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Abstract 
In the present article, a new method for the determination of the hardening law using the load 

displacement curve, F–h, of a spherical indentation test is developed. This method is based on 

the study of the error between an experimental indentation curve and a number of finite 

elements simulation curves. For the smaller values of these errors, the error distribution shape 

is a valley, which is defined with an analytic equation. Except for the fact that the identified 

hardening law is a Hollomon type, no assumption was made for the proposed identification 

method. A new representative strain of the spherical indentation, called “average 

representative strain”, εaR was defined in the proposed article. In the bottom of the valley, all 

the stress–strain curves that intersect at a point of abscissa εaR lead to very similar indentation 

curves. Thus, the average representative strain indicates the part of the hardening law that is 

the better identified from spherical indentation test. The results show that a unique material 

parameter set (yield stress σy, strain hardening exponent n) is identified when using a single 

spherical indentation curve. However, for the experimental cases, the experimental 

imprecision and the material heterogeneity lead to different indentation curves, which makes 

the uniqueness of solution impossible. Therefore, the identified solution is not a single curve 

but a domain that is called “solution domain” in the yield stress–work hardening exponent 

diagram, and “confidence domain” in the stress–strain diagram. The confidence domain gives 

clear answers to the question of uniqueness of the solution and on the sensitivity of the 

indentation test to the identified hardening laws parameters. 

 

1-Introduction 
The indentation test is widely used for the determination of the stress–strain curve of 

materials [1-22]. One of the advantages of this technique is that it is nondestructive and can be 

applied to materials in some conditions for which the classic tensile test cannot be done. For 

example, the indentation test can be applied both to small material samples and to plastically 

graded materials. One of the disadvantages of the indentation test is that the field of strain in 

the deformed sample is not homogenous which makes it difficult to identify the hardening law 

of the material. The application of the concept of the representative strain can significantly 

simplify the analysis of the indentation response and has often been used in the stress–strain 

curve determination from the indentation test [1-19]. In 1908, Meyer [23] established a 

relationship between the mean pressure of the material under spherical indentation and the 

contact radius over indenter radius (a/R) ratio. For a given a/R ratio, the mean pressure should 
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be the same using different radius of spherical indentation. Based on this observation, Meyer 

related the angle of indentation to the a/R ratio [22]. The concept of the representative strain 

was later introduced by Tabor for Vickers and spherical indentation [1]. Tabor proposed a 

relationship between the a/R ratio and the representative strain. In the case of spherical 

indentation, the representative strain depends on the penetration depth of the indenter into the 

material, h, [1-14] or the contact radius, a, [1, 8-19]. In this study, only the case of the 

representative strain proposed for the identification using the load displacement curve, F-h, of 

a spherical indentation test [8-14], is treated. For this case, many studies were done to propose 

new representative strains obtained by using finite element simulations and by considering the 

elastic properties as known. These studies can be divided in two categories. In the first one, 

the representative strain only depends on the measured parameters (F and h) [9-12, 14] and in 

the second one, it depends on F, h and on the mechanical parameters of the Hollomon 

hardening law of the material (yield stress σy and work hardening exponent n) [8, 9, 12, 13]. 

In all these studies, identification methods of these mechanical parameters were proposed. 

Using finite element simulations, Taljat et al. [8] proposed two representative plastic strains, 

maximum and minimum, located near the contact. The choice of Taljat et al. [8] to consider  a 

strain located near the contact was criticized by Lee et al. [9] because of the influence of the 

friction coefficient between the indenter and the indented material. Lee et al. [9] suggest an 

optimal data acquisition location, where the strain gradient is the least and the effect of 

friction is negligible. They proposed a new probing depth that is lower than 20 % of the 

indenter radius, R, from the surface at 0.8 R, apart from the indentation center. Then, a 

representative strain determined from finite element simulations was proposed. A maximal 

ratio of penetration depth to the indenter radius R, hmax/R=0.12, was considered sufficient to 

identify mechanical properties of materials. This choice was later criticized by Lee et al. [13] 

who demonstrated that for this value of hmax/R, multiple plastic properties can give almost the 

same indentation curve. Therefore, hmax/R was changed to 0.4 by Lee et al. [13]. The authors 

did not justify their new choice of hmax/R. Moreover, they did not justify whether this choice 

would definitely solve the problem of uniqueness of the solution or not. 

