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Abstract: For a punctured disc homeomorphism given combinatorially, we give an algorithmic
construction of the suspension flow in the corresponding mapping-torus M?3. In particular, one
computes explicitly the embedding in the 8-manifold M? of any finite collection of periodic orbits for
this flow. All these orbits are realized as closed braids carried by a branched surface (or template),
which we construct in the algorithm. Our construction gives a combinatorial proof of the fact that
the periodic orbits of such a suspension flow are carried by a same branched surface.

Introduction

Among the many ideas and methods that H.Poincaré has introduced in his study of dy-
namical systems and topology, perhaps the most celebrated one was the notion of ”local
section” and ”local return map”. It has also been known for a very long time that the
inverse operation, the so called suspension flow or mapping torus, is a well defined opera-
tion which is a very useful tool for instance to construct 3-dimensional manifolds. Going
back to Poincaré he also gave the advice to study periodic orbits first if one wants to
understand some of the global structure of a dynamical system.

Although the suspension is very easy to define, it is not that easy to construct in practice.
Our goal in this paper is to construct a combinatorial version of the suspension flow, from a
combinatorial description of a surface homeomorphism. Here the word construct has to be
understood in the sense of an explicit algorithm. Let us be precise about the motivations
of this work. If f : S — S is an orientation preserving surface homeomorphism, let ®;
be a suspension flow defined by f on the 3-manifold M ]?c’ (the mapping torus). Every
finite collection of periodic orbits P of f gives rise to a link Lp in M })’ In many cases
the periodic orbits of f are described by a symbolic coding, for instance when a Markov
partition is available (e.g. Axiom A, pseudo-Anosov,...). From this symbolic coding we
should be able, in principle, to describe the embedding of the links Lp in 3 space. The
goal of the paper is to turn this principle into an explicit description via a finite algorithm.
In order to be more explicit we are going to restrict the study to the homeomorphisms of
the punctured disc. The combinatorial description of the homeomorphism is given as a
topological representative, i.e. as a continuous map on a graph embedded in the surface.
This special class of maps have been of central importance in the train track algorithms
([BH1], [FM], [Lol], [Lo2]). In fact we restrict the study to the efficient representatives as



obtained at the end of the above algorithms since they carry all of the combinatorial infor-
mations about the canonical representative with respect to the Nielsen-Thurston theorem
(see [Thl], [BH1], [Lo2]). The basic notions about efficient representatives are reviewed
in section 1, as well as some other needed tools.

Since we only consider punctured disc homeomorphisms, the corresponding 3 manifold is
the complement of a closed braid 3 in the solid torus. The suspension flow ®; is transverse
to the meridian discs and all the periodic orbits of the flow are closed braids in the solid
torus. If the homeomorphism is pseudo-Anosov (see [Thl], [FLP]), we also know that
the number of periodic orbits is minimal in the isotopy class ([AF]). In fact the pseudo-
Anosov representative posseses exactly the periodic orbit ”types” (braid types or patterns)
of the genealogy (see [Lo2]). The efficient representatives enables one to describe each
periodic orbit of the pseudo-Anosov homeomorphism by an explicit symbolic description.
Our goal is to transform this symbolic coding of a collection of periodic orbits P for
the homeomorphism to a braid presentation of the link Lp. In particular, the linking
information which is of central interest in several recent works (see for instance [GST]) is
immediately computable.

The transition from the surface homeomorphism to the flow in 3-space is obtained via a
special class of branched surface as first defined by R.F.Williams ([W73]). These branched
surfaces have been studied from different points of views, for instance by J.Christy under
the name of dynamic branched surfaces ([C]) and also under the name of of knot holders
or templates by Birman-Williams ([BW]) or Ghrist-Holmes-Sullivan ([GHS]).

The special class we construct in this paper is called braided branched surfaces. They
have the property of being embedded in the solid torus transversally to the meridian discs
and their branched locus is a finite collection of intervals embedded in a single fiber. The
complement of the branched locus is a collection of rectangles. For a given pseudo-Anosov
isotopy class in the punctured disc Dy = D? — N points induced by a braid g € By, it
is proved in [Lo2] that there exists a braided branched surface W+ which carries, up to a
finite number, the suspension of all the periodic orbits of the pseudo-Anosov representative
in this class. Furthermore there is an explicit one to one map between a symbolic coding
of the orbits of the pseudo-Anosov representative and the geometric realization of these
orbits as closed braids carried by this special braided branched surface.

In sections 2 and 3 we give the algorithmic construction of such a braided branched surface
starting from an efficient representative of the isotopy class. At the end of section 3 we
give the description of the periodic orbits carried by the braided branched surface as closed
braids. This description uses a variation of the kneading theory as defined in particular
by Collet and Eckman [CE]. The main result of the paper can be stated as follows:

Theorem 0.1 Let 3 be a braid in By whose corresponding isotopy class [pg] is pseudo-
Anosov. Let 8 be the closure of B in the solid torus T and let ME’ =T - [ be the com-
plement of the closed braid in the solid torus. Then there exists a finite algorithm starting
from any induced automorphism ¢ : w1 (Dy) — m1(Dy) which enables one to construct
a special braided branched surface WE mn Mg which carries, up to a well defined finite
collection, the suspension of all the periodic orbits of a pseudo-Anosov homeomorphism in
the class [¢g].

In fact our construction does not depend on the properties of the pseudo-Anosov represen-
tative in the class. It works also for all the homeomorphisms of the punctured disc which
can be described by a topological representative. Another remark is that our description
enables one to get, in fact, an embedding of a Markov partition of a suspension flow and
not only the embedding of the periodic orbits. If the goal were just to obtain some sus-



pension flow in a given isotopy class then our construction could be simplified by choosing
a particular topological representative (see section 4).

1 Preliminaries

1.1 Graphs

A graph T is an oriented 1 dimensional CW-complex. The 0-cells (resp. 1-cells) are the
vertices (resp. edges) of the graph and we denote by V(I') (resp. E(I")) the set of vertices
(resp. edges). For all the standard terminology about graphs such as: wvalency (val(v))
and star (St(v)) of a vertex, edge path (written as words in the letters e!), reduced edge
path, initial (i(e)) and terminal (t(e)) vertex of an edge (or an edge path), length [(w) of
an edge path .... we refer the reader to [BH1]|, [Lo3] for instance. We call subdivision the
operation which consists of declaring a point x in the interior of an edge e as a new vertex
(of valency two).

A tree is a contractible graph or, equivalently, a graph such that any two points are con-
nected by a unique reduced path. A tree is oriented toward a vertex v if the unique reduced
path from any vertex v; # v to v is positive i.e. the letters occuring in the edge path have
positive exponent. We distinguish among the edges incident at v; (in St(v;)) the incoming
edges and the outgoing edges e;, as those such that respectively t(e;) = v; and i(e;) = v;
hold. In a tree oriented toward a vertex v, the vertex v is the only one such that St(v)
has no outgoing edges and, for all other vertices, there is exactly one outgoing edge.

In what follows all the graphs we consider are embedded in an orientable surface with
boundary. Furthermore the graph and the surface have isomorphic fundamental groups,
where the isomorphism is induced by the embedding of the graph in the surface. If a graph
I" is embedded in a surface S then, at each vertex the orientation of the surface induces a
cyclic ordering of the incident edges. To a graph I' embedded in a surface S, we associate
a fibered neighborhood N (T') in the following way:

e Around each vertex v of valency k, we define a k-gon P(v),

e For each edge e, we define a rectangle R(e),

and we glue them together in the surface, respecting the cyclic ordering, in the way
illustrated by figure 1.

AR -side A tie 6(e)
= . .
»> >
A ' -
A vertex v An edge e The rectangle R(e)
The polygon P(v)

Figure 1: The fibered neighborhood N (T")

The graph I' is embedded in the fibered neighborhood N (T') according to the following con-
struction. We parametrize the rectangles R(e) by [0, 1] x [-1, 1] and eNR(e) = [0, 1] x {0}.
The orientation is such that e and the oriented segment {z} x [—1, 1] form a direct basis
with respect to the orientation of the surface S. A tie §(e) in a rectangle R(e) is any ori-
ented segment {x} x [—1, 1], where z € Int(eN R(e)). Each polygon P(v) is a topological



disc embedded in the surface which contains the vertex v of I in its interior. Its boundary
OP(v) is oriented according to the given cyclic ordering at the vertex v. The ties in a
polygon P(v) are the segments joining its boundary to the vertex v. Notice that there is
a natural retraction r of N(I') onto I by declaring two points equivalent if they belong to
the same tie. The segments on the boundary of the polygons P(v) are called the P,-sides.
The P,-sides which intersect the incoming (resp. outgoing) edges will be called incoming
(resp. outgoing).

A turn at a vertex v is an unordered pair of edges (e;, €;) in St(v), and an oriented turn is
a turn where the order of the pair is specified. A direct turn is an oriented turn such that
the two edges are consecutive in the cyclic ordering at v.

A path 7 in N(T') is an embedding of [0,1] in N(I') transverse to the ties. Observe that
the end points of a path are not required to belong to a polygon P(v). If we apply the
retraction r to a path 7 in N(I') we get an immersed path in I’ where the extrem points
of r o are not necessarily vertices of I'. By subdividing I" at d(r o) (if necessary) we get
a new graph IV and r o 7 is now an edge path in I''. The corresponding word representing
the edge-path r o 7 in I will be called a longitudinal word.

Definition 1.1 Let I" be a graph embedded in a surface S, N(I') its fibered neighborhood
and let e be an edge of I'. If m = {my, -, 7} is a set of disjointly embedded paths in
N(T), let I and I’ be two connected components of m N R(e). Then we denote I <, I if
and only if the intersection point I N 6#(e) follows the intersection point I’ N f(e) along the
oriented tie 6(e).

Let {I;};=1,..; be the set of oriented segments of 7N R(e). We define the transversal word
at R(e) of the set 7 as:

Ri(e) = I} Iy - I}

where the indices are so that I; <. I;1 and ¢; = +1 if the orientation of I; and e agree,
€; = —1 otherwise.

A collection
of paths

|
i

|

A path in N(I')

JL

—

A tie 0(e)

Figure 2: Transversal words

Proposition 1.2 Let {m;};—1..k be a set of disjointly embedded paths in N(T'). Let T" be
the graph which is obtained by subdividing (if necessary) I' at the points of O(r om;) (i =
1,---,k). Then the collection of longitudinal words w(m;) (i = 1,---,k), together with
the collection of transversal words R (e), e € E(I"), determines the embedding of the
collection , up to isotopy transverse to the ties and which fixes the extrem points pointwise.
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Proof: The longitudinal words define the collection and the order of the rectangles of
N(I") which are intersected by the paths. The transversal words give the respective
position of the embedded paths in each rectangle. If ---ee’--- is a subword occuring in
the longitudinal word w(m;), we just have to connect the embedded segments m; N R(e)
and m; N R(e') by an arc embedded transversally to the ties in the polygon P(v) where
v = t(e) = i(e’). Since the paths m; are disjointly embedded, these arcs can be chosen to
be disjointly embedded.

1.2 Efficient Representatives

In what follows, all surfaces S have boundary and/or punctures and thus the fundamental
group 71(.5) is a free group.

We denote by Homeo™'(S) the group of orientation preserving homeomorphisms of the
surface S and M CG(S) the mapping-class group of S, i.e. the group of isotopy classes of
Homeo™(S) (see[Bi]).

Any homeomorphism f in a class [g] € MCG(S) induces a class [fx] of outer automor-
phisms of 71(S) in the usual way.

Definition 1.3 ([BH1], [Lo2])
1. A topological representative (¢,T") of [f] in MCG(S) consists of:

e a graph I' embedded in S with an identification of m(I') with 71(S)

e a continuous map ¢ : I' — I" so that

(a) p(V(I') Cc V(I),

(b) The induced map 4 : m(I') = m1(T'), which is defined up to inner auto-
morphism, belongs to the outer automorphism class [fx],

(c) For all e in E(T'), ¢(e) is a reduced edge path,

(d) The map % is induced by an embedding ¢ : N(I') — N(I') so that ¢(I")
satisfies for all e; € E(T'), r o p(e;) = ¥(e;), where r is the retraction from
N(T') onto I' defined above.

2. An efficient representative (1,I') of [f] in MCG(S) is a topological representative of
[f] such that for all positive integer k£ and for all edges e € E(T), 1*(e) is a reduced
edge path.

The reader may refer to figure 18 for an example of an efficient representative.

