 4
shows how dispersion acts to spread not only the averaged temper-
ature profile, but also the bulk temperature profile. Three bulk tem-
perature profiles are presented: the ‘‘classical’’ (Eq. (86)), the
‘‘dispersive’’ (see Eq. (9) and Drouin et al. [6]) and the ‘‘reference’’

bulk temperature profiles. This figure shows that the classical mod-
el only advects the stiff thermal front while the dispersive model
predicts that the front is spread by dispersion. Part of the thermal
jump, advected by central streamlines, progresses faster in pipes
while in boundary layers, where fluid velocity is smaller, the ther-
mal front progresses more slowly. It is clear on Fig. 4 that even bulk
temperature prediction is strongly improved when accounting for
dispersion flux. For the same test case, we present on Fig. 5 the bulk,
averaged and wall temperatures coming from the proposed trans-
port equation model. One can see that, as expected, wall tempera-
ture increases later than the others. Due to velocity heterogeneity
across pipe section, flow is warmer in the central region than in wall
region during the transient: the flow is thermally out of equilib-
rium. Before to be seen by the wall region, the temperature jump
has to be transported from the warm central streamlines to the wall
vicinity streamlines. In laminar flows, this transverse transport is
only due to molecular thermal diffusion. The higher the Pr number
is the longer the delay between bulk temperature increase and wall
temperature increase is. In turbulent flows, turbulence amplifies the
apparent diffusivity of the flow and this delay is shorter.

Figs. 6 and 7 present a comparison between classical (Eq. (86)
and Tw = TB), transport equation model (Eq. (84)) and reference re-
sults coming from the spatial average of fine scale CFD simulations.
Since classical model does not account for dispersion, it only ad-
vects a stiff thermal front. On the contrary, the transport equation
model, coupled with macroscopic temperature model, exhibits
widely spread wall temperature profiles over tens of hydraulic
diameters. With respect to classical model, temperature increases
earlier (due to dispersion modeling), but muchmore slowly. For in-
stance, in circular pipe at t ¼ 40Dh=h�uif (Fig. 6 (f)), wall temperature
at 60Dh starts to increase and the asymptotic wall temperature is
achieved at 16Dh. In other words, the thermal front spreads over
44Dhwhile, calculated according to the classical model, the thermal
front should be concentrated on 4Dh. Improvement of wall temper-
ature profiles is striking in both laminar and turbulent regimes.

5.2. Non-uniform wall heat flux

In this section, we study the case of a steady flow with very het-
erogeneous wall heating. This configuration activates both passive
and active dispersion contributions. The fluid flows along the axis
of the pipe, denoted z. The pipe is L = 60Dh long. The fluid temper-
ature at z = 0 is uniform over the section T(z = 0, t) = T0. For simplic-
ity convenience, we impose triangular profiles for the wall heat
flux (see Fig. 8):

U ¼
0 si z < 10Dh ou z > 50Dh;

Umax
zÿ10Dh

20Dh
si 10Dh < z < 30Dh;

Umax
50Dhÿz
20Dh

si 30Dh < z < 50Dh:

8

>><

>>:

ð88Þ

Fig. 8. Description of the wall temperature model test-case: steady flows with piecewise linear wall heat flux.

Table 4

Validation test-cases: steady flows with non-uniform wall heat flux. Acronym ‘‘CP’’
stands for plane channel and ‘‘Tu’’ for circular pipes.

Re Pr

CP3 175 2.96
CP4 1.5 � 104 0.74
Tu3 175 2.96
Tu4 1.5 � 104 0.74
Tu5 175 1.48
Tu6 1.5 � 104 1.48



0

Fig. 9. Non-uniformly heated flows in pipes: Non-dimensioned wall temperature profiles. Comparison between three wall temperature profiles: classical (Eq. (86)), transport
equation model (Eq. (84)) and reference results coming from spatially averaged CFD fine scale simulations are shown. Wall temperature profiles are scaled with inlet (Te) and
outlet (Ts) temperature values.