Cao and Lu [10] proposed an analytic study of the spherical indentation using dimensional 

analysis. Using data from Dao et al. [2], the authors proposed a new representative strain 

definition to obtain a dimensionless function independent from the strain hardening exponent 

n. Two different penetration depths were proposed by the authors to identify two points of the 

hardening law and thus σy and n. 

This study was disapproved of by Zhao et al. [11], who considered that it was done on some 

specific materials and thus, could not be representative of all materials. According to Zhao et 

al. [11], it is impossible to obtain a dimensionless function independent from the work 

hardening exponent n. Two functions Π dependant on the hardening coefficient n were then 

proposed. 

Considering the criticism of Zhao et al. [11], Cao et al. [12] then modified their model [10] 

for a wider range of materials. They proposed four representative strains for four different 

penetration depths. More recently, Ogasawara et al. [14] used Cao and Lu’s study [10] and 

proposed a representative strain to simplify the relationship between the energy, the indenter 

radius and the mechanical parameters.  

All the representative strains mentioned above have no physical meaning and were proposed 

to simplify the identification of mechanical properties using spherical indentation. Moreover, 

none of the studies concerning the mechanical characterization using the F–h curve [8-14] 

gave a clear answer on the validity of the identified hardening law and on the sensitivity of the 

spherical indentation test to the parameters of the hardening law. These parameters were 

calculated from curve fitting the indentation response of a certain range of material properties. 
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The present work is a study of the solution identified for spherical indentation using the F–h 

curve. A finite element study on elastoplastic materials with the Hollomon hardening law is 

presented in order to define the precision of the solution that can be determined from the F–h 

curve. An identification method, based on no assumption, is proposed and an average 

representative strain is defined. This method leads to the identification of a confidence 

domain that takes into account the experimental imprecision and the material heterogeneity. 

The present method is applied for the case of hmax/R=0.23 and could be applied for any 

penetration depth. 

 

2-Material and experimental results 
The material studied was a low-alloy 20MnB5 steel (European Standard EN 10083-3, 

Steelgrade number: 1.5530). The 20MnB5 is an alloy special steel for quenching and 

tempering with a chemical composition in weights of 0.191 % C, 1.14 % Mn, 0.362 % Si, 

0.0158 % P, 0.0008 % S, 0.25 % Cr, 0.0014 % B, 0.039 % Al, 0.027 % Ti, 0.017 % Mo, 

0.025 % Cu and 0.06 % Ni.  

This type of steel was selected to obtain a fine, homogeneous microstructure and thus, a good 

reproducibility of the indentation tests. Figure 1 represents the microstructure of the 20MnB5 

steel and shows a homogeneous distribution of spheroidized carbides in a ferritic matrix. 

 

 
Fig. 1: Microstructure of 20MnB5 steel alloy  

The tensile test and indentation specimens were carefully sectioned with a Precision Cut-Off 

Machine from a hot rolled sheet of 4.5mm thickness. The Vickers hardness (10 Kgf) 

measurements gave HV10=155 for the surface and HV10=160 for the core. The true tensile 

curves obtained for 20MnB5 steel before necking are represented in Fig. 2. The experimental 

conditions and measurement method for the tensile test were presented by Moussa et al. [21]. 

Figure 2 shows that the studied material exhibits a yield stress of about 340 MPa and a 

nonnegligible work hardening. In general, the work hardening exponent of a material is 

obtained by using the Hollomon equation. The Hollomon hardening law is often used in 

evaluating the tensile properties of materials through spherical indentation [3-4, 8-14, 20, 21]. 

This law, obtained from curve fitting the tensile curves, is presented in Fig. 2. This figure 

shows that the Hollomon equation does not describe the entire flow curve for the 20MnB5 

steel. 
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Fig.2: Uniaxial tensile test curves of the 20MnB5 steel 

 

The spherical indentation tests were carried out with a tungsten carbide ball of radius 0.5 mm. 

The indentation bench used was detailed by Moussa et al. [21]. The core of the material being 

perfectly homogenous, the indentation tests were done in the core of the material to have a 

good reproducibility. For the indentation tests in the core, a specimen similar to those used for 

the tensile test was carefully sectioned with a Precision Cut-Off Machine along the plane 

perpendicular to the tensile direction. Four spherical indentation curves were obtained from 

the material. Figure 3 shows that a satisfying reproducibility of the indentation tests was 

obtained. 