Remark 1.4 e We have used here the abuse of notation which identifies the abstract
edge e; € E(I") with the segment I' N R(e;) C N(I'). In what follows, we shall not
distinguish between the graph and the embedded graph.

e Notice that 7, = ¢(I') \ ¢(V(I')) is a set of disjointly embedded paths in N (I'). This
collection of paths is by proposition 1.2 uniquely determined by the longitudinal
words ¢(e) and the transversal words R,J;W (e) (e € E(I')). Therefore, the graph ¢(I")
is also uniquely determined by these words.

Let us recall that the elements of the mapping class groups are classified, by the Nielsen-
Thurston theorem ([Thl], [FLP]), into three classes : finite order, pseudo-Anosov and
reducible. In this paper we won’t use explicitly the properties of these differents classes
and we refer the interested reader to the above mentioned papers.



Theorem 1.5 (/[BH1/,[Lo1],[FM])
Let S be an oriented surface with boundary and/or punctures. Each irreducible isotopy
class in MCG(S) admits an efficient representative.

The proof of this theorem is constructive. For a homeomorphism f given by any automor-
phism induced on 71(.5), there is a finite algorithm which gives an efficient representative if
the class is irreducible. Otherwise, the algorithm enables one to find the reduction curves
(for more details see [Kel]). In [Lol] and [FM] this theorem is proved in the case of the
punctured disc. A similar algorithm also appears for free group automorphisms in [BH2]
and [Lo3].

The subdivided representative (1s,I's) of (¢,T") is the topological representative such that
the graph I'y is the graph I" subdivided at each pre-image under v of the vertices of T.
The map v, is obtained by rewriting ¢ on the new graph I's.

We will denote by Dy the disc with N punctures or equivalently N marked points. We
will not distinguish beetween these two objects. In particular, the homotopies of Dy and
the homotopies of D? relative to the N marked points are the same. We identify Dy with
the unit disc of the complex plane, where the punctures lie on the real axis and are labelled
according to their position along the axis. We denote D = {z € Dy|Im(z) > 0}.

Definition 1.6 ([Lol], [Lo2])
A graph I" embedded in Dy is canonical if it satisfies the following properties:

1. T" has N edges B(I') = {b1,---,bn} such that i(b;) = t(b;) forall j = 1,---, N. Each
edge of B(T') is a closed curve which bounds a 1-punctured disc in Dpy. These edges
are called boundary edges.

2. T\ B(T) is a tree.

3. All the vertices of S(I') = {v € V(I')|3 ¢; € B(T') s.t. v =1i(e;)} have valence three.
They are called the boundary vertices and are labelled according to the corresponding
puncture.

4. All the edges of I'\ B(I") are embedded in D7.

Let (¢,T") be an efficient representative of a pseudo-Anosov class [f] in the punctured disc.
It is called canonical if the graph I' is canonical and the boundary edges are permuted
under .

In fact, the condition 4/ of 1.6 is not essential in our approach. It simplifies the com-
binatorics of some arguments in the second section. It is simply a matter of changing
the embedding of the graph in the punctured disc by a conjugacy. The existence, up to
conjugacy, of a canonical efficient representative for pseudo-Anosov isotopy classes of the
punctured disc is proved in [Lol].

1.3 Braids and Normal Dissection
1.3.1 Braids

Let D2 x [0, 1] be the solid cylinder standardly embedded in R3 with basis (2, %, Z) (see
figure 3).



Definition 1.7 1. A geometric N-strand braid ( is a set of N paths b;(¢t), t € [0, 1],
disjointly embedded in D? x [0, 1] such that:

(a) b;(0) € D? x {0} and b;(1) € D? x {1} for every i € {1,---,N}.
(b) The strands b;(t) are transverse to the discs D? x {f} for all t and 8 € [0, 1].

(c) The set of points b;(1) (the initial points) (resp. b;(0) the terminal points) lie
on an oriented arc properly embedded in D? x {1} (resp. D? x {0}) called the
initial azis (resp. terminal azis).

2. Two geometric braids 5 and 3’ are equivalent if and only if they are isotopic by an
ambient isotopy ¢, (1 € [0,1]) in the solid cylinder preserving the order of the initial
and terminal points on their respective axis and such that for all p, ¢,(3) satisfies
the properties 1/, 2/ and 3/.

An equivalence class is called a braid.

The set of all equivalence classes of braids is the classical braid group By (see [Ar], [Bi]).
A representative of a braid is a regular projection (without triple points) of a geometric
braid, parallel to one of the directions, in a rectangle [0, 1] x [0, 1] (see figure 3). More
precisely, the rectangle is embedded for instance in the yz-plane and both axis (initial
and terminal) of the braid are isotoped to be parallel (in this case) to the y-direction. At
each double point of the projection, the crossing-over strand is isotoped slightly off the
rectangle in the positive half-space. We also assume that, at a given level [0, 1] x {t}, there
is at most one crossing. All braids can be given by such representatives. The strands of a
braid are labelled according to their position along the initial axis.

The permutation 75 induced by a braid € By is a permutation on the set {1,---, N},
labelling the end points of the braid strands, defined as follows:

mg(i) = j if the terminal point of the strand 7 is the point j.

A braid has k components if its induced permutation has k cycles.

z
The initial axis ,J—’ y
X
1 2

@ v

1

The terminal axis

Figure 3: A braid and its y-projection
Definition 1.8 ([BGN))
Let 8 be a braid in By given by one of its representatives.

o The crossing-letter s;; (vesp. s; jl) represents the crossing of the strand ¢ over the
strand j from left to right (resp. right to left).
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e A representative of 3, obtained by reading the sequence of crossings in [0, 1] x [0, 1]
as [0, 1] x {#} varies from [0, 1] x {1} to [0, 1] x {0}, defines a unique crossing-word,
i.e. a finite word composed of letters sfjl. Conversally, a crossing-word defines a
unique representative of a braid, if any.

e A block for a representative of (3 is a set B of consecutive strands (i.e. strands whose
initial points are consecutive) such that each strand not in B crosses all the strands
in B in the same way (or does not cross them at all). A braid admits a block partition
if it has a representative with at least a block non-reduced to a single strand.

e A braid with an even number of strands admits a 2-strand block partition if it has a
representative such that the strands (be;_1, b2;) form a block B; for alli =1,---, N/2.

These crossing-words are associated to a given representative of a braid. The crossing-
words corresponding to all the representatives of a given braid are obtained by some
obvious equivalence relations in the crossing letters s; ; coming from the braid relations
(see [BGN]). If a braid representative admits a block partition, then one can decompose
its crossing-word in block letters (see [BGN] for details).

We complete this section by a classical result about the relationship beetween the braid
groups and the mapping class group MCG(Dy):

Theorem 1.9 ([Ar/,[Bi])
The mapping-class group MCG(Dy) of the punctured disc Dy is isomorphic to the quo-
tient By /Zn, where Zy is the center of By.

The center of By is known to be the cyclic subgroup of By generated by a single braid
Ay, which corresponds to a Dehn twist Ha along the outer boundary 0D? of Dy.

1.3.2 Normal Dissection

The normal dissection will be our essential tool for constructing braids. It provides a
connection beetween dimension 2 and dimension 3. The goal is to transform an outer
automorphism of 71 (Dy), induced by an homeomorphism F' of Dy, to a braid.

We identify the disc D? with the rectangle A = [0,1] x [~1, 1] and the punctured disc Dy
with a rectangle Ay with N marked points {p1,---,pn}.

Definition 1.10 A normal dissection S in Ay is a set of N+1 oriented paths {7, - -, 7n; R}
such that:

e The arcs m; are disjointly embedded. Their initial points belong to the segment
[0,1] x {1} of the boundary and their terminal points are the marked points p; (i =
1,---,N).

e The azis R is a properly embedded path in the rectangle and goes through all the
marked points {pi,---,pn} of An.

By an isotopy of R in Ay fixing 0A pointwise, we can always assume that the N marked
points p; lie on the axis [0, 1] x {0}.

Let A, B be two points in an arc m;, we denote by AB the arc on m; bounded by the points
A and B.

If two points A and B belong to the axis R, AB will design the segment of R which lies
beetween these points. Such a segment is elementary if it contains no marked point in its
interior.



A trivial disc in a normal dissection is a disc whose boundary is AB U AB, where A, B €
mNR (i=1,---,N) and such that AB is elementary (see figure 4).
A reduced normal dissection is a normal dissection without trivial discs.

< 24 24 24

Type1

Figure 4: Trivial discs

The relationship beetween braids and normal dissections can be understood in both di-
rections. The construction of a normal dissection from a braid is given in the book [BZ].
The inverse operation, i.e. how to construct a braid from a normal dissection, is due to
U.Keil ([Ke2]) and has never been published. So, for completeness, we give here a short
proof which relies on lemma 1.12.

Theorem 1.11 (/BZ],[Ke2])

e A braid B € By defines a unique isotopy class of normal dissection S(B) in An,
where the isotopy fizes the set of marked points {p1,---,pn} and the boundary 0AN
pointwise.

In such an isotopy class, there exists a unique reduced normal dissection S, (f3).

e From a reduced normal dissection S, there exists a finite algorithm which enables us
to reconstruct a representative of a braid f € By so that S.(8) = S.

The reconstruction algorithm is presented below (see figures 5 and 6).

We denote by S; the initial point in [0, 1] x {1} of the arc 7j in S.

Let F; (1 <1i < N) be the first intersection point of the arc m; with the axis R. A band
Bl in S is a maximal set of consecutive arcs {m;, w1, -, m1x} such that the segments
F;F;., are elementary for all j in {7,---,i+ k — 1}.

Let m be an arc in a band Bl. A point P € # NR is called a return point for Bl if one of
the segments PF; or F; P does not contain any point of (Ur;) NR. The main lemma of
the reconstruction algorithm of Keil ([Ke2]) states that, for a non trivial reduced normal
dissection, such a return point always exists.

Lemma 1.12 Let S be a non trivial reduced normal dissection. There exists a return
point P in S.

Proof: We use the notations introduced above. Observe that, by definition, any arc of a
normal dissection belongs to a band, possibly reduced to this single arc. One wants to
prove that there exists a band in S which has a return point. One considers the band Bl
containing the first arc my. Let {m,---,m} the arcs in this band BI. If there is a return
point for this band, then we are done. Assume that there is no such return point. Let @
be the intersection point of the set of arcs m;, 2 = 1,---, N, in § with the axis R, such
that Q follows F}, along R and F,Q is elementary. By assumption, ) does not belong to
an arc of the band Bl. Let mgy; be the arc of S containing @ (I > 0). One considers the
sub-arc of w4, denoted by a, which connects the initial point Ski; to ). One connects



the point @ to a point M in the upper part of the boundary of Ay, [0,1] x {1}, by an
arc b parallel to the segment in 7 connecting Si to Fi. The union of the arc a U b with
the interval in [0,1] x {1} connecting M to Sky; bounds a punctured disc embedded in
Apy. All the arcs mgy1,--, Ty 1 are embedded in this disc and their first intersection
point with the axis R lie in the interval QFj4;. One now considers the normal dissection
in A; formed by these arcs, the arc 7 if its terminal point belongs to QFjy.; and the
axis R. This new normal dissection has a number of arcs strictly lesser than the one of §
and all the first intersection points of its arcs (that is Fi41,-- -, Fr1;—1 and possibly Fy;)
lie in an interval strictly contained in R. Moreover, if a band of this normal dissection
has a return point, then the corresponding band in the initial normal dissection Ay has a
return point. One now consider the band Bl; containing the first arc of this new normal
dissection, this is the arc m,11 of S. One can now repeat the argument above. An easy
induction allows to conclude, because at each step,

e cither one finds a band with a return-point,

e or one constructs a new normal dissection, contained in the preceding, which has
a number of arcs strictly lesser than the preceding one, and such that all the first
intersection points of its arcs lie in an interval stricly contained in the preceding (and
all are strictly contained in QFj4;).

Lemma 1.12 is proved. <

Suppose that a return point P belongs to the arc 7 of the band Bl. Let @ € [0,1] x {1} be
such that the segment PQ is vertical. Observe that, by definition of the return point P, this
segment can be assumed not to intersect any of the arcs m; of the normal dissection. We call

reconstruction disc D (see figure 5) the embedded disc whose boundary is S;-\P UPQUQS;.
This disc is such that:

e It contains the arcs in the band Bl intersecting the axis R beetween the first inter-
section of 7 with R and the return point.

e It contains in its boundary the part of the arc m going from its initial point to the
return point P.

e It does not intersect any other arcs of the normal dissection.

We identify the cylinder D? x [0,1] with the cube A x [0, 1] standardly embedded in R3.
Let us now describe the reconstruction algorithm.

