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Abstract

The palladium-catalysed. direct coupling of 3-bromochromen-4-one with heteroaromatics was found to
proceed in moderateto high yields. A wide variety of heteroaromatics can be coupled with this chomenone
derivative using 2 mol% PdCI(CsHs)(dppb) catalyst and KOAc as the base. Moreover, the reaction
tolerates a range of useful functional groups on the heteroarene.

Several flavones and chromen-4-one derivatives containing an (hetero)aryl substituent, such as Pranlukast,
Cromitrile, Puerarin, Hesperetin or Naringinine have been found to a display useful bioactivities;
Eriodictyol is a natural product which has taste-modifying properties (Fig 1). Therefore, the discovery of
simple procedures for the preparation of a variety of (hetero)arylated chromen-4-ones would provide
powerful tools for pharmaceutical researchers.
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Figure 1 Examples of bioactive chromen-4-one derivatives

A classical method to prepare 3-(hetero)arylated chromen-4-one derivatives is to employ a 3-halochromen-
4-one with a (hetero)aryl boronic acid derivative using a palladium catalyst (Scheme 1, top).*? However,
these reactions require the preliminary preparation of HetArB(OR),, which might be tricky in several cases
due to the poor stability of some of these heteroarylboronic acids. Moreover, these couplings provide a
boron salt as by-product.

In recent years, the palladium-catalysed direct coupling of heteroaromatics with aryl-halides or vinyl-
halides proved to be an extremely powerful method for the synthesis of arylated or vinylated
heteroaromatics.>® On the other hand, to our knowledge, palladium-catalysed direct heteroarylations using
3-halochromen-4-ones has not been reported (Scheme 1, bottom).” The use of such reactants, which are
commercially available, would allow to prepare a wide variety of 3-heteroarylchromen-4-ones in only one
step. Moreover, their asymmetric reduction should allow the synthesis of useful chiral chromanones.®

* Corresponding author. Tel.: 00-33-2-23-23-63-84; fax: 00-33-2-23-23-69-39; e-mail: henri.doucet@univ-rennesl.fr
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Scheme 1

Here, we wish to report (i) on influence of the conditions for palladium-catalysed direct coupling of 3-
bromochromen-4-one with 2-ibutylthiazole, and (ii) show the scope of this coupling using a set of
heteroaromatics.

First, we examined the reactivity of 3-bromochromen-4-one for the palladium-catalysed direct coupling
with 2-ethyl-4-methylthiazole using 2 mol% PdCI(C3Hs)(dppb) as the catalyst, DMAc as the solvent and
KOAC as the base (Scheme 2, table 1, entry 1). These conditions had been previously found operative for
similar reactions.®® Using these conditions, a complete conversion of this bromide derivative was observed,
and the desired coupling product 1 was isolated in 83% yield (Table 1, entry 1). In the presence of only 0.5
mol% PdCI(CsHs)(dppb) a conversion of 96% of 3-bromochromen-4-one was observed to give 1 in 78%;
whereas, a lower conversion of 90% was obtained with 2 mol% of ligand-free Pd(OAc), catalyst (Table 1,
entries 2 and 3). A moderate yield in 1 was formed for the reaction performed in greener solvent diethyl
carbonate (Table 1, entry 4).

Then, we extended the scope of the heteroarylation of 3-bromochromen-4-one to a variety of thiazole
derivatives (Table 1). From 2-ibutylthiazole or 4-methyl-2-ipropylthiazole, the desired products 2 and 3
were also obtained in very good yields of 89% and 88% (Table 1, entries 5 and 6). We also examined the
reactivity of 4-methylthiazole.
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Table 1. Palladium-catalysed direct coupling of thiazoles with 3-bromochromen-4-one (Scheme 2).*
Entry Heteroarene Product Yield (%)
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Conditions: PdCI(C3Hs)(dppb) (0.02 mmol), 3-bromochromen-4-one (1 mmol), thiazole derivative (2
mmol), KOAc (2 mmol), DMAc, 16 h, 150 °C, isolated yields. * PdCI(CsHs)(dppb) (0.005 mmol). °
Pd(OAC); (0.02 mmol). ¢ diethylcarbonate as the solvent.

With this thiazole derivative, we might have observed the formation of both the C2 and C5 arylated
thiazoles, as in the presence of Cs,COs, a selective arylation at C2, which proceed via a non-concerted
metalation-deprotonation, followed by an arylation at C5, has been reported.>*® However, in the presence
of KOAc as the base/ligand, a high yield of 4, due to a completely regioselective arylation at C5, was
obtained (Table 1, entry 7). This high regioselectivity can be explained by the nature of the base (KOAC)
which favours a concerted-metallation-deprotonation mechanism (CMD).’