 

 
Fig. 3: Spherical indentation curves of the 20MnB5 steel 

 

3-Quantification of the difference between two indentation curves 
In this study, the influence of experimental imprecision and/or material heterogeneity is 

studied. In order to quantify the difference between two spherical indentation curves with one 

value, the following root mean square error (ERMS) was used: 
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where R is the radius of the spherical indenter (R=0.5 mm in our case), h is the penetration 

depth, hmax is the maximal penetration depth, and F1 and F2 are the load for the two 

considered curves, respectively. 

This error is widely used in inverse analysis [21, 24, 25].  

Because of the experimental conditions and the sample’s dimensions, hmax/R=0.23 was 

chosen. So, ERMS, given in Eq. (1), was calculated between two spherical indentation curves 

from h/R=0 to 0.23. The proposed method consists of treating the average curve of the four 

indentation curves (average load calculated for each penetration depth). In order to consider 

the experimental imprecision and/or material heterogeneity, ERMS was calculated between the 

average curve, and each of the experimental ones. The values of ERMS are presented in Table 

1. 

 

ERMS (N) 

hmax/R Test 1 Test 2 Test 3  Test 4 Maximum 

0.23 1.17 1.97 2.50 0.85 2.50 

Table 1: Values of root mean square error (ERMS) between the average curve and the 

four experimental curves 

 

4-Sensitivity of the hardening law parameters on the load 

displacement curve 

 
4.1-Finite elements model 

An axisymmetric two dimensional finite element model was built up to simulate the 

indentation test (Fig. 4). The spherical tungsten carbide indenter with 0.5 mm radius was 

considered elastic with a Young's modulus of E=600 GPa and a Poisson's ratio of =0.23. The 

friction coefficient between the spherical indenter and the sample was fixed at 0.1. 

 
Fig. 4: Detail of the mesh used to simulate the spherical indentation test 

and a zoom near the contact zone.  

Four-noded axisymmetric elements (CAX4) were used with almost 11,000 elements for the 

sample and 2,000 elements for the indenter. The elements size at the contact zone was about 3 

µm. The radius of the sample was set large enough so that there would be no effect of outer 

boundaries. 
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The constitutive model of the elastic–plastic–indented material was taken to follow the J2-

associated flow theory with rate independent deformation. The isotropic hardening is 

described by the following piecewise linear/Hollomon power-law: 
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where y  is the yield stress of the material and n is the work hardening exponent. 

 

4.2-Procedure 

The present study consists of calculating the difference between the average experimental 

curve and various indentation curves obtained from finite element simulations. Therefore, the 

ERMS given in Eq. (2) was used to study the influence of the hardening law parameters on the 

indentation curve.  

A database was built up from finite element simulations with different combinations of plastic 

properties, listed in Table 2, and elastic properties corresponding to those of different steels 

(E=210GPa and =0.3). 

 

σy(MPa) 

190 200 210 220 230 240 

250 260 270 280 290 300 

310 320 330    

n 

0.09 0.095 0.1 0.105 0.11 0.115 

0.12 0.125 0.13 0.135 0.14 0.145 

0.15 0.155 0.16 0.165 0.17 0.175 

0.18 0.185 0.19 0.195 0.2 0.205 

0.21 0.215 0.22 0.225   

Table 2: Material Plastic properties used for the finite element simulations of the 

database. 

 

4.3-Error distribution 

The ERMS distribution between the average experimental curve and each one of the database 

curves is presented in Fig. 5. In this figure, the presence of a "valley," in which the values of 

ERMS are small and almost identical, can be observed. This figure also shows that this “valley” 

exhibits an obvious direction. A similar correlation between the Hollomon hardening law 

parameters was observed by Iost co workers [26] for 10,000 perturbed theoretical tensile 

curves. Despite the small variation in the values of ERMS
 
in the valley observed in Fig. 5, only 

one minimum ERMS
 
exists for the studied material. The material parameter set σy=240MPa and 

n=0.182, that lead to this minimum, are represented by a black dot in Fig. 5. This result 

proves, once again, the uniqueness of solution when spherical indentation is used for the 

identification of the yield stress and the work hardening exponent of a material [27].  