& Data of the reconstruction algorithm:

e Sy a reduced non trivial normal dissection in Ay x {1}.

e [y the x-projection of the trivial braid, whose terminal points are the initial points
of Sp and the initial points belong to A x {0}.

The operations (see figure 6)
¢ We choose a return point P for some =; in a band Bl = {m;,---,mj, -+, miyp} (1 <0 <
N,0<k<N-—4 i<j<i+k).
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{> We consider the corresponding reconstruction disc D. We make a copy D’ of this disc
in A x {1 — €} for some small € > 0. We shall denote by 2’ a point of D’ which is the copy
of z € D. The two curves 9D and 9D’ bound an annulus in A x [1 — €, 1].

<> We first apply an isotopy supported by the above annulus which transforms the arc

S PC 0D to S’ P'C 9D'. Then we make an isotopy in D’ which transforms S’ P’ to S’ Q'
in D’ and we connect S’ Q' to the point P € D by the segment Q'QP.
{» We now define a new dissection Sj in A X {1}. We replace the path 7; of Sy which

is written as ; —S P 7; by the path 7T QP 7; and we keep the other paths m; of Sp
unchanged.

¢ The new arc S;Q' is the projection along the x-direction (see figure 5) of the arc S;P'.
It defines a representative of a braid (3 in the cylinder A x [0, 1]. This braid is so that the
strand which, in Sy, ended at S;, has now the point @) as terminal point. It crosses over
the strands whose terminal points were contained in the interior of the segment S5;Q.

1 2345

Figure 5: A reconstruction disc

The crossing-word correspondlng to f1 has the form s; ]1 15j, Jl 9 sil

(resp. 8jj+18jj+2 -85 +k) if P is on the left (resp. on the right) of Bl.

¢ The braid Sy has now been replaced by a braid §; and the normal dissection Sy by Sj.
This dissection is not necessarely reduced. By an isotopy in A x {1}, we obtain a reduced
dissection Sj.

> We iterate this process until the dissection S; is trivial. At each step, the crossing-word
obtained is placed at the right of the preceding crossing-word. In order to obtain the final
crossing-word, we have to relabel the strands at each step of the reconstruction.

This process obviously stops since, at each step, the number of intersection points of the
arcs m; of the normal dissection with the axis R is strictly decreasing.

A normal dissection is given combinatorially by the finite set of intersection points U(m N

K3
R). These intersection points are ordered along both the axis R and each path ;. Such
a combinatorial dissection uniquely defines a normal dissection.

In our construction of a braided branched surface, the fact for a braid to have a 2-strand
block partition will play an important role.

Our next lemma gives a sufficient condition to decide if a given normal dissection defines
a braid v with a 2-strand block partition.

Lemma 1.13 Let S be a reduced normal dissection in An (N is even) and let v € By be
the associated braid.
A sufficient condition on S for v to admit a 2-strand block-partition is that

11



Figure 6: Example of a reconstruction

e The number of intersection points of any two arcs woi_1, 7ok of the normal dissection
with the axis R differs at most by one. The terminal points of two such arcs are
consecutive along R.

e The ith intersection point of the arc mop_1 with the axis R, according to the orien-
tation of mor_1, is consecutive along R with the i*" intersection point of may, if it
exists.

Moreover, if these conditions are satisfied, the reconstruction algorithm can be applied so
that the resulting braid representative admits a 2-strand block partition.
See figure 7.

Proof: The proof of this lemma relies on the following fact:

If the conditions of the lemma, are satisfied then

If an arc mok_1 (resp. mak) contains a return point P; at the ith step of the reconstruction
algorithm, i.e. in §;_1, then the arc corresponding to the arc mof (resp. moi_1) in the new
normal dissection §; contains a return point Pjy;.

1] A
w :

4:.13' (é‘ -

AV

Sii Si

Figure 7: Reconstruction of a 2-strand block

The proof of this property is clear (see figure 7).

This property implies that the reconstruction algorithm can be applied as follows:

If an arc wélk__ll) (resp. Wélk_l)) of the normal dissection S; 1 is modified at the step ¢ then
we modify the arc Wézk) (resp. 71'5271) of S; at the step (¢ + 1).

If this rule is respected at each step, then the two strands labelled 2k — 1 and 2k remain
parallel at each step and for every k. One then checks that the resulting representative of

the braid  admits a 2-strand block partition.
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Normal dissection and suspension

Let F be in Homeot(D?) and P = {z1,---,zy} be a periodic orbit for F. We choose an
axis R embedded in D? passing through the points of P.

A suspension flow (F})ier of F is a flow in the solid torus which we consider to be D?x [0, 1]
together with the identification of D? x {0} with D? x {1} by the identity map. This flow
is transverse to the fibers D? x {6} , § € S1. Its return-homeomorphism on D? x {1} is
F, possibly composed with a power of Ha (the Dehn-twist along dD?). Up to isotopy of
the solid torus which fixes the boundary pointwise, such a suspension flow (F}), g is not
uniquely defined. It is uniquely defined only when we have fixed the twisting of its orbits
on the boundary of the solid cylinder D? x [0, 1].

Let (F}),cg be a fixed suspension flow of F'. The suspension under this flow of the periodic
P of F is the periodic orbit {Fy(z;) ; t € R, z; € P} of (F}),cr. It is a closed braid 3 in
the solid torus, where 5 € By is well defined up to conjugacy. The choice of a braid in
this conjugacy class is done by choosing an axis R as above.

The suspension of a periodic orbit P for two distinct suspension flows of F' defines two
conjugacy classes [(] and [3'] in By where 8 and (' differ by an element of the center Zy.
In other words, the suspension of a periodic orbit P is well defined up to conjugacy in

By/Zx.

If B is a braid in By, we denote by M g the solid torus with a distinguished closed braid
or the complement of this closed braid in the solid torus. The equivalence beetween these
two objects is the same as the equivalence beetween the disc Dy with N punctures or N
marked points.

Let 8 be a braid in By and [fg] € MCG(Dy) be the induced isotopy class. We recall
that the N marked points are a finite collection P of periodic orbits for every F' in [f3].

A suspension flow (Ff)teR of F' € [fg] associated to f € By is a suspension flow of F'

which has 3 (and not BAK;) as the suspension of the periodic orbits P. This flow is defined
on the manifold Mg (and not M;’Ak )
N

The following lemma gives the connection beetween normal dissection in Ay and the
periodic orbits of period N for a suspension flow of a given disc homeomorphism.

Lemma 1.14 Let F be an orientation preserving homeomorphism of the disc D?, fizing
dD? pointwise, defined up to a power of Ha. Let P = {x1,---,zN} be a periodic orbit of F.
Let R be an arc properly embedded in D? so that R passes through all the points of P. We
denote by D one of the components of D>\'R. If Bp is a collection of disjointly embedded
arcs in DT which connect 9D* N D with the points of P, then Cpe, = {F(Bp); R} is a
normal dissection. The closure of the corresponding braid is ambient isotopic in D? x St
to a suspension of the periodic orbit P. The choice of a power of Ha is equivalent to fix
a suspension flow.

Proof: The paths in F(Bp) are disjointly embedded since F' is a homeomorphism. The
arc A has been chosen to satisfy the properties of an axis with respect to the set P of
marked points. Therefore, Cp., is a normal dissection. Then, we get a braid « in By.

It defines also an automorphism Fl induced by F on 71 (Dy) whose generators have been
identified to the set of paths Bp connected to a base-point in dD™.

A suspension {F;(z) ; = € P, t € R} of a periodic orbit P of F' defines a closed braid £3.
One fixes the suspension flow so that its return homeomorphism is F' and not F o H Z The
braid 8 induces an automorphism v on 7;(Dy), whose generators have been identified
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with the set of paths Bp connected to the same base-point as above. By theorem 1.9, we
have Fy = 1 since F is the return homeomorphism of the suspension flow (F})icr on Dy.
We obtain that a = . Some choices have been done in this construction:

e Choice of a base-point, which implies the choice of D™

e Choice of the axis R, which implies in particular the ordering of the points along R.
This also implies the choice of the generators for m1(Dy).

e Choice of the power of Ha.

Changing the two first choices induces a change of the braid by a conjugacy in By. This
does not change the closed braid up to ambient isotopy in D? x S'. Changing F by a
power of Ha is equivalent to compose the braid by an element of the center Zy. This
fixes the choice of the suspension flow in D? x [0,1]. ¢

2 Construction of a supporting braid

Our goal is to construct a special braided branched surface W as announced in the
main theorem. To this end, we assume that an efficient representative (¢,I") of [f3] €
MCG(Dy) for the pseudo-Anosov braid § € By is given. Up to conjugacy (in By or in
MCG(Dy)), we assume that (¢,T") is canonical (see section 1.2).

The branched surfaces we consider in this paper are defined in section 3 (definitions 3.2
and 3.3). For the strategy of our construction, let us recall from the introduction that
they are embedded in the solid torus D? x S! so that the branched locus is a collection
of intervals disjointly embedded in a single meridian disc, say D? x {0} ~ D? x {1}.
The complement of the branch locus is a collection of rectangles which are embedded in
D? x (0,1) transversally to the meridian discs. As a result, for this class of branched
surfaces, the boundary of the rectangles in D? x [¢, 1 — ¢] (for some small € > 0) is a braid
with a 2-strand block partition, which we call the supporting braid.

The goal of this section is construct effectively this supporting braid so that the block
partition is explicit.

In the next section, we will make explicit the identification of the branched locus in order
to obtain the embedding of the branched surface in M, g

2.1 Preliminaries

In this subsection, we define a collection of marked points from the efficient representative
(1,T). The idea is to make all these points lie on a particular axis so that their ordering
along the axis satisfy some properties with respect to their position on the graphs I' and
o(I).

Let us recall that, for a given graph I' embedded in a surface (here, it is the punctured
disc), we have defined the fibered neighborhood N(TI') as a union of rectangles and polygons
embedded in the surface (see section 1.1). The intersection of the boundaries of two
rectangles contains at most two points in N (I'). These points are called corners.

The punctured disc Dy is identified with the unit disc in the complex plane, with all the
punctures lying on the x-axis. We orient Dy so that dD? is oriented counterclockwise.
Let the orientation of the x-axis of Dy be the one induced by D]"{,.

In what follows, we shall assume that a canonical efficient representative (¢,I") is given
as well as the embedding ¢ : N(I') — N(I') (see definition 1.3). Let us recall that
¢ : N(I') - N(T') is defined as the embedding so that rop : I' - I'is themap ¢ : I' = T,
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where 7 denotes the retraction of N(I') onto I' (see section 1.1). We shall often use (¢,I")
as well as the subdivided representative (1, I's). We recall that the transversal words for
©(T") (or ps(I's)) at an edge e are denoted by R#‘P(e) (or R#% (e))

Since (9, T") is efficient, we can extend the embedding ¢ : N(I') - N(I') to a homeomor-
phism F': Dy — Dy which is pseudo-Anosov (see [BH1| or [Lo2] for details).

A priori, the homeomorphism F' induces a non trivial rotation on the boundary dDy. We

extend F' to a homeomorphism E‘ : lw)N—dN)N by assuming that Dy ‘—>1N)N and ﬁN \Dn

is a topological annulus A so that 1?’| 4 1s a twist map which satisfy }N7" oDy = F oDy and
F . =1 daB . By a slight abuse of terminology, we will ommit the tilde and speak of
aD N

the pseudo-Anosov homeomorphism F on Dy.

Remark 2.1 The homeomorphism F' is not uniquely defined by the above conditions.
Two such homeomorphisms differ by a power of a Dehn twist Ha. In what follows, we
will suppose that such a homeomorphism has been fixed.

2.1.1 Accessibility

Definition 2.2 e A point z in ON(T') is accessible if there exists a path embedded in
D} \ N(I') whose extremities are = and a point of 9D? N DJ;.

e A point y in N(T') is exterior, with respect to the embedding ¢ : N(I') — N(I'), if
one of the segments between y and ON(I') on the tie containing y does not intersect
().

Let us recall that a canonical graph I' has a subset B(I') C E(T") whose elements are the
boundary edges, which are loops bounding once punctured discs. We denote 7 =T'\ B(T")
the complementary tree. Let us denote by N(7) the fibered neighborhood of this tree
embedded in the disc Dy.

We have observed in section 1.2 that a canonical embedding can be obtained by a con-
jugacy. By the same argument, any point of ON(7) can be made accessible maybe after
another conjugacy (see figure 8). The notion of exterior point is very easy to check. In-
deed, from the definition of the transversal words (see definition 1.1), in every rectangle
R(e), the transversal word Rf;% (e) = I;} --- I;} is such that all the points beetween p;(e;, )
and ON(T') or beetween ¢4(e;, ) and ON(T') are exterior (see figure 2).