Thermal flux in various test cases presented here is each time tuned
in order to induce the same temperature increase whatever the
mass flux. The cases studied below are summarized in Table 4.

A comparison between results obtained with classical heat
exchange model, transport equation model and reference results
is shown by Fig. 9 for all flow conditions of Table 4. On the left side
of profiles, i.e. in the region where heat flux linearly increases, all
calculations predict an increase of wall temperature. The classical
wall temperature model predicts wall temperature profiles per-
fectly aligned with wall heat flux. Nevertheless, wall temperatures
calculated thanks to fine scale simulations all exhibit a slight shift
downstream with respect to the heat flux profile. The higher the Pr
number is, the larger the shift is. This shift comes from the thermal
unbalance between outer and inner parts of the boundary layer:
the outer region of the boundary layer is colder than if it was at
thermal equilibrium and thus cools the wall region. This complex
phenomenology is well predicted by the transport equation model
for both laminar and turbulent regimes. One has to notice that,
with the proposed model, the maximum of wall temperature pro-
files is located downstream the location of the maximum of the
heat flux. This result is also consistent with fine scale simulation
results.

On the right hand side, i.e. in the region where heat flux linearly
decreases, the classical model predicts a decrease of wall temper-
ature until heat flux vanishes. Then, it predicts Tw = TB. On the
contrary, the transport equation model predicts that wall temper-
ature remains higher than bulk temperature even downstream the
point where wall heat flux vanishes. This prediction is consistent
with fine scale simulation results. This effect was expected. Indeed,
as boundary layer at the end of the heating region is still warmer
than bulk flow, it continues to exchange some heat with wall after
the heating region. Once again, it is an effect of the thermal unbal-
ance between various regions of the flow. Amplitude of this effect
appears to be still underestimated for turbulent regime. Neverthe-
less, amplitude of this phenomenon as well as Pr number sensitiv-
ity are well predicted for laminar regime. Within the turbulent
regime, no sensitivity to Pr number is observed (see Fig. 9(d) and
(f)). This result was expected since transverse diffusion is due to
turbulence and not to molecular diffusion for this flow regime.

The capability to predict the spatial shift between bulk and wall
temperature variations for heterogeneous heat fluxes in an impor-
tant feature of the proposed model. If one considers a very hetero-
geneous heating, say a ponctual heating device, our model shall be
able to predict not only the average temperature, but also wall
temperature downstream. Hence, it could be used, for instance,
to define the proper thermocouple locations for experimental de-
vices design without performing expensive fine scale simulations.

6. Conclusion

In this paper, we have attempted to connect dispersion model-
ing and heat transfer prediction for both laminar and turbulent re-
gimes in stratified porous media. To this aim, we have extended, as
a first step, the closure problem exposed in Drouin et al. [6] to wall
temperature prediction. We use temperature deviation modeling
in order to connect wall to mean temperatures for well established
pipe flows. For flows with large thermal unbalance, i.e. for fast
transients and for huge heat flux gradients, wall temperature
encounters stiff temperature gradients (especially within turbulent
regime) and is thus mainly controlled by boundary conditions.
Consequently, the scale separation assumption poorly applies on

wall temperature and the algebraic model corresponding to the
asymptotic limit for regular flows does not apply.

In order to increase the application domain of such an approach,
we avoid this limitation by deriving a transport equation for wall
temperature. We introduce a two layer approximation that allows
us to distinguish bulk and boundary layer length and time scales.
This transport equation is easily closed from the algebraic model
written for the limit case of smooth flows (slow transients and reg-
ular gradients flow conditions).

Implemented in a hydro code, this transport equation model
has been successfully compared with fine scale CFD simulations.
Improvement in wall temperature prediction is striking. The delay
between wall and bulk flow conditions is well recovered, especially
for the thermal shock configuration. Furthermore, in the adiabatic
region downstream a very stiff heat flux gradient, we show that it
is possible to predict the heating of walls by hot boundary layers.
Model derived in this paper might be used for design purposes of
heat exchangers with accuracy similar to CFD calculations and
for a much lower computational cost.
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