It can be noticed that the phenomenon observed for spherical indentation is different from the 

one observed for conical indentation. In the case of conical indentation, Hollomon hardening 

laws that exhibit the same stress for a specific value of strain (called representative strain) 

give the same indentation curve [2, 28]. Therefore, no unique hardening law can be identified 

from a conical indentation curve, which is not the case of the spherical indentation. 
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Fig. 5: Root mean square error (ERMS) distribution between the average experimental 

indentation curve and each one of the indentation curves of the database. The small 

circles represent the couples of parameters that are located at the bottom of the 

"valley". 

 

5-Identification method 

 
5.1-Reference change 

The bottom of the valley, in Fig. 5, is incurved in the σy–n diagram. In order to simplify the 

form of the valley, a reference change is proceeded from σy–n diagram to k–n diagram where 

 
E

nk
y

ln1  (3) 

The ERMS distribution in k–n diagram is presented in Fig. 6. We observe in this figure that the 

valley is no longer incurved. The bottom of the valley in the k–n diagram follows a straight 

line. From Fig. 6, one can also notice that the ERMS distribution in the k–n diagram takes a 

particular form: a cone with an elliptical base. This result justifies the proposed change of 



 8 

variable made in order to simplify the form of this valley. Further explanations about the 

reason why the bottom of the valley follows a straight line in the k–n diagram will be given in 

section 6. 

 

 
Fig. 6: Root mean square error (ERMS) distribution between the average experimental 

indentation curve and each one of the indentation curves of the database in the k-n 

diagram. 

 

5.2-Equation for ERMS distribution 

The aim of the study presented in this paragraph is to define an analytic function that can 

describe the ERMS distribution with no need to accomplish a large number of finite element 

simulations to form a database. The cone with the elliptical base can be defined with five 

parameters as shown in Fig. 7:  

– k0 and n0: these parameters correspond to the location of the summit of the cone. They give 

the minimal value of ERMS, corresponding to the solution (Fig. 7). 

– X and Y: these parameters correspond to the major and the minor semi-axes of the cone for 

each value of ERMS as follows: ERMS .X and ERMS .Y (Fig. 7). 

– θaR: angle between the major axis of the ellipse and the k axis (Fig. 7).  
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Fig.7: (a) Schematic of the cone with the elliptical base that describes the ERMS 

distribution in k-n diagram. 

(b) Schematic of the intersection between the cone with the elliptical base and a plane 

defined with a value of ERMS. 

 

Using these five parameters, the ERMS distribution in the k–n diagram can be written as 

follows:  

2 2

ellipse

x y
E

X Y

   
    

   
 (4) 

with 

    aRaR nnkkx  sincos 00   (5) 

and 

    aRaR nnkky  cossin 00   (6) 

The dimensional unit of Eellipse is the same as ERMS (Newton, in our case). The dimensional 

units of X and Y are the inverse of the dimensional unit of Eellipse. 
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From these equations, it can be written as:  

 0 0, , , ,ellipse y aRE f n X Y   (7) 

With   0 0 0exp 1y E k n    

Note: The representation of the surface defined in Eq. (4) in the y-n diagram is a cone with 

an incurved elliptical base. In the following parts of this article, the ERMS distribution will be 

represented in the y-n diagram to simplify the observations. 

 

5.3-Identification 

The five parameters, X, Y, n0, y0 and θaR, are obtained from the minimal value of the 

following cost function: 

 2ellipse
i

RMS
i EEE   with criticalRMS

i
ellipse

i
RMS

i EEifEE  0  (8) 

where i corresponds to each case of the material parameter sets (σy, n) that were chosen for the 

database. It should be noticed that the elliptical cone form was assumed to be the form of the 

ERMS distribution near the solution, i.e where the valley exists. For this reason, Ecritical was 

defined to use only the material parameter sets that are near the solution to correctly 

determine the five parameters of the elliptical cone. In this study, Ecritical = 30N was chosen.  

The comparison between ERMS, obtained from the database, and Eellipse obtained from Eq. (4) 

is presented in Fig. 8. In Fig. 8, it is clearly shown that the Eellipse distribution given by Eq. (4) 

superimposes perfectly onto the ERMS distribution. The result given in this figure proves that 

the considered assumption on the form of the valley is correct and that the valley takes the 

form of a cone with an elliptical base.  