Let us consider a vertex v, of the subdivided representative (15, I's) such that the image
of a direct turn (e;, e;) at vs under the embedding ¢, is exterior. The existence of such
a vertex and of such a turn is clear from the previous observation. If we gather these
observations, we obtain the following:

Proposition 2.3 With the above notations, the embedding of the efficient representative
(,T) of [fs] € MCG(Dy) can be realized, up to a conjugacy in MCG(Dy), so that it is
canonical and there exists a direct turn 75 of I's at a vertex vs € V(T's) satisfying:

i) The points of the segment ps(75) N P(s(vs)) are exterior.
it) The corner corresponding to the turn 7s in I's is accessible.

The proof of this proposition is obvious from the above observations and the basic defini-
tions of section 1.1. <

From now on, the embedding of the canonical efficient representative will be the one given
by this proposition.
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v \J

X not accessible X accessible

Figure 8: How to make a turn accessible

2.1.2 Nailed points and G-points

Let vs be a vertex of I'y as in proposition 2.3. If vs does not belong to V(I'), then we
subdivide the graph I' at vs. The application ¢ on I' is rewritten in the new graph (see
section 1.1). We obtain a new efficient representative. It will still be denoted by (4,T’) in
what follows.

We orient the tree 7 toward vs. We blow up the accessible corner to an interval on ON (T")
that we call the terminal side (see figure 19).

Let us denote by )y the set of all intersection points ¢(I") N ( U P, — side), where the

veV (I

P,-sides have been defined in section 1.1. For each boundary v(er)tex vp;, there are two
va]_ -sides which intersect the boundary edge b;. Let us denote by )i the subset of )

whose points belong to the above Py, -side for all b; € B(T").

Definition 2.4 The set of nailed points is the set Y = Yy — V1 in ¢(I') C N(T). The set
of G-points is the set p~1(Y) in T C N(T).

By definition, a G-point belongs to an edge e of I'. The exact position of the G-points
on an edge e is not essential for our purpose. What is important for us is their respective
positions along the oriented edge e. So we will assume that all the G-points belong to
some P,-side, with v € V(T's). From the above definition, the next proposition is obvious.

Proposition 2.5 The number of nailed points and G-points is even and is equal to KK =
2(Card(E(T,)) — Card(y~"(B(T)))]-

Our aim is to construct a normal dissection as defined in section 1.3.2. To this end, we will
need, at some step of our construction, to detect and order the intersection points of the
arcs of the normal dissection with its axis. To this end, we shall apply the two following
lemmas:

Lemma 2.6 Let c1, ca be two paths going through a same polygon P(v) (see figure 9).
Then c1 and ca have an essential intersection point in the polygon P(v) if and only if the
intersections points of a same path ¢; (i = 1,2) with OP(v) are not consecutive, among the
points of (c1 Ucg) NOP(v), in the cyclic ordering at v. An intersection point is essential
if it cannot be removed by an homotopy supported in the interior of the polygon.

Lemma 2.7 Let c1, c2 be two oriented paths disjointly embedded in N(I') and going
through a same polygon P(v).
Let p be an other oriented path intersecting both c1 and ca in an essential way (see lemma

2.6).
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The intersection point cy N p follows the intersection point co N p along p if and only if
the intersection points ca N OP(v) are consecutive with the initial point of p N P(v) along
OP(v) oriented according to the cyclic order at v.

These two lemmas are easy to check (see figure 9).

sz 8P(v)
i(P(V)N P)

C,N P(v)

— N\
YY A p

C, Cz

Figure 9: Intersections of paths in a polygon

Our first step will be to construct a collection of paths embedded in N(7) whose image
under ¢ and thus under F' will be the arcs of our normal dissection.

The paths we are going to consider end at the G-points given in definition 2.4. Their
initial points lie along the terminal side (see the definition after proposition 2.3). These
paths define K longitudinal words (where I is given by proposition 2.5) in the graph I'g
defined as the graph I' subdivided at the G-points. The proposition 2.3 will enable us to
connect the initial points of these paths to K points in D" by K arcs disjointly embedded
in DT\ N(T).

2.2 Construction of the supporting braid

Let us recall that the boundary of a polygon P(v) is oriented according to the orientation
induced by the one of Dy, i.e. counterclockwise. The P,-sides are then oriented according
to this orientation. Among these P,-sides, we distinguish between the incoming one,
denoted by Fj(v), and the outgoing one, denoted by F,(v). For each vertex v € V(T'),
there is exactly one outgoing P,-side F,(v). We consider the terminal side as the outgoing
one at v (see the definition of v, given after proposition 2.3).

2.2.1 Generating paths

Definition 2.8 A set of generating paths is a set m = {m1,---, i} of K oriented paths in
N(T) which satisfy:

1. Their initial (resp. terminal) points belong to the terminal side (resp. are the G-
points). Their longitudinal words are the unique reduced words in 7¢ from v, to the
G-point they contain.

2. The generating paths are disjointly embedded in N (7).

Let Gr(e) be the set of generating paths whose G-points belong to a same edge e of
T.

3. The paths in G, (e) intersect transversally the ties in a same component of R(e) —e.
By convention, we assume that this component is the one containing the half-ties
{z} x [0,1] (z € e) of the rectangle R(e) (see the parametrization of the rectangles
in section 1.1).
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4. The intersection points of the generating paths in G (e) with the boundary 0P(v) (v €
V(T)) of any polygon P(v) they pass through are consecutive along the union of the
incoming P,-side and along the outgoing P,-side.

Figure 10: Some generating paths

Remark 2.9 There exists several possible sets of generating paths. The existence and
non-uniqueness of the set of generating paths is clear from the definition. Observe that the
rule 4/ in definition 2.8 implies that the intersection of the generating paths in G(e) with
any rectangle R(e') (¢/ € E(T)) they pass through is a collection of segments disjointly
embedded in a same component of R(e’) — ¢’

In the following, we suppose that a set of generating paths has been chosen once and for all.

Labelling the generating paths and the G-points:

The generating paths are labelled according to the inverse ordering of their initial points
along the terminal side. This defines an order on the set of generating paths, denoted by
<o,

The label of a G-point is the label of the generating path which contains it.

The definition of the generating paths has been given so that the above labelling satisfies
the following property:

Proposition 2.10 All the G-points which belong to a same edge e of T have consecutive
indices. Moreover, they are ordered according to the orientation of the edge e. More
precisely:

If z;, x; are two G-points in e, then i < j < x; follows x; along e.

Proof: Let v be in V(I') and e € E(T) be such that v = t(e). We denote by G(v) the set
of generating paths passing through P(v) and by Ge(v) C G(v) the subset containing the
generating paths passing through the rectangle R(e).

The following two properties are easy to check:

e The inverse ordering of the intersection points m;NF,(v) (7; € G(v)) according to the
orientation of F,(v), agrees with the ordering of the intersection points m; N (UJ F;(v)),
according to the orientation of the incoming P,-sides.

e The ordering of the intersection points m; N (U F;(v)) (7; € Ge(v)) according to
the orientation of the incoming P,-sides agrees with the inverse ordering of the
intersection points ; N Fy(i(e)), according to the orientation of the outgoing P;()-
side.
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This comes from lemma 2.6 and the fact that the generating paths are disjointly embedded.
The proposition 2.10 is then obtained from the rules 2/, 3/ and 4/ of definition 2.8. The
rules 2/ and 4/ imply that the intersection points of the generating paths ending at a
same edge e € E(T) with the corresponding incoming P,-side F;(t(e)) are consecutive
along Fj(t(e)). The rule 3/ implies that the generating paths ending at a same edge e are
ordered along the corresponding incoming side Fj(¢(e)) according to their position along e.
The two properties above imply that the respective positions of these paths are preserved
up to the terminal side.

Labelling the edges:

The edges of T are labelled according to the following rule:

Let e;, e; be in E(T). Then ¢ < j holds if and only if the G-points in e; have smaller
indices than the G-points in e;.

This labelling makes sense by proposition 2.10.

We call boundary paths the N reduced paths ¢; in T going from the boundary vertices
vp; (¢ = 1,---,N) to the vertex v, (see definition 1.6 for the labelling of the boundary
vertices). The following claim shows that the labelling of the edges is consistent with the
labelling of the punctures.

Claim 1: According to the above labelling,

Let ¢;, ¢; be two boundary paths such that + < j. Then the indices of all the edges in ¢;
are less or equal than the indices of the edges in ¢;. In particular, the first edge e; (resp.
the last edge) belongs to the boundary path ¢; (resp. cy).

This claim comes from definition 2.8 and the labelling of the generating paths.

2.2.2 The accordion axis

Proposition 2.11 There exists an oriented arc A, properly embedded in DT, whose ex-
tremities are the extremities of the axis of D? and which passes through all the G-points.
The ordering along A of the G-points agrees with their labelling.

Proof: For the construction of the curve A, we just have to find a collection of paths
Di i+1 connecting the last G-point z; in an edge e; to the first G-point x4 in e;41, for
all ¢ = 1,---,card(E(T) — 1). Then A will be the ordered union of all the intervals
eNR(e) (e € E(T)) with these paths p; 11.

The G-points we want to connect have consecutive indices k, k+1. Therefore, by definition
of the labelling, there exists a polygon P(v) (v € V(I')) such that the intersection points
of the corresponding generating paths 7, 71 with the union of the incoming P,-sides
are consecutive. We construct a path parallel to 7 from xj to v, then parallel to w1
from v to zpy1. It does not intersect any generating path because none of them passes
beetween 7, and 711 in P(v). This construction can be made for all pair of edges e;,
ei+1. All the p; ;11 are disjointly embedded. By construction of the generating paths, the
union of the p; ;11 do not intersect the interior of the intervals e N R(e) (e € E(T)).

By claim 1, the first edge e; (resp. the last edge) belongs to ¢; (resp. to cy). Therefore, the
vertex i(e1) and the terminal vertex of the last edge can be connected to the extremities
of the axis of D? by two arcs P, P’ disjointly embedded in Dt. We define the curve
A as Peipipes---€Diit1€i+1 - - P'. By construction, it satisfies the properties of the
proposition. <

This arc A will be the initial axis of the supporting braid (see lemma 2.16) that we construct
in this section and the axis of the branched surface we will construct in section 3.
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The next lemma defines the terminal axis of our supporting braid.

Lemma 2.12 (the accordion curve R) There exists an oriented curve R embedded in
D™ such that:

e The extremities of R are those of the axis of D?.

e R passes through all the nailed points y; € Y and connects the rectangle R(e;) to the
rectangle R(e;1+1) (where the labelling of the edges is the one given above).

e In each rectangle R(e), R looks like figure 11, More precisely:

— The nailed points which are the extremities of a same interval in o(I')NR(e) are
consecutive along R. The ordering of these points, according to the orientation
of R agrees with the ordering given by the orientation of e.

We identify the intervals of o(I') N R(e) with the corresponding intervals along
R.

— The ordering of these intervals along R agrees with the transversal ordering
given by the order < (see section 1.1).

This curve will be called the accordion curve.

Labelling the nailed points: The nailed points are labelled according to their ordering
along the oriented curve R.

Proof: The construction of R in each rectangle is given by figure 11. This construction is
clearly well defined in each rectangle.

We want now to connect the last nailed point y; € R(eg), according to R in R(ey), to
the first nailed point y;11 € R(eg+1), according to R in R(e11). Notice that y; belongs
to an incoming Py, )-side and y;11 belongs to the outgoing P, ,)-side. By definition of
the G-points, there exists a G-point in Fj(t(er)) and in F,(i(eg+1)). The construction of
proposition 2.11 allows to connect the nailed points y; and y; 1. This construction can
be used to connect any pair of such nailed points. By the argument of proposition 2.11,
we obtain a curve embedded in N(T') joining y; to yx by connecting all these paths.

We want now to connect the nailed points y; and yx to 0D?.

Claim 2: The first and last nailed points y; and yx are exterior and accessible.