We then examined the reactivity of several thiophene derivatives for the coupling with 3-bromochromen-4-
one (Table 2). From 2-n-butylthiophene, 5 was obtained in 72% yield due to a partial conversion the 3-
bromochromen-4-one (Table 2, entry 1). As expected a similar yield was obtained using 2-
methylthiophene (Table 2, entry 2). The reaction of unsubstituted thiophene also proceeds to give the
desired coupling product 7 in 69% yield (Table 2, entry 3).
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Table 2. Palladium-catalysed direct coupling of thiophenes with 3-bromochromen-4-one (Scheme 2).**

Entry Heteroarene Product Yield (%)
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Conditions: PdCI(C3Hs)(dppb) (0.02 mmol), 3-bromochromen-4-one (1 mmol), thiophene derivative (2
mmol), KOAc (2 mmol), DMAc, 16 h, 150 °C, isolated yields. # thiophene: 4 mmol.

For this reaction, 4 equiv. of thiophene were employed in order to avoid the formation of 2,5-disubstituted
thiophene. With [2,2']bithiophenyl, the desired product 8 was also obtained in good yield (Table 2, entry
4). We also examined the reactivity of thiophenes bearing functional groups. From protected or non-
protected 2-acetylthiophenes, 9 and 10 were obtained in 70% and 59% yields, respectively (Table 2, entries
5 and 6). A moderate yield in 11 was obtained with ethyl thiophene-2-carboxylate due to an important
formation of unidentified side-products (Table 2, entry 7). This might be due to partial decarboxylation of
this thiophene derivative. On the other hand, from 2-chlorothiophene, the desired product 12 was produced
in high yield (Table 2, entry 8). It should be noted that no cleavage of the C-Cl bond of this thiophene
derivative was observed allowing further transformations. Finally, 3-methylbenzothiophene was
successfully employed to give the C2-substituted benzothiophene 13 in 67% yield (Table 2, entry 9).

Several furan derivatives were also employed successfully to provide 3-furanylchromene-4-ones (Table 3).
For example, in the presence of 2-n-butylfuran, 14 was produced in 60% yield (Table 3, entry 1). 2-
Butyrylfuran and methyl 2-methylfuran-3-carboxylate also reacted quite nicely the give 15 and 16 in 56%
and 67% yields, respectively (Table 3, entries 2 and 3). A moderate yield of 46% in 17 was obtained from
furan-2-carbonitrile due to some formation of the homo-coupling product of 3-bromochromen-4-one (Table
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3, entry 4). Finally, we examined the reactivity of menthofuran. This 2,3,4-trisubstituted furan, which is
naturally present in mint oil, was also found to be reactive for the direct coupling with 3-bromochromen-4-
one (Table 3, entry 5). The desired product 18 was obtained in 78% yield.

Table 3. Palladium-catalysed direct coupling of furans with 3-bromochromen-4-one (Scheme 2).**
Entry  Heteroarene P Yield (%)
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Conditions: PdCI(C3Hs)(dppb) (0.02 mmol), 3-bromochromen-4-one (1 mmol), furan derivative (2 mmol),
KOAc (2 mmol), DMAc, 16 h, 150 °C, isolated yields.

Finally, the reactivity of imidazo[1,2-a]pyridine, 5-chloro-1,3-dimethylpyrazole and 3,5-dimethylisoxazole
was examined (Table 4). Activation of C-H bond at C3 of imidazo[1,2-a]pyridine provides 19 in 90%
yield. Lower yields of 57% and 66% in 20 and 21 were obtained for the coupling at C4 of 5-chloro-1,3-
dimethylpyrazole or 3,5-dimethylisoxazole due to partial conversions of the 3-bromochromeneone.

Table 4. Palladium-catalysed direct coupling of various heteroarenes with 3-bromochromen-4-one
(Scheme 2).

Entry Heteroarene Product Yield (%)
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Conditions: PdCI(C3Hs)(dppb) (0.02 mmol), 3-bromochromen-4-one (1 mmol), heteroarene (2 mmol),
KOACc (2 mmol), DMAC, 16 h, 150 °C, isolated yields.
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In summary, we have demonstrated that 3-bromochromen-4-one can be heteroarylated with a variety of
heteroarenes via palladium-catalysed C-H bond activation using an air-stable palladium catalyst.
Functional groups such as chloro, acetyl, nitrile or ester on the heteroarene are tolerated. This procedure is
economically attractive as both 3-bromochromen-4-one and a wide variety of hereroarenes are
commercially available and as this procedure employ a moderate loading of palladium catalyst and an
inexpensive base. Another advantage is the reduction of number of steps to prepare these heteroarylated
chromenones compared to Suzuki coupling reactions.
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