Note: The small differences that can be observed in Fig. 8 are mainly due to the lack of FE 

simulations in the database. 
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Fig. 8: Comparison between the ERMS distribution (from the database) and Eellipse (from 

Eq. (4)) 

 

From Eq. (4), y0=240 MPa and n0=0.182 were determined using the average experimental F–

h curve. The hardening law that corresponds to these parameters is presented in Fig. 9 (red 

dots) in comparison with the tensile test curves. In this figure, it can be seen that the identified 

hardening law with spherical indentation is very close to the tensile test curves, which proves 

once again that the spherical indentation technique can be used to identify the hardening laws 

of materials.  
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Fig. 9: Comparison between the tensile test curves and the identified hardening laws 

with the elliptical cone definition from the experimental average indentation curve and 

the four experimental indentation curves  

 

5.4 Discussion about the identification method 

A large number of the proposed identification methods are based on the determination of a 

representative strain. According Lee et al. [9, 13], the representative strain was determined to 

be the strain of a specific zone of the indented material. No physical justification was given to 

explain the reason why this strain can be considered as representative of spherical indentation. 

As for the other methods [4, 10-12, 14], the representative strain was defined to simplify the 

mathematical formulation that links the F–h curve with the material parameters.  In all these 

studies, the use of the representative strain serves as a mathematical trick having no physical 

basis. Unlike these methods, the identification method proposed in this section is not based on 

the determination of a subjective representative strain. Using Eq. (4), the distribution of the 

error between an experimental curve and FE simulation curves can be determined. From this 

equation, the set of parameters that gives the minimum value of error, which corresponds to 

the solution, can be identified.  

Therefore, the proposed method leads to the identification to the Hollomon hardening law 

corresponding to the material parameter set (σyo, no). However, no indication about the most 

precise part of the identified hardening law is given with the proposed method at this stage of 

the study. Moreover, no information on the sensitivity of the acquired plastic properties (y 

and n), associated with material heterogeneity and experimental imprecision is given.  

In order to study this sensitivity, the proposed method was applied on the four experimental 

indentation curves (Fig. 3). The identified parameters are presented in Table 3 and the 

corresponding hardening laws in Fig. 9. Which one is to be considered as solution and how to 

proceed to determine a domain that includes all the solutions? Should we consider that the 

domain defined with the square determined from the minimal and the maximal values of σy 

and n (210 < σy < 252 and 0.171 < n < 0.21) includes all the solutions? 

The part of the hardening law that is identified with the highest precision and answers to these 

questions are given in the following sections. 

 

hmax/R = 0.23 

 Test 1 Test 2 Test 3 Test 4 Average F-h 
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σy(MPa) 251.94 242.08 210.21 244.16 239.83 

n 0.1716 0.1821 0.2103 0.1787 0.182 

Table 3: σy and n identified from the average and from the four experimental 

indentation curves. 

 

6- Average representative strain 
As shown in Figs. 5 and 6, the distribution of the error takes the form of a valley in the [k, n] 

or [Y, n] diagram. The material parameter sets (σy, n) located in the bottom of this valley give 

hardening laws that lead to F–h curves which are very close to the F-h experimental curve. 

Some of those hardening laws (small circles in Fig. 5) are presented in Fig. 10. From this 

figure, it can be noticed that these hardening intersect in a same point. We define the "average 

representative strain" εaR as the abscissa of the intersection point. In the studied case, its value 

is 0.0487. The stress equivalent to the average representative strain is called σaR. In the bottom 

of the valley, all the Hollomon hardening laws that intersect the stress–strain curve 

corresponding to the solution at [εaR, σaR] lead to indentation curves close to the indentation 

curve corresponding to the solution. Hence, the F–h curve is mostly influenced by the part of 

the hardening law which is located around the average representative strain, εaR. When a 

material is characterized using the F–h curve, it is this part of the Hollomon hardening law 

that is mostly characterized and the better identified.  

 

 
Fig. 10: Hardening laws of the materials for which the material parameter sets (σy, n) 

are located in the bottom of the valley (represented by small circles in Fig. 5) and the 

percentage of the maximal relative gap between these curves. 