This claim is essentially a consequence of claim 1. By definition of the labelling, y; and
yx are exterior and can be connected to an accessible point without intersecting ¢(I') nor
the axis of D2. ¢

Using claim 2, we connect the nailed points y; and yx to @D by two arcs embedded in
D, without intersecting the part of the curve R already constructed. ¢

2.2.3 Normal dissection for the supporting braid

By definition, the polygon P(vs) has an accessible corner. Thus, there exists an arc P
embedded in D+ \ N(I') from the terminal side to dD*. We choose K parallel copies
of this arc P connecting the initial points of the generating paths to K points in D"
(distincts from the extremities of the curve R). These arcs are called the connecting arcs.
Let Rx be the set of paths which are the concatenation of the connecting arcs with the
generating paths.
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Figure 11: Accordion curve

Proposition 2.13 The image under the homeomorphism F of the set of paths Ry s a
set of disjointly embedded paths in N(I') U DT whose initial (resp. terminal) points are
the initial points (in D™ ) of the paths in Ry (resp. belong to the set of nailed points Y ).
They are the concatenation of two types of paths:

e the image of the generating paths. This is a set of disjointly embedded paths in N (T')
whose terminal points are the nailed points. All the intersections of F(Ry) with o(I")
are contained in the polygons P(v), v € V(T).

e the image of the connecting arcs, called the escape paths.

The escape paths are oriented paths disjointly embedded in N(I')U D™, which do not
intersect (L") nor the image of the generating paths. Their initial (resp. terminal)
points are the initial points of the paths in Ry (resp. are the initial points of the
images of the generating paths F(m;) (i =1,---,K)).

The proof is obvious. By construction, the paths in Rx are disjointly embedded. Since F’
is a homeomorphism of Dy, their images under F' are disjointly embedded. Furthermore,
the properties listed above are just consequences of the definition of the set Ri.

Proposition 2.14 The escape paths {t1,---, T} are so that:

i) They are parallel.

it) Their intersection points with R either occur after the last intersection point F(m;) N
R, or before the first intersection point F(m;)) NR (¢ = 1,---,K) according to the
orientation of R.

Proof: The escape paths are the images under F' of the connecting arcs. By definition,
there are KC copies of an arc P from dD? to the terminal side F,(vs) in ON(I') and are
embedded in D+ \ N(T). The image F(P) is an arc from dD? to F(F,(vs)). The escape
paths are therefore K parallel copies of F(P), proving item (i). By definition of vs (see
2.3), F(Fs(vs)) is exterior and chosen on ON(I'). As a consequence, the escape paths
which are K copies of F/(P) can only intersect the accordion curve R outside N(I'), which
proves item (ii). ¢

Remark 2.15 As we observed in remark 2.1, the homeomorphism F' is defined up to a
power of a Dehn twist along the core of the annulus A = Dy \ N(I'). This information
is not a priori contained in our combinatorial description of F. The choice of this Dehn
twist is equivalent to a choice of a set of escape paths. Indeed, we could choose the escape
paths in A going from ON(T') to DT and twisting around A any finite number of times.
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We now consider the disc Dy, whose marked points are the K nailed points defined above.
We have all the ingredients for defining a normal dissection. Let us recall that, for a
normal dissection, we identify the disc Dy with the rectangle Ay (see section 1.3.2).

Lemma 2.16 The set of paths {F(Rx); R} = C is a normal dissection in Ay, where the
axis is the accordion curve R (see lemma 2.12). The braid v(C) in Bx given by theorem
1.11 s called the supporting braid.

The proof is clear from the definition of a normal dissection. <»

Remark 2.17 e The supporting braid is non unique. Several choices have been made
during the construction: the vertex vs, the axis R, the generating paths and finally
the escape paths. From lemma 1.14, changing any of these choices is equivalent to
change the supporting braid by a conjugacy in By or to compose it with an element
of the center Zx (see remark 2.15).

e The initial and terminal axis of the supporting braid are distinct. The initial axis
is the curve A given by proposition 2.11 whereas the terminal axis is the accordion
curve R. One of the main points of section 3 will be to pass from one to another.

2.3 The 2-strand block partition for the supporting braid

The aim of this subsection is to prove the following lemma:;:

Lemma 2.18 The supporting braid v(C) given by lemma 2.16 admits a 2-strand block
partition. Moreover, one reconstructs effectively a representative with this 2-strand block
partition.

The proof will be explicit from the construction of the normal dissection of the previous
section.

We shall denote by 7 the tree obtained from I'y by removing the boundary edges B(T's)
and their pre-images under ;.

Let us now gather here some facts coming from our previous construction.

1. On the initial axis A:

e The intervals beetween two points indexed by 2k — 1, 2k are in bijection with
the edges of 7.

e All the intervals coming from the same edge of T are consecutive along A and
are ordered according to the orientation of this edge.

2. On the terminal axis R:

e The intervals beetween two points indexed by 25 — 1, 25 are in bijection with
the intervals of p(I') N R(e) , e € E(T).

e All the intervals coming from the same rectangle R(e) are consecutive along R
and are ordered according to the ordering <..

22



2.3.1 Coding the normal dissection

Our goal, in this subsection, is to make explicit the combinatorial dissection (see 1.3.2)
associated to the normal dissection C = {F(Rx); R} obtained in lemma 2.16. In order
to do so, we need to find combinatorially and order (along the arcs and along the axis)
the intersection points F(Rx) N R. The accordion curve R (lemma 2.12) is described
combinatorially by listing and ordering all its intersection points with the boundary of the
polygons in N(I'). We also have the obvious:

Remark 2.19 e The paths in F(Rx) and the accordion curve can be isotoped so that
all the points in F/(Rx) N'R belong to U P(v).
veV(T)

e By proposition 2.14, we know the intersection points of the escape paths with the
accordion curve. Therefore, we only need to compute the intersection of the images
of the generating paths with R.

The combinatorial dissection will be computed from the following propositions:

Proposition 2.20 (Intersections in a polygon P(v))

Let P(v) be a polygon of N(I).

The intersection points ¢(m;) N'R together with their ordering along R and along ¢(m;)
are determined by the following datas:

e the transversal word Ri(m_)(e) and the longitudinal words ¢(m;),

e the embedding of R.

See figure 13.

1

Proposition 2.21 The transversal words R(p(m)(e) are computed from:

e the longitudinal words s(e) (e € E(Ts)),
e the transversal words Rx-(e) (e € E(T3)),

e the transversal words Rf;% (e) (e € E(T)).

Let us recall that, if P = {p1,---,p} is a set of disjointly embedded paths in N(I")
then Rj(e) (e € E(I')) denotes the transversal word at e of the paths in P (see section
1.1). Recall also that R#ws (e) denotes the transversal words for the subdivided efficient
representative (15, ;).

For proving the proposition 2.20, observe first that, from the definition of the orientations,
if Ri(m_)(e) =Ii*--- L[} (e € E(T)) then I;NAP(i(e)) (resp. I;11NIP(t(e))) follows, along
the outgoing P;()-side (resp. along an incoming Py ()-side), the point ;11 NI P(i(e)) (resp.
the point I; N dP(t(e))). Therefore, we obtain the cyclic ordering of all the intersection
points of the boundary of any polygon with R and with the paths ¢(Rx). By lemma 2.6,
we find the intersection points beetween the set of paths ¢(Rx) and the accordion curve
R. Then, by lemma 2.7, we obtain the respective position of these intersection points
along each arc of the normal dissection and along the axis R. <

Proof of proposition 2.21: The embedding ¢ induces an orientation-preserving homeo-
morphism then it reverses the transversal orientation in the interior of the rectangles if
and only if it reverses also the longitudinal orientation. The two possible cases are illus-

trated in figure 12. For each path ¢(d) (d € E(I's)) occuring in the transversal word
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ple)=d

R(e) R(d) R(d)

pe)=d"

Figure 12: Computing the transversal words

R#WS (e), there is a set of paths in the transversal word for the set {¢(7;)}i=1,... . This
set 1s the set of the images of the generating paths passing through the rectangle R(d).
Their transversal position relative to another path ¢s(g) (9 € E(I's)) depends upon the
transversal position of the paths ¢s(d) and ¢s(g) in R(e). The transversal position of the
paths ¢(7;) arising from a same path ¢,(d) is given by the transversal word Rx(d). This
order is preserved or reversed depending on whether ¢ preserves or not the transversal
orientation of the edge d. ¢

N

— Pathsin F(Ry)
- Intervals on @(I')
the accordion curve

m intersection point

Figure 13: Intersections in the polygons

2.3.2 Block Partition

Lemma 2.22 Two consecutive paths Psy_1, Poy, in F(Rx) intersects R the same number
of times and the it" intersection points of Pap_1 and Py, with the azis are consecutive
along R.

24



Proof: Notice that a G-point which belongs to a polygon of a boundary vertex has always
an odd index.

Recall that, in a normal dissection, the paths are labelled according to the labelling of
their initial points. From proposition 2.14, it is sufficient to show the lemma for the
images of the corresponding generating paths, i.e. those of indices 2k — 1 and 2k. The
generating paths w9 and mor 1 go through the same collection of rectangles and polygons
in N(T;), except for the last rectangle intersected by mox_1. By construction, mor_1 and
moy, are parallel and so are their images under ¢. Therefore, the intersections of Py, ; and
P, with R satisfy the properties of the lemma, except perhaps in the image of the last
rectangle of 7T intersected by mor_1 and mor. In the last rectangle also, the paths Po 1
and Py intersect R in the same way, by definition of the accordion curve, as shown by
figure 14 (the figure shows the only two possible models for the intersection with the last
rectangle). This completes the proof.

Figure 14: Lemma 2.22

We can now give the

Proof of lemma 2.18: The proof follows from lemmas 2.22 and 1.13. In lemma 1.13, the
normal dissection is reduced, which is not necessarily the case for the normal dissection C
of lemma 2.16. In order to transform the normal dissection C to a reduced one, we have
to suppress the trivial discs. There are two types of trivial discs (see section 1.3.2 and
figure 4). When a path P51 bounds a trivial disc of type I, then by lemma 2.22; the
path Py also bounds such a trivial disc (and conversally). So, after suppressing all the
trivial discs of type I, the conclusion of lemma 2.22 is again satisfied. The supression of a
trivial disc of type II removes exactly one intersection point of a given arc with the axis
R. So the unique reduced normal dissection in the class of C satisfies the assumptions of
lemma 1.13. This completes the proof. <

Let us now summarize our algorithm for the construction of the supporting braid:

Data: A pseudo-Anosov braid 8

Let [fg]) € MCG(Dn) be the induced isotopy class.

Step 1: Apply the train-track algorithm ([BH1],[Lol],[FM]) to obtain a canonical efficient
representative (¢, T").

The supporting braid algorithm

Data: The longitudinal and transversal words of the efficient representative (1,T).
Step 2:

Choice of a vertex vy (see proposition 2.3). Orientation of the tree 7 =TI'\ B(I") toward
Vs.

Choice of a set of generating paths.
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Step 3: Compute the longitudinal and transversal words for the set of images of the
generating paths.

These paths are obtained from the efficient representative.

Step 4: Compute the accordion curve R (see lemma 2.12).

Step 5: Compute the normal dissection C by using propositions 2.20, 2.21, 2.14. Reduce
C

Step 7: Reconstruction of the supporting braid (section 1.3.2 and proposition 1.13).

3 Periodic orbits of the suspension flow

3.1 Preliminaries: Coding, Branched Surfaces

Let B be a pseudo-Anosov braid in By and let [fg] be the associated isotopy class in
MCG(Dp).

Let (¢,I') be a canonical efficient representative of an isotopy class [¢] in the conjugacy
class of [fg] and let (1,,I's) be the corresponding subdivided efficient representative.

Let v be the supporting braid constructed in the previous section. We recall that v is a
braid in By, where I depends only upon (¢, ') and has been given in proposition 2.5.
Let us recall that F' denotes a pseudo-Anosov homeomorphism of Dy, such that [F] = [¢]
(see section 2.1). Moreover, recall that F' is only defined up to a power of Ha (see remark
2.1).

We recall that the suspension flow (Ft’B )iter associated to [ is a suspension flow of an

element of [f5] which has 8 (and not BAX;) as suspension of the periodic orbits of the
punctures.

Our main goal now is to give an effective way to embed in M g’ any periodic orbit of this
flow given by a symbolic coding. We recall briefly the basic notions we need for coding the
periodic orbits of the pseudo-Anosov homeomorphism F'.

A pseudo-Anosov homeomorphism admits a Markov partition (see [FLP], chap.10) and
from a Markov partition, one gets a symbolic coding (see [Sh] for instance). One of the
main advantage of the efficient representative is the fact that we can easily find (by an
effective process) such a Markov partition (see [BH1| and [Lo2| for details). In particu-
lar, it is proved in [Lo2| that, except perhaps a finite set, all the periodic orbits of the
pseudo-Anosov homeomorphism F' are given by a coding whose rectangles are in 1-1 cor-
respondance with the edges of the subdivided graph I's. The possible exceptions are the
singular orbits, i.e. the orbits of the singularities of the invariant foliation. Furthermore,
even the singular orbits can be found from the efficient representative. The other orbits
will be called regular.