 

When aR  , Eq. (2) becomes for the plastic part of the stress–strain curve: 

(1 )n n n

y aRE    (9) 

From Eq. (3), we can easily obtain 

 ln 1 ln ln
yaR

aRn n
E E


    (10) 

If we use the reference change proceeded in section 5.1, i.e  
E

nk
y

ln1 , we obtain 
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For the material parameters sets (σy, n) that are located in the bottom of the valley, εaR and σaR 

are constants and Eq. (11) becomes a linear equation in k-n diagram with a slope of 
aRln

1
  

for materials with the same E. This result explains why the bottom of the valley follows a 

straight line in the k-n diagram as it was shown in Fig. 6. 

The direction of the bottom of the valley defined with the angle θaR corresponds to the slope 

of Eq. (11). Hence, we can write  


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aR exp
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1
exp


  (12)  

aR is calculated using the elliptical cone definition (Eqs. (4, 5, 6). From Eq. (12), the 

determined average representative strain is εaR = 0.0487. As expected, this value corresponds 

to the strain for which all the hardening laws of the bottom of the valley intersect (see Fig. 

10). 

We would like to state that εaR, defined in this study, is dependent on the measured parameters 

during indentation (F and h in our case) and on the definition of the error (root mean square in 

our case). Moreover, εaR is characteristic of the whole indentation response from h=0 to 

h=hmax. For this reason, εaR is called “average representative strain” by the authors of this 

study. 

As already mentioned, the representative strains proposed earlier [1-19] are all dependent on 

the choice of the functional parameters that were used to describe the indentation process and 

are not strictly determined from the material response. The proposed average representative 

strain is strictly determined from an observation of the material response to the spherical 

indentation. Even more, in the studies concerning spherical indentation [1, 8-13, 15-17, 19], 

the representative strain is obtained for one specific state of deformation, i.e., for h/R or a/R 

fixed. For example, Tabor proposed the following representative strain εR = 0,2a/R. The use 

of this equation leads to a representative strain characteristic of the response of the material at 

one specific state of deformation, which means that the history of deformation is not 

considered. The proposed average representative strain is characteristic of the whole 

indentation response and not only of one specific state of deformation. Lastly, this average 

representative strain is not used to identify the Hollomon hardening law of the material but to 

obtain more information of the most precise part of the identified hardening law. 

 In the following section, the proposed identification method and the average representative 

strain are used to analyse the sensitivity of the acquired plastic properties (y and n), 

associated with material heterogeneity and experimental imprecision.  

 

7- Experimental imprecision and material heterogeneity 
Experimental measurement imprecision and material heterogeneity make it impossible to 

obtain two experimental indentation curves which are perfectly similar. In a review of several 
proposed methods for estimating hardening laws from spherical indentation F-h curves, 
published in 2004 [26], Cheng and Cheng mentioned: "However, since measurement errors in 

Fi and hi can cause errors in the estimation of E, σy,  and n, it is insufficient to report the 

best estimates of E, σy,  and n without reporting their errors. Detailed sensitivity analyses of 

the effect of various errors would thus be necessary. Such robust techniques for ascertaining 
stress–strain relationship as well as their confidence levels will likely be available in the future." 

The question is how to proceed to consider multiple experimental indentation curves. Is it 
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necessary to use all the curves in order to accomplish a statistical study so the result can 

describe the real behavior of the material? In this section, the differences between the four F-h 

curves and their influence on the identified hardening law are studied. A solution and 

confidence domains are proposed to identify the plastic properties of a material while taking 

into account the influence of the experimental imprecision and material heterogeneity. This 

way the identified solution will not be a unique solution, which corresponds to a single 

hardening law, but a domain that gathers all possible solutions. To do so, the maximal value 

of the errors between the average F–h curve and each one of the four experimental F–h curves 

is used (Table 1). This maximal error characterizes the influences of the experimental 

imprecision and the material heterogeneity on the F–h curves. Hence, in the following 

section, the average curve and the maximal experimental error are used to identify the plastic 

properties of a material taking into account the experimental imprecision and the material 

heterogeneity. 

 

7.1 Solution domain 
The isovalue of Eellipse=2.5N (maximal experimental error, see Table 1) is presented in Fig. 

11. All the material parameter sets (σy, n) located inside this isovalue curve give hardening 

laws that lead to F–h curves with a ERMS value lower than 2.5N. Because this value is the 

maximal error between the average curve and the experimental ones, this isovalue curve 

includes all the material parameter sets (σy, n) that can be considered as solutions. Therefore, 

this isovalue curve is defined by the authors as the solution domain. In order to validate the 

use of the solution domain, the four material parameter sets (σy, n) identified from each one of 

the experimental curves (Table 3), are presented with colored dots in Fig. 11. As seen from 

Fig. 11, they are located inside the solution domain, which means that the solution domain 

includes all possible solutions. 
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Fig. 11:  Solution domain with the material parameter sets (σy, n) identified from the 

average and the four experimental indentation curves. 

 

Figure 3 shows that a satisfactory reproducibility of the four F–h curves is obtained. On the 

other hand, Table 3 shows that the difference between the material parameters identified from 

these curves is not negligible. These results demonstrate the high sensitivity of the 

instrumented indentation test to the material parameter sets (σy, n). The comparison between 

the tensile test curves and the identified hardening laws obtained from these material 

parameter sets shows, however, that they represent, in a satisfying way, the hardening law of 

the material obtained from the tensile test curve (Fig. 9). A high degree of correlation between 

σy and n (correlation coefficient close to –1) is observed in Fig. 11. This result shows that the 

solution domain is smaller than the domain defined with the square that can be determined 

from the minimal and the maximal values of σy and n, i.e 210 < σy < 252 and 0.171 < n < 0.21 

(see Table 3). 

 

7.2 Confidence domain 
In this paragraph, a procedure is developed to represent the domain equivalent to the solution 

domain in the stress–strain diagram. The solution domain is represented in Fig. 12 in k–n and 

σy–n diagrams. This domain includes multiple parameters of hardening laws. The envelopes 
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of these hardening laws are represented in Fig. 13. The domain delimited by the envelopes is 

defined by the authors as the confidence domain. In Fig. 12, the thickness of this domain is 

presented. This thickness is minimal when ε = εaR, which shows that the most precise part of 

the identified hardening law is obtained around the average representative strain while taking 

into account the influence of the experimental imprecision and material heterogeneity. 

The red and green dots represented in Fig. 12 (points a, b, c and d) are the intersection points 

between the ellipse (in k–n diagram) and its two principle axes. The hardening laws 

corresponding to these dots are represented in Fig. 13b. As can be seen, the domain limited by 

the envelopes of these hardening laws is almost the same as the confidence domain 

(difference between the stresses smaller than 0.49 % for the studied case). Therefore, we 

assume that the confidence domain is determined from the hardening laws corresponding to 

points a, b, c and d represented in Fig. 12. The hardening laws corresponding to points a and b 

intersect at strain, and those corresponding to points b and c intersect at strain εbc (Fig. 13b). 

In the same way, the hardening laws corresponding to points c and d intersect at strain εcd and 

those corresponding to points d and a intersect at strain εda. Fig. 13 shows εab = εcd and εbc = 

εda. 

 

 
Fig. 12: Solution domain with the intersection points between its perimeter and its 

principle axes, in σy-n and k-n diagram. 
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(a) 

 
(b) 

Fig. 13: (a) Identified solution and confidence domain limited with the envelope 

(b) Zoom around εar: Identified solution, confidence domain limited with the envelope 

and hardening laws corresponding to points a, b, c and d represented in Fig. 12 

 

Since the confidence domain is defined with the hardening laws corresponding to points a, b, 

c and d, the solution domain is reduced from an ellipse to a rhombus as presented in Fig. 14. 
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Fig. 14: Simplification of the solution domain from an ellipse to a rhombus. 

This new form of the solution domain makes the determination of the confidence domain 

easier. 

As already presented, the direction of the principle axis of the rhombus is connected to the 

average representative strain. Using the same approach for εab the direction of the line 

segment [ab] leads to the strain for which the hardening laws, corresponding to points a and b 

intersect. In the same way as for εbc, the direction of the line segment [bc] leads to the strain 

for which the hardening laws, corresponding to points b and c intersect. Since for a rhombus, 

the opposite sides are parallel, the directions of the four sides are defined by two angles as 

shown in Fig. 14. Thus, according to Eq. (12) and Fig. 14, εab and εbc can be calculated using 

the following equations: 

abecdab

 tan

1


  (13) 

bcedabc

 tan

1


  (14) 