In what follows, according to [Lo2], we will not distinguish beetween the regular periodic
orbits of the homeomorphism F' and the periodic orbits of the map s whose points belong
to the interior of the edges of I';.

Let us recall that 7; is the tree obtained from I'y; by removing the boundary edges B(T's)
and collapsing their pre-images under ¥;. We will only consider regular periodic orbits
of s whose points belong to the interior of the edges of 7;. This restriction does not
suppress any periodic orbit. Indeed, the orbits of the punctures still exist as the orbits of
the end points of 7.

Definition 3.1 e The symbolic coding }_y, 7,) is the set of (infinite) sequences (- - - €;;€;;,, -++) (J €
Z) such that the symbols e;; are in bijection with the edges of 7.

e A sequence ---¢; ---€;,

+1
eij+1 C 1[15(€1J).

€y, * 18 admissible for Z(%,Ts) if, for all j € Z, one has
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e An admissible sequence is periodic if it has the form (e;, - - - €;, )™ where the symbol
(.)*° means that the (finite) sequence (.) is repeated indefinitely.

e The smallest such k is called the length of the admissible periodic sequence.

An admissible periodic sequence of length k defines k finite admissible periodic sequences
of length k, which differ only by a cyclic permutation of the letters (a shift). All these
sequences defines the same periodic orbit of F.

It will sometimes be convenient for our purpose to distinguish these sequences. In that
case, we will omit the symbol (.)> and keep only the finite sequence.

We are going first to construct a branched surface in D? x [0,1] from the supporting braid
defined in the previous section. Our first aim will be to prove that, when identifying the
disc D? x {0} with the disc D? x {1}, this branched surface is the one we are looking for.
Let us start by a brief review on branched surfaces. We refer the interested reader to
[W73], [BW] or [GHS].

A branched surface W is a finite two dimensional CW-complex embedded in a compact
oriented 3-manifold M such that W is a manifold except at a subset of its 1-skeleton,

called the branch locus of W. A 2-dimensional tangent space is defined at each point of
w.

Definition 3.2 e A branched surface with bands W is a branched surface satisfying:

i) The branch locus B is a union of disjoint intervals I; (¢ = 1,---,k). The neigh-
borhood of the I; is shown in figure 15. In this figure, we have distinguished
the two sides of the tangent plane in such a neighborhood, namely the locally
one-sheeted side and the locally k-sheeted side.

it) The complement of B in W is a collection of rectangles [0, 1] x[0, 1], glued together
along their parallel sides [0,1] x {0} and [0,1] x {1}, to the neighborhoods of
the I; as shown in figure 15. The rectangles are the bands of W. The top (resp.
bottom) of a band is its side [0,1] x {0} (resp. [0,1] x {1}) attached on the
locally 1-sheeted side (resp. locally k-sheeted side) of an interval in the branch
locus.

e A braided branched surface is a branched surface with bands embedded in the com-
plement of a closed braid in the solid torus. All the intervals of its branch locus lie
on an axis in a single fiber (say D? x {0}), called the azis of the branched surface.
The bands are transverse to the fibers D? x {6}, 6 € S'.

The branched surfaces with bands that we defined above are very similar to the templates
of [GHS]. The only difference is that the locally k-sheeted side of an interval in the branch-
locus is always a locally 2-sheeted side (k = 2) for a template.

In this section, we are interested in a subclass of the braided branched surfaces, called
special for a closed braid 3, The braid § € By is supposed to be pseudo-Anosov.

Definition 3.3 A branched surface WE is special for S if:

ii1) WE is a braided branched surface embedded in M, E’, some of its boundary components
being the closed braid S.

iv) Each closed braid carried by W5 is ambient isotopic to a periodic orbit of the flow ¢
defined as follows:
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e ¢ is a suspension flow of a pseudo-Anosov element in [fy] € MCG(Dy), where
« is conjugated to 5 in By.

e The flow ¢f is given so that the orbits of the marked points under the flow in
D? x S! are exactly the braid @ (and not aAF, A € Zy).

A braided branched surface W in M g carries a closed braid @ if the link & is embedded
in W such that its intersection with the bands of W is a collection of paths disjointly

embedded in the interior of these bands and oriented from the top to the bottom (see
definition 3.2 ii)).

Remark 3.4 The definition of a branched surface with bands implies that it carries a
semi-flow. In particular, each band has exactly one top and one bottom.

Let W be a braided branched surface in M g’ We define now a branched surface with
bands W’ embedded in D? x [0,1] \ 3. To this end, we cut open Mg’ along the fiber Dy
which contains the branch locus B. The result is a collection of open rectangles embedded
in D? x (0,1) \ B. Then we compactify D? x (0,1) by adding two copies of Dy, one at
D? x {0}, the other at D? x {1}. We then recover the branching at D? x {1} (see figures
15 and 21). This branched surface W' carries a representative of a braid « if and only if
@ is carried by W. A braid # with a 2-strand block partition is a particular such branched
surface W', where the branch locus is empty. Indeed, any pair of strands (2¢ — 1,27) of
0, together with the intervals on the initial and terminal axis connecting the initial and
terminal points of these strands bound an embedded rectangle in the solid cylinder. From
the properties of the 2-strand block partition, all these rectangles are disjointly embedded.
Therefore, it makes sense for 6 to carry a braid.

Definition 3.5 A symbolic coding >y, B, ) associated to a braided branched surface
W is defined in the following way:

e The symbols in By = {I1,- -, I} are in bijection with the tops of the bands of the
branched surface.

e The map Y is a piecewise continuous function defined on the intervals I;. It is
strictly monotone on each interval. The image of an interval I; under iy is the
union of the intervals in By, which are the bottom of the band whose I; is the top.

A closed braid with one component which is carried by W defines a unique, up to shift,
periodic admissible sequence for Z(U)W’ Bw)- The following proposition shows that the
converse is also true.

Proposition 3.6 Let W be a braided branched surface. Any periodic admissible sequence
for E("/’WaBW) defines a unique closed braid with one component carried by W'.

Proof: A periodic admissible sequence for > ., g,y defines a finite collection of points
in the interior of the intervals of the branch locus. These points are periodic points for
the map Y. They are ordered along the branch locus by applying the kneading theory
as defined by [CE] (see section 3). As a consequence, if I € By contains k points of this
orbit, then 9y (I) contains also k points. There is only one way to connect these points
by k disjointly embedded paths in this band. Therefore, we obtain a unique closed braid
carried by W. &
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A theorem of [Lo2] asserts that a special braided branched surface exists for all pseudo-
Anosov braids. We give here a constructive proof of this theorem. In addition, our
construction gives explicitly the embedding of the branched surface.

As a consequence, we obtain an effective way for embedding the periodic orbits of the
suspension-flow of the homeomorphism F', using this braided branched surface.

3.2 The special braided branched surface for 3

The supporting braid v(C) has a 2-strand block partition by lemma 2.18. Its strands are
denoted b; (i = 1,---,K) and the labelling is the one of section 2. The braid v(C) is
embedded in D? x [0, 1]. Its initial (resp. terminal) points in D? x {0} (resp. D? x {1})
are in bijection with the G-points (resp. nailed points) given by definition 2.4. Its initial
axis in D? x {0} is the curve A given by proposition 2.11 whereas its terminal axis in
D? x {1} is the accordion curve R of lemma 2.12.

The braid v(C) is obtained from the normal dissection C in Dx whose axis is the accordion
curve R. Let T} (t € [0,1]) be an isotopy of D?, which fixes dD? pointwise, and so that
Ty is the identity and T7(R) is the x-axis of D?.

Recall that we have denoted I; (i = 1,---,/K/2) the intervals on R which connect the
nailed points of indices 2k — 1 and 2k. From our labelling and the definition of the
accordion curve, the intervals 77 (;) and T (I;+1) are consecutive along the x-axis. Let us
denote by I(e) the subset of {T7(l;) ,i=1,---,K/2} on the x-axis so that T1(I;) € I(e)
if I; € RN R(e), where e € E(T). Two intervals T1(I;) and T1([j41) in I(e) satisfy
I i <e I j+1-

Since v(C) has a 2-strand block partition, then the two strands byj_1, by; of initial points
x2j—1, T2; have their terminal points at two marked points yor_1, yor in D? x {1}. They
are the boundary of an interval T7(I;) in some I(e).

The intervals J; which connect the points x2;_1 and x2; on D? x {0} are in 1-1 corre-
spondence with the edges of the subdivided tree 7. Furthermore, their labelling and their
respective position along the x-axis agree with the orientation of the corresponding edge
e of T. Let us denote by J(e) the set of intervals J; on the x-axis of D? x {0} which
corresponds to the same edge e € E(T).

Definition 3.7 Let (1,I') be a canonical efficient representative of [fz] € MCG(Dy) and
let v(C) be the supporting braid of lemma 2.18.
We denote by Wy ry the branched surface constructed as follows:

i) A band By;_1 of Wy ) is a rectangle embedded in D? x [0, 1] whose boundary if formed
by:

e the two strands by;j_1, by; of v(C).

e the interval J; on the x-axis of D? x {0} and the interval T (I;) on the x-axis
of D% x {1}, whose boundary points are the terminal points of baj_1, ba;.

i1) The branch locus is defined as follows:

a) We identify in D? x {1} all the intervals of I(e) to a single interval Z(e) on the
x-axis of D? x {1}. The identification is made in D? x [0,1] by declaring that
T1(IL;) € I(e) is identified over Ty(I;—1) € I(e). This means that the two strands
which end at 0(T1(I;)) cross over the two strands ending at 9(77(Z;—1)). The
same property holds for the corresponding rectangles (see (7)).
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Figure 15: Construction of W(w,r)

b) The intervals of J(e), i.e. Jj, Jj41,- -+, Jj1k, are glued together in D? x {0} by
identifying the last point of J; i, with the first point of Jj 1,41 (0 <n < k—1).
The resulting interval on the x-axis is denoted J(e). The branched surface
obtained at this point by smoothing the branching (see step d)) is denoted
Wiw.r)-

c) We identify the two discs D? x {0} and D? x {1} without twisting so that the
intervals Z(e) and J(e) corresponding to the same edge e of T are identified.

d) At a given interval Z(e) ~ J(e), we smooth the branching in a way that the
tangent plane of all the rectangles glued together agree.

This definition is illustrated by figure 15.
We want to prove the following

Theorem 3.8 Let § be a pseudo-Anosov braid in By and let [fg] € MCG(Dy) be the
corresponding isotopy class.

Let (¢,T) be a canonical efficient representative of [fgz].

Then the branched surface W(,/,’p) of definition 3.7 is a special braided branched surface
for the closed braid [5.

Let us start the proof by:

Proposition 3.9 Let 3 be a pseudo-Anosov braid and (¢,T") be a canonical efficient rep-
resentative for [fg].

Then some boundary components of the branched surface W(w,r‘) are ambient isotopic in
Mg’ to the closed braid .

Proof: Let g1, --,gn be the N G-points which belong to the vaj -sides, where the vy, are
the boundary vertices (see section 1.2). These boundary vertices are periodic under F' and
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so are the g1, -+, gn. These points lie in the boundary of W(¢,F) in the fiber D% x {0}.
Therefore, the N paths in Rx ending at g1,---,gn give rise, by our construction, to a
closed braid in the boundary of WW,,F). This closed braid is ambient isotopic in Mg

to a suspension under (Ftﬂ )ter of g1,---,gn if the homeomorphism is well chosen by
lemma 1.14. These points have the same trajectories under (Ff )ter than the punctures.
Therefore, the closed braid is ambient isotopic in M E’ to 8. &

Remark 3.10 In order to fix the homeomorphism, we have to choose a power of Ha. By
remark 2.15, this choice is made by choosing the escape paths.

For this last choice, we only have to compare 8 with ,8A§“V for some k € Z. This can be
done, for instance, by comparing the algebraic lengths of the braids § and BAX; in the
generators of By .

Proposition 3.11 1. The branched surface W(,l/,,r‘) is a braided branched surface in
M3.
B

2. If J € J(e) and I € I(e') are respectively the top and the bottom of the same band
of W (yr), then the edges e € E(T;) and ' € E(T) satisfy e = y(e).

Proof: By construction, W(,l/,,r‘) is a braided branched surface. Indeed, the branch locus
is a disjoint collection of intervals embedded in a single fiber D? x {0} = D? x {1}.
Its complement is, by construction, a collection of rectangles disjointly embedded and
transverse to the fibers. Furthermore, W(,lp,r) is embedded in M, g by proposition 3.9 (see
remark 3.10). This proves part 1).