Because of the geometry of the rhombus and using Taylor series, it can be easily 

demonstrated that 

aRaRcdab    

aRaRdabc    (15) 

with 

  
X

Y
aRaRaR arctanln1

2
   (16) 

Equation (15) shows that εab and εbc are symmetrically located with respect to εaR. The 

confidence domain is defined, between εab and εbc, by the hardening laws corresponding to 

points b and d represented in Figs. 12 and 14. The parameters of the hardening laws of points 

b and d are: 

point b: 
aRRMS

aRRMS

YEnn

YEkk





cos

sin

0

0




 point d: 

aRRMS

aRRMS

YEnn

YEkk





cos

sin

0

0




 (17) 

Any Hollomon hardening law located inside the confidence domain between εab and εbc, is 

located inside the confidence domain for every value of strain. Hence, the confidence domain 

is defined with the hardening laws corresponding to points b and d, given in Eq. (17), between 

εab and εbc.  
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In section 5.2, Eq. (7) was used to identified the parameter of the hardening law of the 

material 0 0, yn  . , ,aR X Y parameters were also identified but not used. In this section, 

using the five identified parameters in Eqs. (12, 15-17), the confidence domain is determined, 

taking into account the experimental imprecision and/or the heterogeneity of the material.  

The curves obtained with the tensile test, the confidence domain and the five hardening laws 

identified (using the average F–h curve and the four F–h curves) are represented in Fig. 15. 

The hardening laws identified using the four F–h curves are all located inside the confidence 

domain which means that using the average curve, the proposed procedure, using Eq. (7, 12, 

15-17), enables the material to be identified, taking into account the experimental imprecision 

and/or the heterogeneity of the material. 

 

 

 
Fig. 15: Comparison between the tensile test curves, the identified hardening laws using 

the four experimental indentation curves and the confidence domain. (a) Total stress-

strain curve (b) zoom around the average representative strain value.  

 

7.3 Discussion 
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As presented in this study, a unique material parameter set (σy, n) is identified when using one 

single F-h curve of a spherical indentation test. This result is in agreement with those obtained 

in multiple studies [10, 12, 13, 29-31]. In practice, it is impossible to obtain two or more 

perfectly similar indentation curves. For the studied case, although the experimental curves 

are very similar (Fig. 3), the identified parameter sets (Table 3) are different. This result 

demonstrates the high sensitivity of the instrumented indentation test to the material 

parameter sets (σy, n). Therefore, for an experimental case one cannot talk about uniqueness 

of solution if two or more indentation curves are used. The solution must be a domain that 

includes the identified parameter sets obtained from each indentation curve. For this reason, 

the confidence domain was proposed in this study. The proposed confidence domain is an 

original tool which delimits the identified hardening laws obtained from each experimental 

indentation curve.  

8-Conclusion 
This study presents an investigation of the domain in which the solution exists while 

identifying the hardening law of a material with spherical indentation using the F–h curve. 

The ERMS distribution between a reference curve (experimental curve) and a number of FE 

simulation curves was studied. This study presents original results and observations that can 

be summarized as follows: 

 

– The proposed identification method is based on the equation of the error distribution 

between one experimental F–h curve and FE simulation curves. This method is based on no 

assumption and gives the material parameter set (σy, n) that leads to the closest F–h curve to 

the experimental one. 

 

–The average representative strain indicates the part of the hardening law that is the most 

precisely identified with the proposed method. All the representative strains in the literature 

were proposed as an intermediate parameter in the identification process. The use of these 

representative strains serve as a mathematical trick having no physical basis. In consequence, 

they are all dependent of human choices and are not strictly determined from the material 

response. In this study, the identification of material parameter set (σy, n) is not based on the 

use of a representative strain. The proposed average representative strain is strictly determined 

from the material response and is only used for the determination of the confidence domain 

which takes into account the difference between experimental indentation curves. 

  

–The uniqueness of the solution has been greatly discussed in many studies for the case of 

spherical indentation. As presented in this study, a unique material parameter set (σy, n) is 

identified when using a single F–h curve of a spherical indentation test. However, for the 

experimental cases, the experimental imprecision and the material heterogeneity lead to 

different indentation curves, which makes the uniqueness of solution impossible. The 

proposed solution and confidence domains include all the hardening laws that are solutions 

for an experimental case. According to the knowledge of the authors, such robust technique 

does not exist yet in the literature.  
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