The intervals of the branch locus are in bijection with the edges of 7. The intervals
J; € J(e) in D? x {0} are in bijection with the edges of 7; contained in e € E(7T). The
bands of the branched surface are in bijection with the 2-strand blocks of the supporting
braid. Item 2/ is straightforward from the definition of the supporting braid and the part
ii-a) of definition 3.7. <

Proposition 3.12 Let F' be a pseudo-Anosov homeomorphism in the class [fg] and let
> (s, T;) be the symbolic coding for F given by definition 3.1. If ZW(w o 1s the symbolic

coding associated to the branched surface W(d,,p) of definition 3.7, then any admissible
sequence for ZWW . is admissible for Z(w&fm and the converse holds.

In particular, any closed braid with one component carried by the branched surface W(d,,r‘)
defines a unique periodic admissible sequence for Z("/)S,Ts) and therefore a periodic orbit of
F. The converse is also true.

Proof: The correspondence beetween the two symbolic codings is straightforward from
proposition 3.11 2). Any closed braid with one component carried by the branched sur-
face defines a unique periodic admissible sequence for ZW(%F) by definition of this coding.
The correspondence beetween the two codings implies then that any closed braid carried
by W(¢,F) defines a unique coding for >, 7). The second part of proposition 3.12 is
straightforward from proposition 3.6. {

We are now going to prove the following lemma whose proof relies on lemmas and propo-
sitions 3.14 to 3.19.

Lemma 3.13 Let & be a closed braid with one component carried by W(w,r‘) and let P be
the corresponding periodic orbit of F (see proposition 3.12). Then & is ambient isotopic
in ME’ to the orbit {F (z)her (x € P) of the suspension of F.
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The accordion curve R is the terminal axis of the supporting braid whereas the curve
A given by proposition 2.11 is its initial axis. They are embedded in two different discs
D? x {0} and D? x {t} (t > 0). It will be convenient for our purpose to consider them
embedded in a single disc.

If P is a periodic orbit of the homeomorphism F', then there is at most one point of P
on a given tie of the fibered neighborhood N(I") (see [Lo2] for instance). Moreover, each
point of P belongs to the interior of a unique rectangle R(e) , e € E(T), and therefore to
the interior of a unique rectangle F'(R(¢')) = ps(R(€')) , ¢ € E(Ts). Each of these last
rectangles contains exactly one interval of ¢4(I') N R(e). We have identified these intervals
©s(I') N R(e) with the intervals on the accordion curve connecting their boundary points
in OR(e). We project the points of P along the ties on their corresponding intervals on
the accordion curve. This gives a collection of points P’ in bijection with the points of P
and ordered along the accordion curve. Then we consider the axis A" which goes through
the points of P’ in the order of their projection on the edges of 7;. The axis A’ is clearly
homotopic (relative to dD?) to the axis A going through the projection of P’ on 7;. In
what follows, we won’t distinguish A and A’.

The points of P are labelled according to their position along the axis A.

In what follows (propositions 3.14, 3.15, 3.16), we give a construction of all the closed
braids carried by W(,/,,p), starting from any finite collection of admissible periodic se-

quences for Zws To):

Proposition 3.14 Let oy, --,0, be any finite collection of periodic admissible sequences
for Z(%,TS)’ let Q ={Q1, --,Qi} be the corresponding periodic orbits for s of periods
qi, - ,q andletm=q +---+q.

Let Rx be the set of paths from OD™ to the G-points defined in section 2.2.

These paths are ordered by the relation <., (see section 2).

Then, there exists a set of m paths Bp = {Py, -+, Py} in DT connecting m points in 0D
to the points x; of the periodic orbits. They satisfy the following properties:

e The paths in Bp U Ry are disjointly embedded.

o Let x; be in e;; (e;; € E(Ts)) and let P; be the path in Bp ending at x;. If m;
and w11 are the two generating paths whose G-point belong to the edge e;;, then
T <, Pj <ws Ti41-

o Let x;, xj be two periodic points in Q@ which belong to a same edge of T and such that
zj follows x; according to the orientation of the edge. Then P; follows P; according
to the order <,,.

o Let x;, x; be two periodic points in Q) which belong to two distinct edges ey and e,
of E(Ts) whose indices satisfy: k < n. Then P; <,, P; holds.

Proof: For proving this result, we construct the paths {Pi,- -, P,,} parallel to the gener-
ating paths. The construction is exactly the same as in definition 2.8. {

Proposition 3.15 With the above notations, the normal dissection {F(Bp); R} defines
a braid ap(a) carried by the supporting braid v(C) of lemma 2.18.

Proof:

1. The construction of section 2 applied to the set of paths Rx U Bp defines a normal
dissection Cp whose arcs are the images under F' of the set of paths Rx U Bp and
whose axis is the accordion curve of lemma 2.12.
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2. The normal dissection Cp is such that any arc in F(Bp) of Cp lies beetween and is
parallel to the two arcs in F(Ry) which form a block of the supporting braid «(C)
of lemma 2.18.

In the normal dissection Cp, we consider the sub-dissections { F'(Rx); R} and {F(Bp); R}.
The first one gives rise to the supporting braid v(C). The second one gives rise to a braid
ap(a) carried by the supporting braid.

From the braid v(Cp), one reconstructs in a single operation:

e The braided branched surface W(,/,,F) of definition 3.7, and
e A braid o whose closure is a link with [ components which is carried by W(w,r).

The construction goes as follows:

The first step is to construct the branched surface W, ). In definition 3.7, this is done
by identifying the bottoms of some rectangles given by the supporting braid.

After this identification, the strands of ap(a) give rise to a braid a carried by Wy ).
Indeed, no end-points of ap(«) can be identified by the above operation since the points
belong to a finite collection of distinct periodic orbits of F'. Therefore, the strands of «
are well defined. By this construction, one obtains a representative of a carried by the
branched surface Wy ).

The second point is to construct the branched surface W(d,,r‘) from W, ) (see definition
3.7). By the above argument, the closed braid @ has the same number of components as
the number of periodic orbits and is carried by W(,(/,,I‘).

The above construction will be called the braid builder construction.

Proposition 3.16 Any closed braid carried by the branched surface W(%p) is obtained by
the braid builder construction.

Proof: We suppose that the branched surface W(,lp,r) (see definition 3.7) is given, as well
as a closed braid @ carried by W(¢’F). This @ defines a unique collection of periodic orbits
P of the homeomorphism F' (see proposition 3.12). Now, the braid builder construction
applied to this collection defines a closed braid carried by W(,(/,,I‘). It has the same symbolic
coding (for ZW(¢,F) or 2(1/,’7—5)) as @. By uniqueness of the closed braid defined by a given
periodic admissible sequence, the two braids are the same. <>

The following lemma shows that all the braids carried by Wy ) split in a well defined
way.

Lemma 3.17 Let a be any braid carried by Wy r).
It splits as a = ap(a)ag(a) where:

1. The braid ap(a) is the braid given by proposition 3.15.

2. The braid ap(a) has a block-partition. The blocks of ap(a) are in bijection with the
blocks of the supporting braid which carry (as a 2-strand block) at least one strand
of a.

For the writing of ap(a) as a word in the block letters, the other blocks of the
supporting braid are deleted.

3. The initial axis of ag(a) is the terminal azis of ap(w), i.e. the accordion curve R.
The it strand of ags(a) is the one starting from the ith point along this axis.
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i) All the crossing-letters of w(as(c)) are of the form s;jl, with i > j.
it) The crossing-letter s;jl (¢ > j) occurs in the crossing-word w(ag(«)) if and only
if the respective positions, along R, of the terminal points of the strands i and

j do not agree with their ordering along the axis A (see figure 16).

Proof: By proposition 3.16, « is constructed by the braid builder construction. This
construction has two parts. First, it gives the normal dissection {F(Bp); R}. The second
step goes from the supporting braid to the branched surface W, ry by identifying the
accordion curve R with the axis A (see step ii-a) of definition 3.7). The first step gives rise
to ap(a) which is carried by the supporting braid. The second step gives rise to the braid
ag(a). This proves the splitting property. Item 1) is then obvious. Item 2) comes from
the fact that ap(«) is carried by the supporting braid (C) which has a 2-strand block
partition. The item 3-i) comes from the way the intervals I(e) have been identified at the
step ii-a) of definition 3.7. More precisely, the intervals I(e) along the accordion curve are
identified from the right over the left. Therefore, all the crossings are of the form right
crosses over left. Thus the corresponding crossing-letter is of the form s; jl, with ¢ > j.

The consequence is that the crossing letter si_,jl , = > j belongs to w(ag(«)) if and only if
the ordering of the points ¢ and j do not agree along the two axis R and A. For proving
item 3-ii), it suffices to look at the permutation induced by ag(a). One implication is
clear: if the points ¢ and j are permuted from R to A, then the letter s;; must occur in
w(ag(a)). On the contrary, suppose s;jl , %> j occurs in w(ag()). Then the respective
position of the points 7 and j is reversed from R to A. Indeed, the crossings s;; , 7 > j
or s;} do not occur in « B(a). Therefore, the permutation induced by S;. jl remains. This
proves 3-ii). {

J»t

Accordion
curve R

Ii iy iy

Projection of R to the initial axis

W initial axis

The braid carried
by the branched surface

Figure 16: Lemma 3.17-3

Proposition 3.18 Let & be a closed braid with one component carried by W(d),p). Let P
be the periodic orbit of F defined from @ by proposition 3.12. The braid ap(a) of lemma
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3.17 is equivalent to a braid 6(a)yy where 7y is ambient isotopic in M 53 to a suspension of
P under (F)cr.

Proof: The braid ap(a) has been constructed from the normal dissection {F(Bp); R}
where

e the terminal points of the paths in Bp are the points of P.

e {Bp; A} is a trivial normal dissection, where A is the initial axis of the supporting
braid defined in proposition 2.11.

This implies, by lemma 1.14, that the closure of ap(«) is ambient isotopic to the suspension
of P under (F)icr if {Bp; R} is a trivial dissection (in that case, 6(c) is the trivial braid).
Indeed, recall that the choice of the suspension flow was done in proposition 3.9 (see remark
3.10).

If {Bp;R} is non trivial, we denote by #(«) the braid corresponding to the dissection
{Bp;R}. Let fy be an homeomorphism of Dy (N is the number of points of the periodic
orbit) induced by the braid #(c). The normal dissection {Bp; R} is the image under fy of
the trivial dissection of axis R and marked points the points of P. The normal dissection
{F(Bp);R} is then the image by the homeomorphism F o fy of the trivial dissection of
axis R. By lemma 1.14, we have ap(a) = ()0, where 7p is ambient isotopic in Mg to

a suspension of P under (Ftﬁ )ter- Indeed, 7o is the braid corresponding to the periodic
orbit of the homeomorphism F', which transforms {Bp; R} to {F(Bp); R}. &

Proposition 3.19 Let « be a braid with one component carried by Wy, 1y and let as(a),
0(c) be the braids given respectively by lemma 3.17 and proposition 3.18.
Then ag(a) = 6(a) L.

Proof: In lemma 3.17-3, we proved that the braid ag(«) satisfies the following property:
All the crossings are of the form ;i b > ] Moreover, a crossing-letter s;; occurs in
w(ag(a)) if and only if the position of the points ¢ and j is reversed from the axis R to
the axis A.

In order to prove proposition 3.19, it suffices to check:

1. All the crossings in 6(a) have the form s; ; with ¢ < j.

2. The crossing letter s; ; belongs to w(f(«)) if and only if the position of the points ¢
and j do not agree with their labelling along A.

Let us recall that we have projected the points of P on the accordion curve to obtain a
collection of points P’. We have considered an axis A’, passing through the points of P’ in
the order of their projection on A along the ties. This axis A’ is homotopic to A, relative
to dD?. The projections on A, along the ties of N(I'), of the points in P are the terminal
points of the paths Bp.

A path P; in Bp does not intersect R in the rectangles it passes through, except perhaps
in the last one which contains the corresponding point of the periodic orbit.

This comes from the construction of the accordion curve R and the fact that the paths P;
are parallel to the generating paths (see section 2 - definition 2.8 and lemma 2.12).
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Figure 17: A non trivial dissection {Bp;R}

The ordering of the intersection points P; 1R along P; agrees with their ordering along
R. This is illustrated by figure 17.

Let us explain this figure. Recall that we have parametrized the rectangles R(e) (e € E(T)
by [0,1] x [—1,1], with e N R(e) = [0, 1] x {0}.

The paths P; are decreasing in both directions {z} x [—1, 1] and [0, 1] x {y} in the rectangle
R(e). Indeed, the paths P; are parallel to the generating paths. By definition 2.8, the
generating paths satisfy the above property.

By definition of the accordion curve (see lemma 2.12), the ordering of the intervals
vs(I's) N R(e) , e € E(T), in R agrees with the ordering <. (see definition 1.1).

Therefore, all the crossing letters reconstructed from the normal dissection {Bp;R} are
positive, i.e. of the form s; ;, with ¢ < j.

Indeed, all the return points of the reconstruction algorithm are on the right of the corre-
sponding band (see section 1.3.2 - the reconstruction algorithm). This proves item 1).
Item 2) is proved by the same argument as in lemma 3.17 3-ii).

Let us now complete the proof of lemma 3.13.

Since « is carried by the branched surface, then, by lemma 3.17, o = ap(a)ag(a). By
propositions 3.18 and 3.19, a = #(a)0f(a) * where 7g is ambient isotopic in Mg to the

suspension of P under (Ff )teR-
This completes the proof of lemma 3.13. <

Lemma 3.20 The suspension under (Ftﬁ)teR of any periodic orbit P of F is ambient
1sotopic in Mg to a unique closed braid carried by Wy ry.

Proof: The periodic orbit P defines a unique periodic admissible sequence for Z(ws,Ts )-
By proposition 3.12; it gives a unique closed braid carried by W(u),r)- By lemma 3.13, this

closed braid is ambient isotopic in M g to the suspension under (Ftﬁ )ter of a periodic orbit
P’ of F. The uniqueness, up to shift, of the symbolic codings implies that P = P’. <
This completes the proof of theorem 3.8. {

3.3 Coding the periodic orbits of the suspension flow

We suppose that a pseudo-Anosov braid # € By and a canonical efficient representative
(¢,I) of F € [fs] ([fs] € MCG(Dn)) are given. We denote by 3>, 7.) the symbolic
coding coming from the subdivided representative (15, 's) (see definition 3.1 and below).
We recall that (Ftﬁ )ter denotes the suspension flow of F' associated to [.
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Lemma 3.21 Let s1,---,s; be a finite collection of admissible periodic sequences for
> (s, Ty) Of respective lengths Uy, ---,lx. Then there is an effective algorithm which gives
a braid 0(sy,---,si) in By 4..41, whose closure has k components and is the suspension,
under (Ftﬁ)teR, of the k periodic orbits corresponding to the sequences s1,- -+, Sg.
In particular, one can compute the linking number of any pair of periodic orbits.

The strategy for proving this lemma is to use the braided branched surface W(¢,p) given
by definition 3.7. Indeed, from theorem 3.8, this branched surface carries the suspension
of all the regular periodic orbits. Once an admissible periodic sequence is given, one knows
that the corresponding braid goes through an ordered sequence of bands of the branched
surface. From the embedding of the branched surface W(y 1), one knows the crossings of
the bands in D? x [0,1 — €] (for a small € > 0), and furthermore the identification of the
intervals in D? x {1} given by definition 3.7 tells us which band crosses over which other
band in D? x [1 —¢,1]. In order to complete the description of the braid corresponding to
a given admissible periodic sequence, we only have to order the points in each interval of
the branch locus. This ordering process will also work for a collection of periodic orbits.
This process of ordering some points of an orbit along an interval is reminiscent to the
kneading theory developped for continuous map of the interval (see for instance [CE]).

Definition 3.22 Let z be a regular periodic point for F' and (e, - - - e, ) be the associated
admissible sequence.

e We call itinerary of = the sequence: I(z) = ki'--- k& where ¢; = +1 if ¢g(ey,) =

. a..nd € = —1 if 'l/]s(ekl) _ .. '61;1_1 RN

I,(x) denotes the symbol k,, (m > 1).

...6ki+1..

Let z and 2’ be two periodic points for the homeomorphism F.
e We say that I(x) # I(z') if there exists a positive integer k such that I (x) # Ix(z').

e We will write I,,(x) < I;(«') if the interval on the initial axis of Wy, r) corresponding
to Iy () is distinct and preceds the interval corresponding to I;(z’) according to the
orientation of the axis.

e We define an order < on the itineraries of the periodic points of F' as follows:

If I(z) £ 1(2"),
Let m be the smallest integer such that I,,,(x) # I,,(z), then
I(z) < I(2)) if:

— There is an even number of ¢; = —1 in the sequence k{* - - - k" and I, (z) <
I, (2).

— There is an odd number of ¢; = —1 in the sequence k{' - -- k"' and I,,,(z') <
I, ().

Proposition 3.23 I(z) < I(z') implies © preceds &' along the axis.

The proof is the same than the one for continuous maps of the interval by the kneading
theory. (see for instance [CE]). <

Let us recall (see lemma 3.17) that any braid « carried by the branched surface decomposes
as ap(a)as(a), where ag(a) has a block partition. The corresponding crossing-word is
obtained from a word in the block letters of the supporting braid (see lemma 3.17 1)). The
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crossing-word for aig() is given by the lemma 3.17 once we know the respective positions
of the points of the periodic orbit along the axis A and the accordion curve R. The
position of the points along A is computed from their itineraries by using the proposition
3.23. The position of the points along R, i.e. the terminal axis of the supporting braid, is
given by the permutation induced by ap(a).

One can now make explicit the algorithm announced in lemma 3.21. This will complete
the proof of lemma 3.21, as well as the proof of the main theorem 0.1. We state it here
for two periodic admissible sequences and at the end we compute their linking number.

1. Find an efficient canonical representative (¢,I') for (€ By

e We apply the train-track algorithm (see [BH1], [FM], [Lol]) starting from any
induced automorphism ¢4 : 7 (Dn) — 71 (Dn).

e We embed the graph I" un Dy so that (1, I") is canonical. This step is achieved
by a conjugacy but the explicit conjugacy is not necessary. We just have to fix
the embedding so that the properties of definition 2.8 and proposition 2.3 are
satisfied.

Datas: two admissible periodic sequences o, oy for Z(%ﬂé)

2. Construction of the special braided branched surface

(a) Construction of the supporting braid ~(C)
We apply the supporting braid algorithm (see section 2).

(b) Construction of Wy ).
Follow definition 3.7.

3. Order all the points of the periodic orbits given by o1 and o9 along the branch locus
of W(¢,F) .

This is done by applying proposition 3.23 and comparing the itineraries.

4. Compute the braid « corresponding to the union of the two periodic orbits and also
each individual braid aq, as.

To this end, we apply lemma 3.17 for the two orbits.

5. The closure of o gives rise to a two components link in M, g from which we compute
the linking number.

An example

Let us start by a braid f = o105 Lin B3. Its induced isotopy class is pseudo-Anosov
and a canonical efficient representative (¢,I") is shown in figure 18. The graph I' has
six edges, labelled a, b, ¢, 1, 2, 3, where the numbers correspond to boundary edges (see
definition 1.6). Figure 19 a) shows the G-points and the generating paths for this example.
Figure 19 b) shows the accordion curve R, the nailed points and the images under ¢ (the
embedding associated to (¢,I") - see definition 1.3) of some generating paths, namely the
one corresponding to the boundary paths (see section 4). Let us explain how we get
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these figures from the efficient representative (¢,I"). First, one gets the nailed points as
the intersection points of ¢(I') with the sides of the polygons, which do not intersect the
boundary edges (see definition 2.4). Then, we get the G-points as the pre-images under
¢ of the nailed points. Observe in particular that each extremity of a segment e N R(e),
e € {a,b,c}, is a G-point. From this, we get the normal dissection C and the supporting
braid (C) shown in figure 20. The axis of the normal dissection C of this figure is the
accordion curve of figure 19 b). In other words, we have drawn R flat, oriented from left
to right and such that the initial points of the arcs of C belong to the top of the rectangle.
These arcs correspond to the images under ¢ of the generating paths. In this figure the
bolded arcs correspond to the boundary paths. The intersection points of these paths
with R are represented by gray squares in figure 19 b). At these points, for reconstructing
the normal dissection C, we take care of the intersection signs. This means that we take
care of the fact that the paths are oriented from above to below the axis, or the converse.
From these informations, we recover the normal dissection of figure 20 by connecting all
the intersection points by well-chosen disjointly embedded arcs. Then, we get the braid
of figure 20 by the reconstruction algorithm (see section 1.3.2). The bolded strands form
in fact the original braid . Finally, one obtains the branched surface Wz = Wy 1) (see
figure 21) from the supporting braid v(C) of figure 20 as described in definition 3.7. All
the intervals between two nailed points on the axis, which correspond to intervals lying
in a same rectangle, are identified, respecting the transversal ordering. Here, from the
choices we made, when one identifies two intervals, the one on the right is identified over
the other interval. Figure 22 shows an example of a periodic orbit carried by Wg. The
interested reader can experiment to get the symbolic coding of this periodic orbit.

The braid

a/ |\ c cp(a)cp) P()

1 2 3

Figure 18: An efficient representative in D3
Pla) =ca '17la  P(b)=a  1(c) =bc'3c
$1)=3 @) =1 $(3) =2
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Figure 19: Generating paths and a part of the normal dissection C

Figure 20: The normal dissection and the supporting braid
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Figure 21: The branched surface Wz = Wy, r)

Figure 22: A braid « carried by Wpg
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4 Remarks and questions

Singular periodic orbits: As we already observed in section 3.1, the branched surface Ww’p)
that we construct by our algorithm carries the suspension of all the periodic orbits of
the pseudo-Anosov homeomorphism, up to the finite collection formed by the peri-
odic orbits, under 9, of the vertices of the graph. For each such periodic orbit P;yg
that we call singular, there is a boundary component of W(d,,r‘) which is a cabling
of the suspension of Pgpg. The corresponding braid in the cylinder D? x [0,1] is a
“cabling” ( as a braid) of the braid associated to Ping.

Reconstruction algorithm: Our strategy for the construction of the branched surface W, r)
is based on the construction of the supporting braid of section 2.2. An observation
is that the reconstruction of this supporting braid and thus of Wy ) can be real-
ized knowing only the intersection points of the boundary paths (see section 2.2.1)
with the accordion curve R (see lemma 11), their ordering along R and along each
boundary path. The accordion curve R is the axis of the normal dissection C which
gives the supporting braid. The intersection points of the other arcs of C with the
axis R are then uniquely determined from the boundary paths. This affirmation is
a corollary of lemma 2.22 and allows to reconstruct the supporting braid with less
datas.

An easy reconstruction process: Our reconstruction process is defined for any topological
representative (¢, I') of a homeomorphism of the punctured disc, where I' is canonical
(see definition 1.6). Our aim was to apply it to an efficient representative of a pseudo-
Anosov homeomorphism in order to obtain a branched surface which carries the best
possible dynamics. If one only desired to reconstruct a branched surface associated
to the suspension of some homeomorphism in the isotopy class, one could simplify the
reconstruction process by choosing a particularly simple topological representative.
This can be done for instance in the following way:

Let 8 be a representative of a braid in By. One builds a normal dissection from
B by sliding, at each crossing, the overcrossing strand along the undercrossing one
until the crossing is supressed (for more details see [BZ]).

One identifies all the initial points of the normal dissection so constructed to a single
one.

One applies an isotopy to the arcs to obtain a canonical topological representative
(1,T') where I' has exactly one valency N vertex vy and N boundary vertices. The
vertex vg is fixed under .

In this case, the construction of the supporting braid and thus of the branched
surface is easy. A lot of choices of our general construction are natural (base point,
escape paths,...) and in particular for the construction of the accordion curve R.

The branched surface reconstructed by this process is not associated to a suspension
flow of the pseudo-Anosov homeomorphism, but only of some homeomorphism in
the isotopy class.

Universal template: As observed by the referee, we check that the branched surface Wjg
obtained from our construction in the above example, and embedded in S3, contains
the universal template of Ghrist ([Gh]) as a subtemplate. In order to check this ob-
servation, we first embed our branched surface in S and isotope it to the template
represented by figure 23. From this picture, we observe that, by removing the bands
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labelled by A and B, the template obtained is the universal template.

Since this universal template has the property of carrying any link in S? and together
with the results about the forcing relation in [Lo2], we get the following corollary. By
suspension flow we mean a flow which is the suspension of a disc homeomorphism.

Corollary 4.1 If a suspension flow in the solid torus admits a periodic orbit of type
B given by the example, then any knot in S is represented by a periodic orbit of this

flow.

Question: Is there a criterion for a Pseudo-Anosov braid to “force” all knots in S3?

Figure 23: From Wj to the universal template

Acknowledgements: We would like to thank the referee for several interesting observa-
tions on our first version of this paper. In particular the remarks on the universal template
are due to the referee.
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